Mechanism reduction methods based on time scale separation

3rd part

Dimitris A. Goussis

National Technical University of Athens, Greece

Outline

- 1. Mathematical background
- 2. Time scales
- 3. Traditional reduction tools and their limitations
- 4. New algorithmic tools
- 5. Various methodologies
- 6. Applications
- 7. Quasi steady-state and partial equilibrium approx.

Some common features

 $\epsilon = 10^{-6}$

Partial Equilibrium Approximation (1st reaction)

$$\begin{array}{cccc} & k_{1f} & & k_{2} \\ x & \nleftrightarrow & y & & y \xrightarrow{k_{2}} & products \\ & k_{1b} & & \end{array}$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} -1 \\ +1 \end{bmatrix} \left(\frac{X - Y}{\varepsilon} \right) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} Y \qquad \varepsilon = 10^{-6}$$

$$X - Y = O(\varepsilon)$$

$$X - Y = O(\varepsilon) \implies \frac{\mathrm{d}X}{\mathrm{d}t} - \frac{\mathrm{d}Y}{\mathrm{d}t} = O(\varepsilon)$$

$$\frac{X - Y}{\varepsilon} = \frac{Y}{2} + O(\varepsilon)$$
$$\frac{dX}{dt} = -\frac{X}{2} + O(\varepsilon) \qquad \frac{dY}{dt} = -\frac{Y}{2} + O(\varepsilon)$$

Quasi Steady-State approximation (X)

$$\begin{array}{ccc} x & \overset{k_{1f}}{\nleftrightarrow} & y & \overset{k_{2}}{\twoheadrightarrow} & y \end{array} & \text{products} & & \\ \overset{k_{1b}}{\longleftarrow} & \overset{k_{2}}{\twoheadrightarrow} & y \end{array} & \begin{array}{c} y & \overset{k_{2}}{\twoheadrightarrow} & \text{products} & & \\ & \overset{d}{dt} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} -1 \\ +1 \end{bmatrix} \left(\frac{X}{\epsilon} - Y \right) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} Y & & \\ & \epsilon = 10^{-6} \end{array}$$

Quasi Steady-State approximation (Y 1st)

$$x \stackrel{k_{1f}}{\leftrightarrow} y \qquad y \stackrel{k_{2}}{\rightarrow} \text{ products} \qquad \qquad \frac{d}{dt} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} -1 \\ +1 \end{bmatrix} \left(X - \frac{Y}{\varepsilon} \right) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} Y \qquad \qquad \varepsilon = 10^{-6}$$

Quasi Steady-State approximation (Y 2nd)

$$x \underset{k_{1b}}{\overset{k_{1f}}{\leftrightarrow}} y \qquad y \xrightarrow{k_{2}}{\rightarrow} \text{ products} \qquad \qquad \frac{d}{dt} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} -1 \\ +1 \end{bmatrix} (X - Y) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \frac{Y}{\epsilon} \qquad \epsilon = 10^{-6}$$

QSSA/PEA literature

Bodenstein, Lind, Z. Phys. Chem. 57:168, 1906
Bodenstein, Z. Phys. Chem. 85:327, 1913
Michaelis and Menten, Biochem. Z. 49:333, 1913
Underhill and Chapman, J. Chem. Soc. Trans., 103:496, 1913
Briggs and Haldane, Biochem. J., 19:338, 1925

Acrivos, Benson, Bowen, Deakin, Frank-Kamenetskii, Fraser, Ignetik, Goddard, Goldbeter, Klonowski, Maini, Oppenheim, Oran, Rein, Roussel, Schnell, Segel, Slemrod, Tomlin, Turanyi, Tzafriri, Walcher

In combustion: Peters, Williams, Oran, Trevino, Turanyi/Tomlin

The nature of the QSSA/PEA

$$\frac{d\mathbf{y}}{dt} = \mathbf{S}_{1} \mathbf{R}^{1} + \mathbf{S}_{2} \mathbf{R}^{2} + \dots + \mathbf{S}_{K} \mathbf{R}^{K} = [\mathbf{S}_{1} \dots \mathbf{S}_{M}] \begin{bmatrix} \mathbf{R}^{1} \\ \vdots \\ \mathbf{R}^{M} \end{bmatrix} + [\mathbf{S}_{M+1} \dots \mathbf{S}_{K}] \begin{bmatrix} \mathbf{R}^{M+1} \\ \vdots \\ \mathbf{R}^{K} \end{bmatrix}$$

$$= \underbrace{\mathbf{S}_{r} \mathbf{R}^{r}}_{M \text{ fast reactions}} + \mathbf{S}_{s} \mathbf{R}^{s}$$

$$\mathbf{M} \text{ fast reactions}$$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}^{r} \\ \mathbf{y}^{s} \end{bmatrix} \longleftarrow \mathbf{M} \text{ fast species}$$

$$\frac{d}{dt} \underbrace{\mathbf{y}^{r}}_{\mathbf{y}^{s}} = \begin{bmatrix} \mathbf{S}_{r}^{r} \\ \mathbf{R}^{r} + \begin{bmatrix} \mathbf{S}_{s}^{r} \\ \mathbf{S}_{s}^{s} \end{bmatrix} \mathbf{R}^{s}$$

$$QSSA \qquad PEA$$

$$Accuracy O(\epsilon) \qquad \epsilon = \frac{\tau_{M}}{\tau_{M+1}}$$

The nature of the QSSA/PEA

$$\frac{d\mathbf{y}}{dt} = \mathbf{S}_{1} \mathbf{R}^{1} + \mathbf{S}_{2} \mathbf{R}^{2} + \dots + \mathbf{S}_{K} \mathbf{R}^{K} = \mathbf{S}_{r} \mathbf{R}^{r} + \mathbf{S}_{s} \mathbf{R}^{s}$$

$$\frac{d\mathbf{y}^{r}}{dt\mathbf{y}^{s}} = \begin{bmatrix} \mathbf{S}_{r}^{r} \\ \mathbf{S}_{s}^{s} \end{bmatrix} \mathbf{R}^{r} + \begin{bmatrix} \mathbf{S}_{s}^{r} \\ \mathbf{S}_{s}^{s} \end{bmatrix} \mathbf{R}^{s} \qquad \mathbf{R}^{r} = (\mathbf{S}_{r}^{r})^{-1} (\frac{d\mathbf{y}^{r}}{dt} - \mathbf{S}_{s}^{r} \mathbf{R}^{s})$$

$$= 0 \qquad \neq 0$$

$$\mathbf{QSSA} \qquad \mathbf{PEA}$$

$$\mathbf{QSSA:} \qquad \frac{d\mathbf{y}^{s}}{dt} = (\mathbf{S}_{s}^{s} - \mathbf{S}_{r}^{s} (\mathbf{S}_{r}^{r})^{-1} \mathbf{S}_{s}^{r}) \mathbf{R}^{s}$$

$$\frac{d\mathbf{y}^{s}}{dt} = (\mathbf{S}_{s}^{s} - \mathbf{S}_{r}^{s} (\mathbf{S}_{r}^{r})^{-1} \mathbf{S}_{s}^{r}) \mathbf{R}^{s}$$

The nature of the QSSA/PEA

The fast/slow basis vectors of QSSA/PEA

The fast/slow basis vectors of CSP

The fast vectors of QSSA/PEA

The **slow** vectors of PEA

The slow vectors of QSSA

Criteria for the validity of the QSSA/PEA

Goussis CTM 2012, C&F 2015

Meaning of the criteria for the validity of the QSSA/PEA

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \mathbf{y}^r \\ \mathbf{y}^s \end{bmatrix} = \mathbf{S}_r \, \mathbf{R}^r + \mathbf{S}_s \, \mathbf{R}^s = \begin{bmatrix} \mathbf{S}_r^r \\ \mathbf{S}_s^s \end{bmatrix} \mathbf{R}^r + \begin{bmatrix} \mathbf{S}_s^r \\ \mathbf{S}_s^s \end{bmatrix} \mathbf{R}^s = \begin{bmatrix} \mathbf{g}^r \\ \mathbf{g}^s \end{bmatrix} \qquad \frac{\mathrm{d}\mathbf{y}}{\mathrm{dt}} = \mathbf{a}_r \mathbf{f}^r + \mathbf{a}_s \mathbf{f}^s$$

The sensitivity of \boldsymbol{R}^r along \boldsymbol{y}^r is $O(\epsilon^{\text{-1}})$ larger than that of \boldsymbol{R}^s

Only the M reactions in $\boldsymbol{S}_{r}\boldsymbol{R}^{r}$ contribute to the fast dynamics of \boldsymbol{y}^{r}

[0, g']¹[0, g'].

Meaning of the criteria for the validity of the QSSA/PEA

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \mathbf{y}^r \\ \mathbf{y}^s \end{bmatrix} = \mathbf{S}_r \, \mathbf{R}^r + \mathbf{S}_s \, \mathbf{R}^s = \begin{bmatrix} \mathbf{S}_r^r \\ \mathbf{S}_s^s \end{bmatrix} \mathbf{R}^r + \begin{bmatrix} \mathbf{S}_s^r \\ \mathbf{S}_s^s \end{bmatrix} \mathbf{R}^s = \begin{bmatrix} \mathbf{g}^r \\ \mathbf{g}^s \end{bmatrix} \qquad \frac{\mathrm{d}\mathbf{y}}{\mathrm{dt}} = \mathbf{a}_r \mathbf{f}^r + \mathbf{a}_s \mathbf{f}^s$$

$$\begin{bmatrix} D_{\mathbf{y}^r} \mathbf{g}^r \end{bmatrix}^{-1} \begin{bmatrix} D_{\mathbf{a}_s} \mathbf{g}^r \end{bmatrix} = O(\varepsilon) \qquad \longleftarrow \qquad \text{Accuracy of PEA}$$

The sensitivity of \mathbf{g}^{r} along \mathbf{y}^{r} is $O(\epsilon^{-1})$ larger than that of \mathbf{g}^{r} along \mathbf{a}_{s}

 \mathbf{R}^{r} is $O(\epsilon^{-1})$ more sensitive to perturbations of \mathbf{y}^{r} than \mathbf{R}^{s} is sensitive to perturbations of \mathbf{y}^{r} and \mathbf{y}^{s} along the manifold

Meaning of the criteria for the validity of the QSSA/PEA

 \mathbf{R}^{r} is $O(\epsilon^{-1})$ more sensitive to perturbations of \mathbf{y}^{r} than \mathbf{R}^{s} is sensitive to perturbations of \mathbf{y}^{r} and \mathbf{y}^{s}

 \mathbf{R}^{r} is $O(\epsilon^{-1})$ more sensitive to perturbations of \mathbf{y}^{r} than \mathbf{R}^{r} is sensitive to perturbations of \mathbf{y}^{s}

QSSA/PEA: stability and accuracy

Simple example

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} = \begin{bmatrix} +1 \\ -1 \end{bmatrix} \frac{1}{\varepsilon} \mathbf{Z}^2 + \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix} \frac{1}{\varepsilon} \mathbf{Y} \mathbf{Z} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \mathbf{Y}$$

Simple example

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} = \begin{bmatrix} +1 \\ -1 \end{bmatrix} \frac{1}{\varepsilon} \mathbf{Z}^2 + \begin{bmatrix} -1 \\ +1 \end{bmatrix} \frac{1}{\varepsilon} \mathbf{Y} \mathbf{Z} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \mathbf{Y}$$

$$\frac{\varepsilon}{Z} << 1$$

1st fast reactionY fast variable

$\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{f}^{\mathrm{s}}\right]\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{g}^{\mathrm{r}}\right]^{-1} = \frac{\varepsilon}{Z+\varepsilon}$	Stability of PEA and QSSA	OK
$\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{g}^{\mathrm{r}}\right]^{-1}\left[D_{\mathbf{a}_{\mathrm{S}}}\mathbf{g}^{\mathrm{r}}\right] = \frac{\varepsilon}{Z+\varepsilon}$	Accuracy of PEA	ОК
$\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{R}^{\mathrm{r}}\right]^{-1}\left[D_{\mathbf{y}^{\mathrm{s}}}\mathbf{R}^{\mathrm{r}}\right] = 1$	Accuracy of QSSA	not OK

Simple example

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \mathbf{Y} \\ \mathbf{Z} \end{bmatrix} = \begin{bmatrix} +1 \\ -1 \end{bmatrix} \frac{1}{\varepsilon} \mathbf{Z}^2 + \begin{bmatrix} -1 \\ 1 \\ +1 \end{bmatrix} \frac{1}{\varepsilon} \mathbf{Y} \mathbf{Z} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \mathbf{Y}$$

$$\frac{\varepsilon}{Z} >> 1$$

2nd fast reactionY fast variable

$\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{f}^{\mathrm{s}}\right]\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{g}^{\mathrm{r}}\right]^{-1} = \frac{Z}{\varepsilon + Z}$	Stability of PEA and QSSA	OK
$\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{g}^{\mathrm{r}}\right]^{-1}\left[D_{\mathbf{a}_{\mathrm{S}}}\mathbf{g}^{\mathrm{r}}\right] = \frac{Z}{\varepsilon + Z}$	Accuracy of PEA	OK
$\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{R}^{\mathrm{r}}\right]^{-1}\left[D_{\mathbf{y}^{\mathrm{s}}}\mathbf{R}^{\mathrm{r}}\right] = 0$	Accuracy of QSSA	OK

Fast species and reactions

Fast species

The M species whose axis is most aligned with the M fast directions

Fast reactions

The M reaction rates that exhibit the largest slope in the fast subspace

Goussis CTM 2012, C&F 2015

H₂-air ignition

- **1**. H+O₂ <=> OH+O
- **2.** H₂+O <=> OH+H
- **3.** H₂+OH <=> H₂O+H
- **4.** H₂O+O <=> 2 OH
- **5.** 2 H+M <=> H₂+M
- **6.** H+OH+M <=> H₂O+M
- **7.** 2 O+M <=> O₂+M
- **8.** H+O+M <=> OH+M
- **9.** O+OH+M <=> HO₂+M
- **10.** H+O₂(+M) <=> HO₂

- **11.** HO₂+H <=> 2 OH
- **12.** HO₂+H <=> H₂+O₂
- **13.** HO₂+H <=> H₂O+O
- **14.** HO₂+O <=> OH+O₂
- **15.** HO₂+OH <=> H₂O+O₂
- **16.** 2 OH(+M) <=> H₂O₂ (+M)
- **17.** 2 HO₂ <=> H₂O₂+O₂
- **18.** H₂O₂+H <=> HO₂+H₂
- **19.** H₂O₂+H <=> H₂O+OH
- **20.** H₂O₂+OH <=> H₂O+HO₂
- **21.** H₂O₂+O <=> HO₂+OH

Adiabatic ignition of stoichiometric mixture at constant volume; T_o=1100K, p_o=2bar

Boivin et. al, Proc. Combust. Inst., 33:517-523, 2011

H₂-air ignition: profiles

Adiabatic ignition of stoichiometric mixture at constant volume; T_o =1100K, p_o =2bar

H₂-air ignition: 3-steps QSSA reduced mechanism

Species:	8
Conservation laws:	2 (O, H)
QSSA:	3 (O, OH, H ₂ O ₂)
Steps:	8 - 3 - 2 = 3

Fast reactions

- **2.** H₂+O <=> OH+H
- **3.** $H_2 + OH <=> H_2O+H$
- **16.** 2 OH(+M) <=> H₂O₂(+M)

I. $3 H_2 + O_2 \iff 2 H_2O + 2 H$ II. $H + H + M \iff H_2 + M$ III. $H_2 + O_2 \iff HO_2 + H$

Boivin et. al, Proc. Combust. Inst., 33:517-523, 2011

H₂-air ignition: 3-steps QSSA reduced mechanism

H₂-air ignition: timescales

H₂-air ignition: timescales

H₂-air ignition: manifolds

Recombination SIM: up to 6 approximations (QSSA, PEA, etc)

Kourdis, PhD Thesis, NTUA 2012

H₂-air ignition: manifolds

Region I (M=1, 2) Fast species: O, OH Fast reactions: $H_2 + O \iff OH + H$ $H_2 + OH \iff H_2O + H$ Region II (M=4) Fast species: H_2O_2 , HO_2 , O, H Fast reactions: 2OH (+M) <=> H_2O_2 (+M) $O + OH (+ M) <=> HO_2 (+M)$ $H_2O + O_2 <=> 2 OH$ $H_2 + OH <=> H_2O + H$

Region I (M=1): QSSA/PEA

Region I (M=1), QSSA/PEA: accuracy

Region I (M=1), QSSA/PEA: stability

Region I (M=1 and 2): QSSA/PEA

$\varepsilon = \frac{\tau_1 \text{ or } 2, \text{ slowest of fast}}{\tau_2 \text{ or } 3, \text{ fastest of slow}}$		
$\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{f}^{\mathrm{s}}\right]\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{g}^{\mathrm{r}}\right]^{-1} = O(\varepsilon)$	Stability QSSA/PEA	
$\left[D_{\mathbf{y}^{\mathrm{r}}}\mathbf{g}^{\mathrm{r}}\right]^{-1}\left[D_{\mathbf{a}_{\mathrm{S}}}\mathbf{g}^{\mathrm{r}}\right] = O(\varepsilon)$	Accuracy PEA	
$\left[D_{\mathbf{y}^{\mathrm{T}}}\mathbf{R}^{\mathrm{r}}\right]^{-1}\left[D_{\mathbf{y}^{\mathrm{S}}}\mathbf{R}^{\mathrm{r}}\right] = O(\varepsilon)$	PEA ->QSSA	
QSSA/PEA stabilityM=1: okPEA accuracyM=1: okPEA->QSSAM=1: ok	M=2: ok M=2: not so M=2: ok	

Region I (M=1 and 2), QSSA/PEA: accuracy

Region I (M=2), QSSA/PEA: stability

Region II (M=4): QSSA/PEA

Region II (M=4), QSSA/PEA: accuracy

Region II (M=4), QSSA/PEA: stability

Conclusions

There exist algorithms that can identify:

- 1. The number of fast time scales
- 2. The fast variables
- 3. The fast reactions
- 4. The possible validity of the QSSA/PEA

