Program
of the Training School
July 4 Monday |
July 5 Tuesday |
July 6 Wednesday |
July 7 Thursday |
|
8:00-8:30 |
registration |
|||
8:30-9:30 |
lecture 1-1 Turányi |
lecture 2-1 Tomlin |
lecture 3-1 Nagy |
lecture 4-1 Goussis |
9:30-9:40 |
short break |
short break | short break | short break |
9:40-10:40 |
lecture 1-2 Turányi |
lecture 2-2 Tomlin |
lecture 3-2 Tomlin |
lecture 4-2 Lendvay |
10:40-11:00 | break with refreshments | break with refreshments | break with refreshments | break with refreshments |
11:00-12:00 | lecture 1-3 Turányi |
lecture 2-3 Tomlin |
lecture 3-3 Goussis |
lecture 4-3 Császár |
12:00-12:10 |
short break |
short break | short break | short break |
12:10-13:10 | lecture 1-4 Zsély |
lecture 2-4 Turányi |
lecture 3-4 Goussis |
lecture 4-4 Császár |
13:10-14:00 | lunch break | lunch break | lunch break | lunch break |
14:00-15:00 |
practice 1-1 Valkó |
practice 2-1 Valkó |
practice 3-1 Nagy |
practice 4-1 Varga |
15:00-15:30 |
poster session | break with refreshments | break with refreshments | break with refreshments |
15:30-16:30 |
poster session |
practice 2-2 Tomlin |
practice 3-2 Olm |
practice 4-2 Varga |
16:30-17:00 |
Certificate ceremony |
|||
18:00-21:00 |
networking meeting |
Monday 1-1 (Turányi)
Reaction
kinetics basics for combustion simulations; pathway analysis
Monday 1-2 (Turányi)
Local
sensitivity analysis
Monday 1-3 (Turányi)
Uncertainty
of data and parameters
(uncertainty of combustion measurements, rate coefficients, Arrhenius
parameters and thermodynamic data)
Monday 1-4 (Zsély)
Validation and optimization of
detailed combustion mechanisms
Tuesday 2-1 (Tomlin)
Chemical kinetics data
(sources of data, representation of the uncertainty of data,
conventional and automatic mechanism generation)
Tuesday 2-2 (Tomlin)
Global uncertainty analysis 1
(screening methods; Monte Carlo methods and Latin hypercube sampling)
Tuesday 2-3 (Tomlin)
Global uncertainty analysis 2
(FAST, sensitivity indices, HDMR)
Tuesday 2-4 (Turányi)
Timescale
analysis
Wednesday 3-1 (Nagy)
Reduction of reaction mechanisms 1
(creation of a skeleton mechanisms: CM, DRG, DRGEP, DRGEP-ASA, SEM)
Wednesday 3-2 (Tomlin)
Reduction of reaction mechanisms 2
(fitted models and species lumping)
Wednesday 3-3 (Goussis)
Reduction of reaction mechanisms 3
(methods based on time-scale separation: an introduction)
Wednesday 3-4 (Goussis)
Reduction of reaction mechanisms 4
(methods based on time-scale separation:
CSP, ILDM, ISAT, REDIM)
Thursday 4-1 (Goussis)
Reduction of reaction mechanisms 5
(methods based on time-scale separation: QSSA and PEA)
Thursday 4-2 (Lendvay)
Uncertainty of ab initio rate coefficient calculations
Thursday 4-3 (Császár)
Uncertainty of
spectroscopic data
Thursday 4-4 (Császár)
Uncertainty of
computed thermodynamic data
Tuesday 2-1 (Valkó)
Monte Carlo method with Latin hypercube sampling, FAST, Morris' method
SimLab 2.2
Tuesday 2-2 (Tomlin)
High Dimensional Model Representation
GUI-HDMR
Wednesday 3-1 (Nagy)
Reduction to a skeleton mechanism
SEM
Wednesday 3-2 (Olm)
Validation of detailed combustion
mechanisms
outgen, Optima++
Thursday 4-1 (Varga)
Encoding combustion experimental
data
Optima++
Thursday 4-2 (Varga)
Optimization of detailed combustion
mechanisms
Optima++
name |
session |
format |
available from |
u-Limits | Mon 1-1 (Valkó) | MATLAB source | http://respecth.hu |
UBAC, JPDAP, SAMAP | Mon 1-1 (Valkó) | executable (Windows and Linux) | http://respecth.hu |
SimLab 2.2 | Tue 2-1 (Valkó) | executable (Windows) | https://ec.europa.eu/jrc/en/samo/simlab |
GUI-HDMR | Tue 2-2 (Tomlin) | MATLAB executable | http://respecth.hu |
SEM | Wed 3-1 (Nagy) | executable (Windows and Linux) |
http://respecth.hu |
Optima++ | Wed 3-2 (Olm) Thu 4-1, 4-2 (Varga) |
C++ source | http://respecth.hu |
outgen | Wed 3-2 (Olm) | executable (Windows, Linux) |
http://respecth.hu |
FlameMaster (0D and 1D combustion simulations for Optima++) Please update to the latest version! |
Thu 4-1, 4-2 (Varga) |
C++ source | http://www.itv.rwth-aachen.de/downloads/flamemaster/ |
There was a dedicated poster session on Monday from 15:00 in room 160 (coupled with a "cheese and beer" party). The posters were on display during the whole week.
Poster numbering and titles:
1 D. Kazangas, G. Skevis and
L. Kaiktsis:
Development and validation of a detailed chemical kinetic
mechanism for prediction of NOx-SOx synergies
(National Technical University of Athens, Athens, Greece;
Cperi/Certh, Thessaloniki, Greece.)
2 Magnus Fürst, Alberto Cuoci and Alessandro Parente:
Uncertainty Quantification of chemical kinetics for
non-conventional combustion regimes
(Aero-Thermo-Mechanical Department, Université Libre de
Bruxelles, Brussels, Belgium
Department of Chemistry, Materials and Chemical Engineering,
Politecnico di Milano, Milan, Italy.)
3 Julia Eble, Johannes
Kiecherer and Matthias Olzmann:
Low-temperature oxidation of diethyl ether containing mixtures:
development of a mechanism and kinetic modelling
(Institute of Physical Chemistry, Karlsruhe Institute of
Technology (KIT), Germany.)
4 M.S. Howard, A.
Valera-Medina, A. Giles, A. Carlos, D.G. Pugh, R. Marsh, P.J.
Bowen, I.
Wilkinson and S. Dooley:
Reduction of Ammonia/Methane & Ammonia/Hydrogen Combustion
Mechanisms for the
Modelling of Zero Carbon Power Production
(Materials & Surface Sciences Institute, University of
Limerick, Limerick, Ireland.
Cardiff University, Cardiff, United Kingdom., Siemens PLC,
Oxford, United Kingdom.)
5 A.J. Vervust, S.S.
Merchant, A.G. Vandeputte, M.R. Djokic, H.H. Carstensen, G.B.
Marin, W.H.
Green and K.M. Van Geem:
Experimental and kinetic modeling study of the pyrolysis of
cyclopentadiene: realistic pathways from C5H5 to naphthalene
(Laboratory for Chemical Technology, Ghent University, Ghent,
Belgium., Department of Chemical Engineering, Massachusetts
Institute of Technology, Cambridge, MA, USA.)
6 C. Chasos:
Computational fluid dynamics simulation of the diesel injector
internal and external flow for
different nozzles
(Frederick University, Nicosia, Cyprus.)
7 E. Agbro, A. Tomlin, M.
Lawes, S. Park and M. Sarathy:
The Influence of n-Butanol Blending on the Ignition Delay Times
of Gasoline and its Surrogate at High Pressures
(Energy Research I nstitute, University of Leeds, Leeds, UK.,
Clean Combustion Research Center, King Abdullah University of
Science and Technology, Thuwal, Saudi Arabia.)
8 F. Vermeire, P. D.
Paraskevas, R. Van de Vijver, R. de Bruycker, M. K. Sabbe, M.F.
Reyniers, N.G. Papayannakos, G.B. Marin and K.M. Van Geem:
First Principles Based Microkinetic Modelling of Methyl
Butanoate Pyrolysis
(Laboratory for Chemical Technology (LTC), Ghent University,
Technologiepark 914 9052, Zwijnaarde, Belgium. ,National
Technical University of Athens, 9 Heroon Politechniou Str.,
15780 Athens, Greece.)
9 I. Gorbatenko, M. Lawes,
A. Tomlin, D. Bradley and R. Cracknell:
Turbulent Combustion and Auto-ignition of Alternative Engine
Fuels
(CDT in Fluid Dynamics, University of Leeds, Leeds, UK.
School of Mechanical Engineering, University of Leeds, Leeds,
UK.
School of Chemical and Process Engineering, University of Leeds,
Leeds, UK.)
10 M. Søe Jepsen, P.
Glarborg, P. Arendt Jensen and T. Norman:
NOx reduction in grate-fired waste-to-energy plants
(Technical University of Denmark, Lyngby, Denmark. B&W
Vølund, Glostrup, Denmark)
11 N. Bianco, A. Bhave and S.
Mosbach:
Chemical kinetic modelling of combustion-generated nanoparticles
(Computational Modelling Cambridge Ltd. University of Cambridge,
Department of Chemical Engineering and Biotechnology)
12 S. Schuh and F. Winter:
Dual fuel combustion process – investigation of kinetically
controlled processes in diesel
substitution engines
(Institute of Chemical Engineering, Technische Universität Wien,
Getreidemarkt 9/166, 1060 Vienna, Austria)
13 K. Alexandrino, J.Salinas, Á. Millera, R. Bilbao and M. U.
Alzueta:
Toward a complete model including soot formation from the
dimethyl carbonate pyrolysis
(University of Zaragoza, Zaragoza, Spain)
14 S.-K. Vallabhuni, A. Lucassen, M. Wahab, G. Issayev, A.
Farooq and R. Fernandes:
Experimental Study of Ammonia Ignition
(Department of Reactive Flows, Physikalisch-Technische
Bundesanstalt (PTB), Braunschweig, Germany., Clean Combustion
Research Center, Physical Science and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal,
Saudi Arabia.)
15 Y. Karakaya, T. Bierkandt
and T. Kasper:
Ions as sensitive indicator for neutral polycyclic aromatic
hydrocarbons in combustion processes
(University of Duisburg-Essen, Thermodynamics, Duisburg,
Germany.)
16 H. Janbazi, O. Hasemann,
A. Kempf and I. Wlokas:
Reduction and optimization of reaction mechanism for gas phase
synthesis of nanoparticles
(IVG, Institute for Combustion and Gas Dynamics – Fluid
Dynamics. CCSS, Center for Computational Sciences and
Simulation. CENIDE, Center for Nanointegration, University of
Duisburg-Essen, Duisburg, Germany)
17 V. Bomba and B. Rogg:
A global reduced mechanism for strained oxy-methane diffusion
flames
(Chair of Fluid Mechanics Ruhr-University Bochum, Bochum,
Germany)
18 M. Lubrano Lavadera, P. Sabia, R. Ragucci and M. de Joannon:
Combustion chemistry of Smart Energy Carriers in model reactors
(Università degli studi di Napoli Federico II, Naples, Italy.
Institute of Research on Combustion-CNR, Naples, Italy.)
19 G. Ercolino, N.S. Vasile,
S. Karimi, P. Stelmachowski and Stefania Specchia:
3D multi-physics modeling approach to study the behaviors of
monoliths and foams catalysts for the lean methane combustion
(Politecnico di Torino, Torino, Italy., University of Theran,
Theran, Iran., Jagiellonian University in Krakow, Krakow,
Poland.)
20 N. Manić, M. Trninić, V.
Jovanović, D. Stojiljković, A. Jovović:
Particulate matter and gaseous emissions from small scale pellet
stove for different fuel quality
(R&D Activities at the University of Belgrade, Faculty of
Mechanical Engineering
University of Belgrade, Faculty of Mechanical Engineering,
Belgrade, Serbia)
21 M. Trninić, N. Manić, V.
Jovanović, D. Stojiljković, A. Jovović:
Thermochemical conversions of biomass and WB lignites
(R&D Activities at the University of Belgrade, Faculty of
Mechanical Engineering
University of Belgrade, Faculty of Mechanical Engineering,
Belgrade, Serbia)
22 T. Földes, Á. Madarász, G.
Sahoo, P. M. Pihko, I. Pápai:
Combined kinetic and quantum chemical analysis of an
organocatalytic reaction between
propanal and nitrostyrene
(Theoretical Chemistry Research Group, Research Centre for
Natural Sciences Hungarian Academy of Sciences, University of
Jyväskylä, Finland)
23 Dimitris G. Patsatzis,
Dimitris T. Maris and Dimitris A. Goussis:
Asymptotic Analysis of a Target Mediated Drug Disposition
Model: Algorithmic and Traditional Approaches
(Department of Mechanics, School of Applied Mathematics and
Physical Sciences, National Technical University of Athens,
Athens, Greece)
24 C. Pichler:
Creating a reduced mechanism for simulating combustion of small
alcohols
(Combustion Physics, Lund, Sweden)
25 M.S. Howard, X. Hua, A.
Valera-Medina, S. Dooley:
Reduction of Ammonia/Methane Combustion Mechanisms for Gas
Turbine Applications
(University of Limerick, Cardiff University)
26 G. Bagheri, T. Faravelli,
A. Frassoldati:
Detailed Kinetic Mechanisms for Combustion and Oxidation of
Natural Gas
(Politecnico di Milano)
27 M. Valantinavičius, T.
Vonžodas, N. Pedišius:
The application of agricultural waste and recycling products for
small and medium scale boilers - Project Agrobioatena.
(Lithuanian Energy Institute)
28 C. Olm, T. Varga, É.
Valkó, S. Hartl, C. Hasse, T. Turányi:
Optimization of detailed combustion mechanisms for C1/C2
oxygenate fuels
(Eötvös Loránd University
Budapest, Technical University Bergakademie Freiberg)
A
networking meeting was held on Thursday evening (18:00-23:00) in
the Trófea Grill Újbuda
Restaurant (1117 Budapest, Hauszmann Alajos u. 6b). Game
dishes, sea food, vegetarian and Japanese meals were available on
buffet tables, with unlimited soft drinks, beer and wine
consumption.