
TUESDAY 2-2
(ALISON TOMLIN)

Global uncertainty analysis 1
Global uncertainty and sensitivity

methods



Sensitivity and uncertainty
analysis

• Uncertainty analysis (UA)
estimates the overall predictive
uncertainty of a model given the
state/or lack of knowledge about its
input parameters.

• UA puts error bars on predictions.

0.0 0.5 1.0 1.5
0.0

0.1

0.2

0.3

0.4

0.5

HO2 + H2 -> H2O2 + H

st
an

da
rd

 d
ev

ia
tio

n
/ m

s

absolute mean perturbation /ms

HO2 + OH -> H2O + O2

CO + HO2 -> CO2 + OH

H + O2 + M -> HO2 + M

H + O2 -> OH + O

H2O2 + M -> 2OH + M

CO + OH -> CO2 + H

Sensitivity analysis (SA) determines how much
each input parameter contributes to the output
uncertainty (usually variance).
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LOCAL VS GLOBAL
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Contributions to uncertainty?

• If σ(xj) are known then we can estimate overall uncertainty:

• The fractional contribution of each parameter to this
uncertainty can be estimated.
• Gives a better measure of parameter importance than S’ij
alone.
• Tells us how better quantification of each parameter could
reduce overall modelling uncertainty.
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Local vs global methods
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Global sensitivity/uncertainty
methods

Global - attempts to cover whole input
space using a sampling method.
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Najm, Wang, Frenkach,
Sheen, Tomlin, Turanyi etc.



Why use global methods?
■ Local sensitivity and uncertainty methods are usually based on a single (best

estimate) value of the parameters.

■ If the sensitivity of the output changes depending on the values of the
parameters then local methods could be inaccurate.

■ Particularly important for non-linear models and models with large
uncertainties.

Low sensitivity

High sensitivity



Disadvantages of global methods
■ In order to cover the regions of parameter uncertainty, sampling based

methods need to be used and therefore a large number of model runs is
needed instead of the single run required for local sensitivity analysis using
e.g. decoupled direct method.

■ The methods also require prior knowledge of the input parameter
distributions.

■ Methods are then required to interpret the data from a large number of
samples to determine the sensitivity indices (see next lecture).

■ Whilst global methods based on sampling can be applied to large parameter
systems the issue of sample sparsity can be an issue.

■ Screening methods are therefore often first applied to identify unimportant
parameters which do not need to be varied in the full global approach.



SCREENING METHODS



Why use screening methods?
■ To identify parameters which do not contribute greatly to the output variance

and therefore do not need to feature in a full global method.

■ Still need to cover sufficiently wide area of input uncertainty space.

■ Several choices:
– Most commonly used is local sensitivity analysis.
– Morris Method. A one at a time method which attempts to screen the

whole input uncertainty space. Can be expensive for large parameter
systems.



Local sensitivity analysis as screening
method.
■ Problematic unless it is applied at various values of the nominal parameters

e.g. recommended value, recommended value x 2, recommended value x
0.5.

■ Example: Ignition delay simulation problem.
– Computing sensitivities to ignition delays cannot simply be done using

methods such as the decoupled direct method.
– Brute force methods have to be used which require one run per

parameter. EXPENSIVE!
– Often, a surrogate, such as temperature at a given time point is used –

which can be computed using a single time point in Chemkin.
– Based on the assumption that reactions that lead to sensitivities in

temperatures also lead to sensitivities in ignition delays.



Morris “One at a time” Methods
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The value of each parameter xj is modified within the range

by a fixed amount  that is determined in the following way. A vector

is generated using a small even number q selected by the user. Then, zero and
one are assigned to xj

min and xj
max respectively. The other parameter values are

scaled accordingly.
• The first parameter set is the selected randomly from this range.
• The next parameter set is identical to the previous one, except for the value

of a single parameter which is changed randomly.
• In each run the parameters are ordered randomly and changed one at a time

in this way until all the parameters have been changed once.



Morris “One at a time” Methods

Several runs are performed, each starting with a new random set and
parameter ordering and dij shows the effect of changing parameter xj on
model result Yi at arbitrary values of all other parameters:
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Morris methods
■ Around r = 10-20 runs may be

needed for the method to converge.

■ Sampling effort required is
therefore r(m+1) where m is the
number of parameters. Not a cheap
method for large parameter
systems!

■ Statistical analysis of the dij values
obtained gives the expected value
μ(dij) and variance (dij) of changing
parameter xj on model result Yi.



Examples of application

Morris analysis for species ΔHf
o with respect to time to cool

flame for propane oxidation. T= 593 K, equimolar C3H8+O2 at
53.4 kPa, diluted by N2 to 101.3 kPa (Hughes et al. 2006)

• Note the high standard deviation of
the outputs compared to the mean.

• Very nonlinear responses requiring
large sample size to converge.



Advantages and disadvantages of
Morris methods

+ ve

■ Represent the whole parameter
space rather than a nominal
value point like local methods.

■ Can highlight nonlinearities in
response.

■ Give a clear visual presentation of
important and unimportant
parameters.

- ve

■ Can be computationally expensive
for large parameter, nonlinear
systems.

■ Do not highlight the influence of
parameter interactions – only
general nonlinearities.

■ Do no explicitly provide sensitivity
indices.



FULLY GLOBAL
SAMPLING METHODS



Are they necessary?

■ Both local sensitivity methods and global screening methods can provide
useful information on parameter importance in models.

■ For large systems, as a first cut they may be all that can be afforded
computationally.

■ However, to obtain a full picture of the model output distributions global
sampling methods are required.

■ These sample the full input space (uniform or probabilistic) and thus provide
a clear picture of the output distributions.

■ Since a full model run has to be simulated for each parameter set in the
sample, we need a sampling method that converges as quickly as possible.



Global sensitivity/uncertainty
methods

Global - attempts to cover whole input
space using a sampling method.
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Najm, Wang, Frenkach,
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Monte Carlo random sampling

■ For a global sampling method it is important to get good coverage of the input
parameter space – which may be high dimensional.

■ Typical random sampling methods can lead to clustering and holes.

100
numbers – 2
parameters



Monte Carlo random sampling

■ For a global sampling method it is important to get good coverage of the input
parameter space – which may be high dimensional.

■ Typical random sampling methods can lead to clustering and holes.

Holes
Clusters



Structured sampling: Latin Hypercube

■ Points generated by Latin hypercube
sampling according to a uniform
distribution.

■ Each horizontal and vertical stratus
contains a single point, while the
location of the point is random in the
corresponding small square.



Structured sampling
■ Latin Hypercube, 100 points, 2 parameters.

■ More even sample.



Low discrepancy sequences
■ Latin Hypercube sampling can become expensive as the number of parameters

increases – unless the resolution of the grid is sacrificed.

■ Low discrepancy sequences offer the best distributed sample for a given sample
size and parameter space dimensionality.

■ Successive sample points are added to positions as far away as possible from
existing sample points so that clustering can be avoided.

■ The best known low discrepancy sequences include those of Halton (1960), Faure
(1992), Sobol’ (1967) and Niederreiter (1988).

■ The Halton sequence is based on numbers generated within different power
sequences for each dimension of the parameter space.

■ The Sobol sequence uses only base 2.



Sobol sequence
Sobol sequences use a base of two to form successively finer uniform partitions
of the unit interval and then reorder the coordinates in each dimension.

0.000e+00 0.000e+00 0.000e+00
5.000e-01 5.000e-01 5.000e-01
7.500e-01   2.500e-01   7.500e-01
2.500e-01   7.500e-01   2.500e-01
3.750e-01 3.750e-01 6.250e-01
8.750e-01 8.750e-01 1.250e-01
6.250e-01   1.250e-01   3.750e-01
1.250e-01   6.250e-01   8.750e-01
1.875e-01   3.125e-01 3.125e-01
6.875e-01   8.125e-01 8.125e-01
9.375e-01   6.250e-02   5.625e-01
4.375e-01   5.625e-01   6.250e-02
3.125e-01   1.875e-01   9.375e-01
8.125e-01   6.875e-01   4.375e-01
5.625e-01   4.375e-01   1.875e-01
6.250e-02   9.375e-01   6.875e-01

The Sobol sequence is designed to
have the best convergence properties
and hence can lead to savings in
sampling based sensitivity and
uncertainty analysis because smaller
sample sizes are needed to get
equivalent accuracy in the results.



Comparison of convergence properties of different sampling
strategies for a simple test model: f(x) = x1 + x2

4



A comparison of
samples produced by
different sampling
methods for a 2
parameter model 1024
sampling points



Probabilistic sampling
■ If probabilistic information is known about the input parameters then

we may wish to sample from this distribution e.g. a normal distribution
based on 2σ uncertainties.

■ A normal distribution of random numbers can be obtained from a
uniform distribution of random numbers using the Box-Muller
algorithm.

■ However, a better method (Hebrard et al., 2015) may be to compute
directly the inverse normal distribution of the Sobol sequence given its
cumulative distribution function. This way we take advantage of the
convergence properties of the quasi-random sample.



• 2-parameter samples, N = 1000.
• Uniform pseudo- random sample

(top left)
• Sobol’s quasi-random sequence

sample (top right)
• Box-Muller transformation applied

to an uniform pseudo-random
sample (bottom left)

• Normal inverse cumulative
function of a Sobol’s quasi-
random sequence sample
(bottom right).



What parameters to include?
■ In an ideal world:

– All Arrhenius parameters
– Thermodynamic parameters which are used to calculate reverse reaction rates.
– Species transport data
– Other potential model errors

■ Temperature profile
■ Heat transfer coefficients
■ Residence times
■ Loss rates to the walls of the reactor vessel

■ In reality many of these are often ignored and a most common approach is to
simply look at the A-factors for each forward reaction.

– Tells us something about the important reactions but does not give a full
picture of uncertainties.



INTERPRETING OUTPUT
DISTRIBUTIONS



Ignition delays:
Predicted output distributions (butane model)

700 K – narrow distribution but long tail700 K – narrow distribution but long tail

900 K - factor of 2 uncertainty900 K - factor of 2 uncertainty

1300 K – narrows again1300 K – narrows again• 1σ used to represent
output error bars.



Interpreting output distributions

■ Example from simulations of
ignition delay time for a
butane oxidation system.

■ The blue shaded area
represents 1σ of the
outputs based on a
sampled normal distribution
of the input rate
parameters.

■ Hebrard et al. (2015)



Interpreting output distributions

Reasonable agreement
between model and shock
tube and RCM data if
uncertainties are taken into
account.

Reasonable agreement
between model and shock
tube and RCM data if
uncertainties are taken into
account.



Interpreting output distributions

• Lower uncertainties in
high temperature region.

• Higher uncertainties in
NTC region.



JSR data

Some discrepancies
between model and
experimental data
even when accounting
for estimated
uncertainties.

Missing reaction
steps?

Other uncertainties
not identified?



Summary of lecture 2-2
■ If we fully account for input parameter uncertainties we end up with an output

distribution rather than a single value.
■ Most methods represent this with some kind of variance based measure.

– Can be misleading if the distribution is significantly non-Gaussian.
■ Only a global sampling approach will give full probability distribution.

– Local methods give an estimate but only based around the nominal
parameter value and this can be inaccurate if the real response is non-
linear.

■ Low-discrepancy sequences have been shown to have better convergence
properties compared to standard random Monte Carlo sampling and Latin
Hypercube approaches.

– This reduces the sample size needed to estimate output variance.
■ For fuel oxidation models the Negative Temperature Coefficient regime is seen to

be the most uncertain in many cases (less measurements here and more
reactions contributing).


