
TUESDAY 2-3
(ALISON TOMLIN)

Global uncertainty analysis 2:
Sensitivity indices, FAST, HDMR



DETERMINING
PARAMETER IMPORTANCE



How to determine parameter importance
from random/quasi random samples
■ Lots of different techniques with different levels of complexity.

■ Easiest starting point is to generate scatter plots of model outputs vs.
parameter input values.
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Ranking parameters?

■ For strong linear relationships the Pearson correlation coefficient would
indicate the degree of parameter importance.

■ Calculated by dividing the covariance of the variables by the square root
of the product of their variances:

■ High r values indicate a strong relationship between the input xk and
output y.

■ Not as useful for nonlinear responses.
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Spearman ranking
■ In a rank transformation, data are replaced with their corresponding ranks and

then correlation procedures are performed on these ranks.
■ The smallest value of each variable/parameter is assigned rank 1, the next

largest, rank 2, and so on up to sample size m.
■ A correlation coefficient is then calculated using the rank values instead of the

original values of the variables.
■ The Spearman coefficient therefore assesses how well the relationship

between two variables can be described using a monotonic function (see
chapter 6 of (Saltelli et al. 2000)).

■ A Spearman correlation of +1 or −1 therefore occurs when one variable is a
perfect monotone function of the other.

■ Not all relationships are monotonic and therefore more general methods are
required for calculating parameter importance from sampling methods.



CALCULATION OF
GLOBAL SENSITIVITY

INDICES



VARIANCE BASED
INDICES



Sobol’s method
If the model result Yi = fi(x1, x2, ..., xN) is influenced by independent random

parameters, then the joint pdf of the parameters P(x1, x2, …, xN) =                .

The mean or expected value E(Yi) of the calculated result Yi is then given by:

while the variance V(Yi) of the calculated result Yi is specified as:
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■ If this integral is calculated with a fixed value of a single parameter xj, then
the variance caused by all other parameters except for xj , denoted by V(Yixj)
is obtained.

■ If V(Yixj) is calculated for many values of xj, selected according to its pdf,
then the expected value E(V(Yixj)) can be calculated.

■ This requires the integration of V(Yixj) over the pdf of xj (Saltelli, 2002).
■ The value V(Yi)E(V(Yixj)) is equal to the reduced variance of Yi caused by

fixing the value of xj , and is equal to V(E(Yixj)).
■ By dividing this conditional variance by the unconditional variance, the

first-order sensitivity index for parameter xj can be calculated:

■ This measure shows the fraction of the total variance of Yi which is
reduced when the value of xj is held at a fixed value and is therefore a
measure of the influence of uncertainty in xj.
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2nd order indices

■ If the values of two parameters (e.g. xj and xk) are fixed, second-order
sensitivity indices are obtained:

■ The second-order sensitivity index characterizes the interaction of the
corresponding parameters.

■ Can be repeated up to higher and higher orders but the sample sizes
required for the calculation of integrals using a Monte Carlo/sampling
approach makes this prohibitive.
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Cost

 The method provides sensitivity indices which are between 0 and 1,
although sometimes this is multiplied by 100 yielding Sj(i)%.

 The calculation of these integrals is non-trivial and the use of a
Monte Carlo sampling method is described in (Saltelli 2002)
requiring N (2m+1) model runs for first-order indices where N is the
sample size chosen for the Monte Carlo estimates.

 The computational time requirement increases exponentially
with the order of indices required.



Total effects and interactions
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ij
SThe total effect of parameter j can be defined as the sum of all sensitivity

indices in which parameter j is present. Assume that we have three parameters a,
b and c. The total sensitivity index of parameter a is defined as:

If the parameters are totally additive, which means that there are no interactions
at all between the parameters, then                   and                     .

Then the variance of Yi can be fully explained by first order effects.
If this is not the case then                   is a measure of the level of interaction
between the parameters.
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The FAST (Fourier Amplitude Sensitivity)
method
■ Based on selecting N design points over a pre-described space-filling curve

in the m-th dimensional input space, built so that each dimension
(parameter) is investigated using a different frequency [ω1,ω2,…,ωk]
(Saltelli,Bolado 1998).

■ In FAST, the m-dimensional integral in Sobol’s method can be transformed to
a one-dimensional integral using the following function:

■ The transformation function Gj depends on the probability density function of
the corresponding parameter, the frequency ωj belonging to parameter j, and
the scalar search variable s.

■ The values of all parameters become a periodic function of the search
variable.
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■ If the frequencies ωj are relative prime numbers, then the curve x(s)
determined approaches all points of the parameter space in the rectangle of
uncertainty of the parameters, while s is changing within the interval (-π, +π).

The values of two parameters
were changed between 0 and 1
so that 157 different parameter
sets were produced.
The generation of the parameter
sets were controlled by search
scalar s with steps s = 0.04.
The following functions were
used p1 = 0.5 sin(17s) +0.5 and
p2 = 0.5 sin(113s)+0.5.



Space coverage?

■ The left plot shows that the whole space is covered but from the right plot we
see that points are focussed towards the edge of the domain.



Analysis in FAST

■ N parameter sets are defined by selecting N points equidistantly in the interval -π< s
< π, then the corresponding Yi model results are calculated (once for each
parameter set) and a Fourier analysis of the results is carried out.

■ In this way the variance fraction of the total variance of Yi can be obtained:

where Ail and Bil are the Fourier coefficients:
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■ If the Fourier coefficients and their harmonics are calculated at the frequency ωj,
then the partial variance caused by parameter xj is calculated from:

where index r refers to the r-th harmonics of the base frequency ωj.
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Cost of FAST

■ For the analysis of a model with m parameters, N = 1.2 m2.5 model
evaluations have to be carried out (Cukier et al. 1977).

■ This means 21200 simulations for a 50 parameter system.

■ If only a small number of important parameters exist (i.e. ones which
influence the target model output) then it is possible that random or quasi-
random sampling methods may converge using a smaller sample size than
that required by FAST.

■ These can be coupled with response surface techniques (see later) to give
lower cost variance based methods.

■ The classic FAST method is used to determine first-order sensitivity indices.
Where the first-order sensitivities over all parameters sum to much less than
1, this approach may be insufficient.

■ Extended FAST can also be applied to total indices but this adds to the
computational cost.



RESPONSE SURFACE
METHODS



General RSM approach
■ For computationally intensive models with a large number of parameters, the full

Sobol and even the FAST method can be computationally very expensive.
■ RSM based methods attempt to reduce the computational cost of Variance based

sensitivity methods by first developing a fitted meta-model that accurately
represents the relationship between the model parameters and outputs.

■ If such a meta-model can be fitted with a lower number of model runs then it can be
used to calculate variance based indices at a lower cost than the previous methods
discussed.

■ Have some similarities with Monte Carlo approaches:
– first input parameter ranges must be selected
– then a suitable sampling approach should be taken so that full model runs are

obtained across a design which is suitable for the development of an accurate
meta-model.

■ Cost of method therefore is driven by the cost of providing an accurate surrogate
model.



Issues of dimensionality
■ The high dimensionality of the parameter space does not always imply a complex functional

relationship between the more influential model inputs and target outputs.

■ Interaction effects among more than two parameters are fairly rare in models of chemical
systems (Rabitz,Aliş 2000; Li et al. 2001).

■ Sample size required to develop a suitable meta-model may be much lower than required
for the full investigation of sensitivity indices using Sobol’s method or the FAST method.

■ In a global sensitivity study of sulphur chemistry within a doped methane flame, Ziehn and
Tomlin (2008) found that only 5 of the 176 parameters tested in the SRM analysis were
required to build a meta-model giving 99.05% of the tested samples within the 5% relative
error range compared to full model.

– To achieve a relative error of 99.65%, required 51 of the possible 176 first-order terms
and only 4 of the possible 15,400 second-order terms to be included within the RSM.

– A sample size of N =1024 was sufficient to build an accurate RSM.

■ RSMs therefore offer a promising approach for large parameter systems, or systems with
high computational cost associated with the full model simulations.



Different approaches to RSMs

■ Polynomial chaos expansions (Balakrishnan et al. 2002; Reagan et al. 2004;
Najm et al. 2009; Cheng,Sandu 2009; Blatman,Sudret 2010; Prager et al.
2013).

■ Gaussian process emulators (Oakley,O'Hagan 2002).

■ Orthonormal polynomials (Turányi 1994; Tomlin 2006)

■ Splines (Storlie,Helton 2008)

■ High-dimensional model representations (Sobol' 1995; Rabitz et al. 1999;
Wang et al. 2001; Ziehn,Tomlin 2008b; Ziehn et al. 2009b; Skodje et al.
2010; Klippenstein et al. 2011; Tomlin,Ziehn 2011; Goldsmith et al. 2013).



Gaussian process models
■ Gaussian process emulator methods develop meta-models based on the

assumption that given a set of target outputs Y = f(x), the value of Y at an
unknown value of x follows a multivariate Gaussian distribution.

■ Given a big enough sample size, it is possible to produce any general shape of
response surface.

■ However, according to Saltelli (2008), since Gaussian emulators attempt to
interpolate the mapping from x to f(x) by applying a Gaussian kernel of the same
dimension as that of the input parameter space, the methods may suffer from
over-parameterisation and the so-called curse of dimensionality.

■ In practice, have mainly been used for systems with a low number of
parameters.

■ One advantage they do have over other methods is that they give an idea as to
the quality of the sensitivity indices (i.e. accuracy) as well as the estimates
themselves (Oakley,O'Hagan 2002) and (Oakley,O'Hagan 2004).



Polynomial chaos expansion methods

■ Here an uncertainty factor ui is first assigned to each input variable.
– Note that this uncertainty parameter ui is related to uncertainty parameter f

by ui = 10f .

■ Taking the example of rate coefficients, they are then normalised into factorial
variables x as follows:

■ Hence xi = 0 gives the nominal value of the rate coefficient, and -1 and +1
represent the upper and lower bounds.

■ A response surface of the predicted combustion properties is then generated
with respect to x.
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■ Often restricted to a 2nd order polynomial expansion which for the r’th
model response ηr(x) can be written as:

■ The uncertainty in x may be expressed as a polynomial expansion of basis
random variables ξ:

where α and β are column vectors of expansion coefficients, m is the number of
rate coefficients under consideration and x(0) is a column vector of normalised
rate coefficients which is a zero vector for the nominal reaction model.
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■ If the x’s are independent of each other and normally distributed, then the
usual choice for the form of ξ would be a set of unit-normal random
variables.

■ If ln ui represents 2 times the standard deviation of ln ki then α is ½ Im,
where Im is the m-dimensional identity matrix. β and all higher order terms
are zero (Sheen et al. 2009).

■ In the general case, combining the above two equations and truncating the
higher order terms gives:

■ What this equation shows is that the overall model prediction is given by its
nominal value plus uncertainty contributions from each rate coefficient.
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Examples of application

Experimental data and computed 2σ
uncertainty bands for the laminar flame
speed of ethylene-air mixtures at p = 1
atm. (Sheen et al. 2009).

Note that following the application of an
optimization procedure, the uncertainty
bounds are much narrower.

The polynomial chaos expansion is used
within the optimisation procedure.



ANOVA (ANALYSIS OF
VARIANCES)

DECOMPOSITION AND
HDMR METHODS



Variance decomposition

= + + …+ … =
For independent inputs (i.e. no correlations exist between inputs), a unique

decomposition of the unconditional variance V(Y) can be obtained (Li et al. 2010):

The approach is therefore analogous to the classical approaches described above but
instead of directly calculating the conditional variances using e.g. FAST or Monte Carlo
samples, now a meta-model is developed first and the sensitivity indices are calculated
using the meta-model.

= = 1



RSM approaches to ANOVA
decomposition
■ Polynomial chaos expansions were one method to achieve this ANOVA

decomposition.

■ Other methods are based on High Dimensional Model Representations (HDMR).

■ HDMR originally developed to provide a straightforward approach to explore the
input-output mapping of a model without requiring large numbers of model runs
(Sobol' 1995; Rabitz et al. 1999; Li et al. 2001).

■ The use of truncated expansions is possible because usually only low-order
correlations between inputs have a significant effect on the outputs.

■ Because of the hierarchical form of HDMR component functions, sensitivity
indices can be determined from them in an automatic way in order to rank the
importance of input parameters and to explore the influence of parameter
interactions.



Basic mapping
■ The mapping between the inputs x1,…, xn and the output variable Y(x) = f(x1,…,xn)

can be written in the following hierarchical form:

■ Here the zeroth-order component f0 denotes the mean effect, which is the
expected value of the model output f0=E(Y).

■ The first-order component functions fi(xi) give the effect of variable xi
acting independently (although generally nonlinearly) upon the output
Y(x):

■ The function fij(xi,xj)  is a second-order term describing the cooperative
effects of the variables xi and xj upon the output Y(x):
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HDMR and ANOVA
■ So we can see that the basic HDMR expansion is equivalent to the ANOVA decomposition.

■ This means that if we can find an accurate meta-model with which to represent the HDMR
expansion, we can provide an accurate estimate of the partial variances and therefore the
global sensitivity indices.

■ The ANOVA decomposition has several special properties:
– The expected value of all non-constant component functions is zero and the terms

are orthogonal (Sobol 2001).
– The notation of zeroth-, first-, second-order, etc. in the HDMR expansion should not be

confused with the terminology of a Taylor series since the HDMR expansion is always
of finite order (Rabitz,Aliş 2000).

■ The higher-order terms reflect the cooperative effects of increasing numbers of input
variables acting together to influence the output Y(x).

■ HDMR is computationally very efficient if higher-order input variable interactions are weak
and can therefore be neglected. Li et al. suggest (2001) that for many models, an HDMR
expansion up to second-order gives a good approximation to the function Y(x). Where not,
Tomlin and Ziehn (2011) showed that transformations of the outputs can be used to help
build a low-order HDMR model and to therefore identify the important parameters.



QRS-HDMR
■ We showed earlier that a quasi-random sequence such as a Sobol sequence

had better convergence properties than other sampling approaches.
■ Therefore we expect the Sobol’ sequence to be a better choice of sampling

strategy for fitting an HDMR meta model.
1. A quasi-random sample would therefore be developed for the chosen

input parameter space.
2. The full model would be run for each sample (e.g. 1024, 2048, etc) and

target outputs stored.
3. A meta-model would be fitted to the input-output relationships for each

target output.
4. The fitted HDMR meta-model would be used to derive global sensitivity

indices.
■ The accuracy of the meta-model determines the accuracy of the calculated

indices and needs to be checked carefully.



QRS-HDMR fitting procedure

■ Using the RS-HDMR method the zeroth-order term f0 is approximated by the average value of
Y(x) for all                                            , s = 1,2,…,N

where N is the sample size.

■ To reduce the sampling effort, the higher-order component functions are approximated by
expansions in terms of suitable basis functions which may include polynomials, splines etc.
For example, expansion in terms of orthonormal polynomials is given by:

where k,l,l’ represent the order of the polynomial expansion, and are constant
coefficients to be determined, and          ,               and are the orthonormal basis
functions (Li et al. 2002a).
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Sample size
■ The coefficients are determined using Monte Carlo integration over the

chosen input sample (Li et al. 2002a).

■ The approximation of the component functions reduces the sampling effort
dramatically so that only one set of quasi-random samples N is necessary in
order to determine all RS-HDMR component functions and subsequently the
sensitivity indices.

■ For first-order indices this sample can usually be quite small (e.g. 1024).

■ If significant second-order effects are present then the sample size will need
to be bigger.

■ Remember – base 2 system so sample size increases as 2Ns

– 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 etc!



Improving accuracy
■ The standard RS-HDMR approach was extended by an optimisation method

(Ziehn,Tomlin 2008a), which automatically chooses the best polynomial
order for the approximation of each of the component functions.

■ Component functions can also be excluded from the HDMR expansion if they
do not make a significant contribution to the modelled output value via the
use of a threshold.

■ The aim is to reduce the number of component functions to be approximated
by polynomials and therefore to achieve automatic complexity reduction
without the use of prior screening methods such as the Morris method
(Morris 2006).

■ For a second-order HDMR expansion a separate threshold can be defined for
the exclusion of the first and second-order component functions.

■ It is important to use thresholds for large parameter systems! (see practical
class).



Variance reduction methods
■ When using sample based methods such as Monte Carlo or quasi-random

sampling we are approximating the integrals using a discrete sample.

■ Increasing sample size will of course reduce the Monte Carlo integration errors.

■ Often we cannot afford this from the point of view of computational cost.

■ Another way to improve the accuracy of the Monte Carlo integration is to reduce the
variance of the integrand.

■ Two methods used in GUI-HDMR
– the correlation method
– the ratio control variate method.

■ In both cases the determination of the expansion coefficients becomes an iterative
process and requires an analytical reference function h(x).

■ This function has to be similar to f(x) and as shown by Li et al. (2003) and Li and
Rabitz (2006) a truncated RS-HDMR expansion can be used as a reference
function whose expansion coefficients were calculated by direct MC integration.





Testing accuracy
■ Several methods could be used. What is important is to ensure that the

output distribution of the meta-model is well matched to that of the
distribution from the full model runs.

Here the first-order
model is poor but
adding second-order
terms gives a good fit.

Plots available in GUI-
HDMR.



Testing accuracy
■ Scatter plots of full model vs. meta-model are also available.

A trend in the residuals
for the scatter plot for the
first-order model is often
a sign that higher order
effects are present.

First-order
r2=0.7551

Second-order
r2=0.9999
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Calculation of global sensitivity indices

■ The partial variances Di and Dij can be calculated (Li et al. 2002b; Feng et al. 2004):

Dividing these partial variances by the total variance of the model output, sensitivity
indices equivalent to the Sobol’ indices can be calculated:
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Component functions in
the expansion indicate
the individual effect of
each parameter



Here the component function
shows the impact of a
particular reaction A-factor
within the scatter caused by
uncertainties in other
important parameters.

If Si for a parameter was 1
then there would be no
scatter.

Very rare – but indicates a
very high information content
for a particular experimental
target measurement.



Ignition delays butane: sources of uncertainties

Uncertainties lowest at
higher temperatures.

Dominated by sensitivity to
reactions in C0-C2 base scheme



Ignition delays:
1st-order global
sensitivities Key reactions at low temperatures

C4H9−1−OO→C4H8−1−OOH
C4H9−1−OO→C4H8−2−OOH
1-C4H9+O2→1-C4H8+HO2
2-C4H9+O2→1-C4H8+HO2

Key reactions at low temperatures
C4H9−1−OO→C4H8−1−OOH
C4H9−1−OO→C4H8−2−OOH
1-C4H9+O2→1-C4H8+HO2
2-C4H9+O2→1-C4H8+HO2

Key reactions at high temperatures
HO2+CH3→CH3O+OH
O2+H→OH+O
C4H10+H→H2+2-C4H9
C4H10+OH→H2O+2-C4H9

Key reactions at high temperatures
HO2+CH3→CH3O+OH
O2+H→OH+O
C4H10+H→H2+2-C4H9
C4H10+OH→H2O+2-C4H9

Key reactions at intermediate
temperatures
C4H10+HO2→H2O2+1-C4H9
C4H10+HO2→H2O2+2-C4H9

Key reactions at intermediate
temperatures
C4H10+HO2→H2O2+1-C4H9
C4H10+HO2→H2O2+2-C4H9



What do global sampling based sensitivities tell us about
model tuning? Example of ignition delays for DME.

 Temptation to tune isomerisation
route to give long enough ignition
delays.

 However any rate constant within
a factor of 10 would match
experiment given other
uncertainties.

 Further studies required for
branching channels.



CORRELATIONS IN
INPUTS



Optimised mechanisms
■ The output from a mechanism optimisation procedure based on a wide range of

data sets would be the joint pdf of the Arrhenius parameters (see Zsely lectures).

■ When propagating uncertainties these need to be accounted for otherwise the
output uncertainty can be over exaggerated.

 Correlation matrix (output from optimisation
procedure) can be used to generate a
probabilistic sample.

If whole space was
used then
uncertainties would
be too large.



Sampling procedure
■ Perform a probabilistic sample based on optimised model.

■ Need to de-correlate the parameters in order to perform HDMR global sensitivity
analysis.

■ Rosenblatt transformation used to generate uncorrelated sample (Mara and
Tarantola, 2012).

■ Perform HDMR and generate sensitivity indices.

■ HOWEVER, these now represent marginal indices with varying degrees of inter-
correlation amongst the parameters.

■ Valko et al. (2016) have shown for a hydrogen oxidation model that the
correlated effects of parameters dominate.

– Effects of final marginal indices for uncorrelated effects of parameters are
very small.



reaction parameter
corr
iS corr_total

iS uncorr
iS aluncorr_tot

iS

1
H+O2=O+OH

ln A 0.088 0.089 0.110 0.110

2 n 0.035 0.036 0.109 0.109

3 E/R 0.259 0.260 0.099 0.099

4

H+O2(+M)=HO2(+M)

LP ln A 0.012 0.012 0.000 0.000

5 LP n 0.000 0.001 0.000 0.000

6 m(H2) 0.171 0.172 0.000 0.000

7 m(H2O) 0.039 0.041 0.000 0.000

8 m(Ar) 0.044 0.044 0.001 0.001

9
O+H2=H+OH

ln A 0.236 0.237 0.024 0.024

10 n 0.229 0.229 0.023 0.023

11 E/R 0.258 0.258 0.014 0.014

12
OH+H2=H+H2O

ln A 0.158 0.159 0.004 0.004

13 n 0.167 0.168 0.005 0.005

14 E/R 0.190 0.191 0.002 0.002

15
H+HO2=H2+O2

ln A 0.149 0.150 0.011 0.011

16 n 0.279 0.280 0.012 0.012

17 E/R 0.131 0.133 0.004 0.004

Also note effects
are not additive.
i.e. don’t sum to 1.

corr
iS corr_total
iS uncorr
iS aluncorr_tot
iS



What does this mean?

■ It means that if new experiments are performed which might help to
better constrain a hydrogen oxidation scheme then they should be
folded into a new optimisation analysis.
– i.e. not used to update parameters individually.

■ A parallel with the Active Thermochemical Tables approach can be
drawn.
– The whole TN is updated as new data is added.

■ Time consuming for reaction model since MANY simulations go into an
optimisation procedure.



Summary of lecture 2-3
■ Various methods for estimating global sensitivity indices have been reviewed.

■ Each estimates the contribution of each parameter to some measure of the
predicted output distribution (often variance).

■ Response surface based methods tend to be the most efficient for large parameter
systems.

– Even so, if higher-order effects are present the required sample size to achieve
good accuracy may be large. Much larger than estimating the variance itself.

■ Quasi-random samples tend to converge better.
– Convergence can be tested by calculating indices for increasing sample sizes

and testing when they converge.

■ The methods allow a ranking of important parameters.

■ They also inform us about the information content of experiments i.e. how
experiments can help us to better constrain our models.


