
WEDNESDAY 3-2
(ALISON TOMLIN)
Reduction of reaction mechanisms 2
(Species lumping and fitted models)



LUMPING



What does lumping mean?
■ Combining information into “lumps” in such a way that we can still

represent detailed kinetics but with fewer species or equations.

■ Can take two forms:
– Reaction Lumping → →

becomes: →
– Species Lumping

[Y] = [A] + [B] + [C]



Why Lump?

■ Skeletal mechanism reduction methods are useful for removing
redundant species and reactions from a mechanism.

■ Sometimes this is not sufficient to make the mechanism small
enough for use in e.g. CFD codes.

■ By combining species or reactions we can compress the mechanism
further and potentially reduce the number of equations we need to
solve.



Advantages and Disadvantages

Advantages

■ Reduction in number of
variables and therefore
equations to solve.

■ When combined with time-
scale analysis a reduction in
system stiffness.

■ Computational speed-up.

■ Less species to “transport” in
CFD code.

Disadvantages

■ Lumped model cannot always
be expressed as a kinetic
scheme.

■ Lumped scheme may “loose”
information that was contained
in full scheme.

■ Cannot always recover original
species concentrations.

■ Need a method to define
lumped reaction rates.



Where is lumping most commonly
applied?
■ Can be useful for models involving the combustion of complex

hydrocarbons where comprehensive mechanisms may contain many
isomers with complex multi-step pathways.

■ The reactions for each isomer and its intermediates may be
qualitatively similar.

■ The rates of reaction may even be similar between isomers.

■ We may be able to represent the weighted sum of isomer
concentrations as a single species.

■ Can also be useful in systems with either timescale separation or with
groups of species which react on similar timescales.



Crucial issues for successful species
lumping
1. To determine which species are to be lumped;

2. To classify how the selected species should contribute to the lumped
species, i.e. define the lumping transformation;
– could also require defining the inverse transformation i.e. how to

get back to the original species from the lump;

3. To estimate kinetic parameters for the reactions of the lumped
species.



Methodologies used.

Two types of methodology are commonly used:

i) Chemical Lumping: based on chemical knowledge of species
involved e.g. structural similarities.

ii) Mathematical Lumping: based on looking for similar mathematical
quantities or applying mathematical rules.

The two can often be equivalent since species with the same reaction
steps and rate constants will lead to mathematical similarities within the
equations.

Using mathematical approaches does not usually rely on chemical
knowledge or intuition.



CHEMICAL LUMPING



Chemical Lumping

■ Has some commonality with topics discussed in the lecture on automatic
mechanism generation since often based on isomers being involved in the
same reaction classes.

■ For n-heptane the classes of propagation routes are defined as:
1. Decomposition and isomerization of alkyl radicals R.
2. H-abstraction with O2 to form HO2 and conjugate olefins.
3. Direct and reverse O2 addition to R to form peroxy radicals ROO.
4. Internal isomerisation between ROO and hydroperoxyalkyl radicals

QOOH.
5. Decomposition of QOOH radicals to form olefins.
6. Decomposition of QOOH radicals to form HO2 and conjugate olefins.
etc.



How?

■ Reference rate parameters can be defined for each reaction class
based on literature data or similarity rules.
– E.G. values can be defined for the abstraction of a hydrogen

radical based on its location at a primary, secondary or tertiary
site, or for isomerization reactions for hydrogen transfer from
different sites .

■ The pathways for each isomer and the resulting intermediate radicals
can then potentially be lumped to give a simplified scheme with only a
single pathway representing degradation to the average products of all
the isomers (Ranzi et al., 1995).



For example, within the n-heptane scheme described there are 4 alkyl radicals
noted by R1, R2, R3, R4 giving rise to 4 reactions involving the addition of O2.

R1 + O2 → R1OO k1

R2 + O2 → R2OO k2

R3 + O2 → R3OO k3

R4 + O2 → R4OO k4

The lumped alkyl radical is then defined by:

[R] = [R1] + [R2] + [R3] + [R4],

with the corresponding lumped reaction given by:

R + O2 → ROO k5



How to define the rate constant for the
lumped reaction?
■ By fitting with respect to experimental data or with respect to the complex

full model (remember MAMOX, Milan).

■ By weighted averages for the different component isomers depending on the
relative weights within the initial fuel.

■ From the weighted mean of the elementary rate coefficient for the individual
isomers (Fournet et al., 2000):

][R
][R][R][R][R 44332211

5 

 


kkkkk
Much easier if
all the rate
constants are
the same!

Much easier if
all the rate
constants are
the same!



Applications of Chemical Lumping
■ Mechanisms developed in Milan tend to

incorporate lumping and have now addressed a
large number of parent fuel compounds.

■ Key example is that for n-heptane which
contains only 4 lumped radicals.

■ High degree of lumping leads to reactions with
non-integer stoichiometries which represent the
relative weights of the different product
channels.

■ Q7OOH → OH + 0.3HCHO + 0.32C5H10 +
0.3C4H8 + 0.35CH3CHO +0.31C3H6 +
0.35C2H5CHO + 0.4C2H4 + 0.06C7H14

■ Rate coefficients for lumped scheme obtained
by fitting against predictions from full scheme Ranzi, 1995



Applications of Chemical Lumping

■ Battin Leclerc et al. (2000) reduced primary mechanism for n-heptane
combustion from 410 free radicals and 70 molecules in 1654
reactions, to a lumped scheme with only 25 free radicals and 70
molecules in 189 reactions.

■ The lumped mechanism was shown to give a good representation of
the prediction of n-heptane conversion compared to the full scheme in
the negative temperature coefficient regime.

■ Lumping process included as an integral part of the automatic
reaction generation software EXGAS in order to allow the user to limit
the size and improve the computational efficiency of the generated
schemes where required.



Lumping in Soot Formation
Mechanisms
■ Chemical reactions describing polymer growth are of the same type, while

the rate parameters and thermodynamic data vary only slightly between
polymer sizes.

■ For soot formation the reaction is described by a distribution function for the
degree of polymerization, and a repeating reaction cycle for particle growth .
The structure and rate coefficients for each repeated cycle are treated as
being the same.

■ A suggested mechanism of PAH (Polyaromatic Hydrocarbon) growth proceeds
by a replication process involving hydrogen abstraction and the addition of
acetylene (HACA mechanism).

■ Lumping can be guided by similarities in structure of the hydrocarbon
species in the repeating sequence (Frenklach, 1990).



HACA Reaction Sequence
(i,1) Ai + H ↔ Ai˙ + H2

(i,2) Ai˙ + C2H2 ↔ AiCHCH˙

(i,3) AiCHCH˙ +  C2H2 → Ai+1 + H

(i+1,1) Ai+1 + H ↔ Ai+1˙ + H2

(i+1,2) Ai+1˙ + C2H2 ↔ Ai+1CHCH˙

(i+1,3) Ai+1CHCH˙ + C2H2 → Ai+2 + H

(i+2, i+3, …, n) … etc.

where Ai is an aromatic molecule containing i fused aromatic rings, Ai˙ is an
aromatic radical formed by H abstraction and AiCHCH˙ is a radical formed by
adding C2H2 to Ai˙



In non-lumped form the reaction system is described by the following set
of rate equations:

= − + .. = − . – . + .. = . − . − .= . − + ..= − . – . + ..= . − . − .
… etc.



■ Rate coefficients kj assumed to have same value for each cycle due to
chemical similarities between the species.

■ Allows chemical lumping to be applied in order to reduce the number of
variables.

■ Most severe lumping comes from summing together all species giving:

where Mo = [Ai] + [Ai˙] + [AiCHCH˙] + [Ai+1]+ … .
■ This one dimensional system describes the evolution of the total PAH

concentration Mo. The details of the dynamics of the system are lost however
if such a severe lumping is used.

■ Another approach is to multiply each of the equations by an integer which
roughly corresponds to the molecular mass of the species i.e. the number of
carbon atoms, before summing the terms.

=



M = A + A. + + 2 A CHCH. + + 4 A +⋯ .= + 2 [C H ] A. − 2 A CHCH. + 2 [C H ] A CHCH.
where = A + A. + + 2 A CHCH. + + 4 A + + 4 A. +⋯ , is the total number of carbon atoms accumulated in the PAHs i.e. the first moment of the
PAH distribution.

■ In terms of species lumping we can now see that it is possible to define a new set of
variables which define the lumped species:̂ = A

̂ = A.
̂ = A CHCH.



■ The corresponding lumped equation system is then given by:

̂ = − H ̂ + H ̂ + C H ̂̂ = H ̂ − H ̂ − ̂̂ = C H ̂ − ̂ − C H ̂
■ The example shows that in this case lumping based on chemical similarities results

in new variables which are simply linear sums of the original species concentrations.

■ The lumped system has only 3 variables and in this case since it was assumed that
the rate constants were the same for each species of the same structure the
definition of the lumped rate constants is simple.



MATHEMATICAL
LUMPING



Mathematical Approaches: linear lumping

■ The previous example showed that a simple linear transformation could be
applied to define new lumped variables that were weighted sums of the
original species.

■ This type of lumping can be written in a more formal way.

■ The formal definition of lumping is the transformation of the original vector of
variables Y to a new transformed variable vector using the transformation
function h:

■ The dimension of the new variable vector is smaller than that of the
original concentration vector. A new kinetic system of ODEs is formed:
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Inverse transformation
■ An important feature is the ability to recover the original vector of concentrations

from the transformed variables.

■ Inverse mapping is not unique but its existence is a necessary condition of formally
exact lumping.

■ Inverse mapping also provides a link between the lumped species (which will be
solved for in the lumped system) and the original species.

■ In practical applications the inverse transformation may not be necessary since
often lumped species (e.g. total PAH) may be sufficient.

■ Lumping is often not “exact” in practical systems.
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Linear Lumping
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In the linear case the transformation is simply a matrix multiplication operation:

where M is a matrix of size × NS. Consider for example the following matrix:

This lumping matrix transforms an original concentration vector
to the concentration vector of lumped species, where
and

.



Simple example of first-order systems
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Can be described by the following initial value problem:

Linear species lumping results in the following different initial value problem:

Wei and Kuo (1969) have shown that the necessary and sufficient condition of
exact linear lumping is the following equation:

which is always possible to define but is not necessarily unique.



■ Equivalent problem is finding invariant subspaces of the original equations
i.e. invariant subspaces of the transpose of the Jacobian JT(Y).

■ This is a system of equations where the eigenvalues of JT(Y) and JT(M-1MY)
are identical.

■ Straightforward for linear examples where the Jacobian is a constant
matrix.

■ Difficult task for more general nonlinear ODEs where applying the
restrictions imposed by exact lumping may limit the level of reduction
possible for the reduced scheme.

■ Hence approximate lumping is usually applied based either on chemical
similarities and therefore similarities in rate constants, or either time-scale
similarities or separation (see later lectures on Computational Singular
Perturbation theory).



Example of approximate method

■ Huang et al. (2005) defined a formal lumping procedure for
intermediate species where the fraction of each component within the
lump αi (equivalent to the inverse lumping matrix        ) is defined in
terms of the fractional formation rate of the components of the lump.

■ The selection of suitable lumping groups is determined via the
calculation of the ratio of the normalised formation rates between
candidate species i and j denoted by γi,j. If the ratio is approximately
constant over the course of the simulation, then the two species can
be lumped.

M



Take the example:

Define the lump [L] = [L1] + [L2]



Lumped system:

• True if the initial
concentrations of the two
species is equal.

• Often the case if species are
intermediates since their initial
concentration will be zero.



■ For a lumped group containing three species A, B, and C, then α is
calculated as follows:
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where Ri is the formation rate of species i, m1 = γA,B, m2 = γA,C and
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.

Method was illustrated for isothermal oxidation of fuel-rich methane–
oxygen mixtures, where 31 species were lumped into 9 groups giving a
reduction in the number of species of 22.



FITTED MODELS



Use of difference equations for time
dependent models

■ For chemical kinetic systems we are used to solving differential equations to
determine the change in species concentrations over time.

■ For large, complex, nonlinear systems requires sophisticated numerical
integration techniques.

■ For repeated calculations (e.g. in CFD codes) the same conditions of
composition, temperature, pressure may be revisited many times throughout
a simulation.

■ In such cases it may be quicker to store the model results to reuse later.

■ This can be achieved via the tabulation of model quantities (see later) or by
the use of fitted difference equations.



Suggested algorithm
1. Time step t is selected to achieve good resolution of the characteristic time-
scale of the system.
2. Several thousand, spatially homogeneous simulations are carried out with a
series of initial concentrations and/or temperatures, which are typical for the
circumstances of applications of the final intended model.
3. The Y(t), Y(t+t) concentration vector pairs are stored in a database.
4. A function G is fitted to the data and can then be used to predict the change
in concentration after time step t : Y(t+t) = G(Y(t)).

In the context of a CFD code – operator splitting can be used and such a
difference equation applied to the chemical time-step.



Different approaches

■ Differences in approach boil down to the form of the fitted function G.

■ Polynomial functions are often used.

■ Piecewise fits are often used in different regions of composition space to
improve accuracy.

■ Artificial Neural Networks have also been used.

■ Critical feature is that ALL conditions to be encountered in final CFD code
must be represented in homogenous calculations since polynomials can
often behave badly outside of the region in which they were fitted.



Orthonormal Polynomials
■ Methods for the determination of the coefficients of high-order polynomials have to be

suitable for fitting a polynomial function to tens of thousands of data points and
determining coefficients for the effective variables only, usually using a least squares based
method.

■ The application of orthonormal polynomials (Turányi 1994) can be advantageous for this
task, since their coefficients can be determined independently from each other.

■ Overall aim is to get a good fit using as few monomials as possible.
– Each polynomial generated by fitting its constant to the data and calculating the r.m.s.

error.
– A new term is then added, an orthonormal polynomial is generated and the new r.m.s.

error calculated.
– If the change in r.m.s. error is greater than a pre-set tolerance, then this term is

accepted and a new term is tested.
– Polynomial is built up with terms of progressively increasing order in combinations of

variables.
– The fitting is stopped when the error becomes lower than a given threshold.



HDMR
■ Previous method has several advantages;

– the fitted function is the best approximation,
– most of the coefficients within the high-order polynomial are likely to be zero.

■ However, in high-dimensional nonlinear cases with many variables and the requirement of a
high order approximation, the number of non-zero coefficients can be very large, making
the creation and evaluation of multi-variate high-order polynomials very expensive.

■ In such cases, rapidly convergent hierarchical correlated function expansions in the input
variables, or HDMR, can be used (as in global sensitivity analysis section).

■ Applications have shown that the order of the correlations between the independent
variables dies off rapidly and therefore only a few terms are usually required to represent
even highly nonlinear inputoutput relationships.

■ Applied in Li et al. (2008) to the simulation of ignition within homogeneous H2/air mixtures
over wide ranges of temperatures and pressures (1000 < T0 < 1500 K, 0.1 < P < 100 atm)



Example - BelousovZhabotinsky oscillating
reaction.
■ Original model first simulated 200 times using different initial

concentrations and t = 0.1.  20,000 data sets collected.

■ 8th order polynomials used for fit.

■ Speed up x 50.



Use of slow manifolds

■ Timescale analysis can reveal low dimensional slow
manifolds within combustion systems.

■ Behaviour collapses onto these lower dimensional
manifolds after initial transient period.

■ Therefore fitted models can be restricted to such low
dimensional spaces.

– can lead to big reduction in numbers of variables.
– can circumvent the need to define differential

equations on these manifolds.
– can potentially be computationally faster than

using look-up tables (see Goussis lectures).



Oscillatory ignition example

■ Orthonormal polynomials used for the generation of a
repro-model describing the oscillatory ignition of CO-H2
mixtures in a continuously stirred tank reactor (CSTR) at
very low pressures (Brad et al. 2007).

■ 4-variable repro-model based on 6th order polynomials,
successful representation of the regions of steady
state, cool flames and large temperature oscillations
achieved based on fits to a 14-variable full model.

■ [H2], [O2], [CO] and T used for fitted model.
■ Dynamically complex system.

■ Regions of high accuracy were required during oscillatory
ignition.

■ Whole composition space was partitioned to achieve
accurate fits.



Avoiding the build-up of errors
■ Higher accuracy was demanded in regions

where trajectories were divergent in
composition space.

■ More tricky than a model where everything
tends towards equilibrium!

■ Mass was conserved by fitting the non-dynamic
variables as functions of the dynamic ones.

– Analogous to the QSSA assumption.



Artificial Neural Networks
■ In principle capable of representing highly nonlinear functions such as those which

arise in chemical kinetic systems.

■ Therefore fall into the class of fitted model approaches.

■ Designed to attempt to recreate the way a human brain works by constructing a
network of neurons or nodes linked to each other by a series of ‘synapses’.

■ This artificial model of a brain can then be ‘trained’ by presenting it with examples
and adjusting the effect the neurons have on each other until the system
‘recognises’ the examples.

■ Not really that different in concept from other non-linear fitting approaches…

input 1

input 2

output 1

output 2

output 3

Strengths of connections between the
different neurons are stored as weights
which are determined by an
appropriate learning algorithm.



ANN’S
■ Mathematically represented as:

■ where is the output of the i-th neuron of the l’-th layer, is the weight value of
connection between the j-th neuron of the (l-1) layer and the i-th neuron of the l’-th
layer and is the bias value of the i-th neuron of the l’-th layer.

■ The nonlinear transfer function f(.) is commonly a sigmoidal or hyperbolic-tangent
function.

■ Through presenting input-output examples to the system and adjusting the synaptic
weights  in an appropriate manner, the system can be trained to recognise patterns
or replicate complicated functions. The learning algorithm provides the means of
adjusting the weights in order to reduce the fitting error of the ANN when compared
to the training data.
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Applications and issues
■ (Christo et al. (1996) successfully applied ANNs in the modelling of a velocity-scalar joint pdf

transport equation for H2/CO2 turbulent jet diffusion flames based on a global  3-step
scheme.

■ Several authors have combined ANNs with other reduction approaches such as ISAT (Chen et
al., 2000; Ihme et al., 2009), and Rate Controlled Equilibrium (Chatzopoulos and Rigopoulos
2013) e.g. for non-premixed and non-piloted, CH4/H2/N2 turbulent flames).

■ Possible disadvantages
– lack of definitive guidelines for optimising important features such as appropriate

number of layers and neurons in each layer (Christo et al. 1996a).
– optimising the network becomes effectively an iterative trial and error procedure.
– large numbers of weights are capable of providing a highly accurate fit to training data,

but can lead to poor results for unseen data (over-fitting),
■ analogous way to using polynomials of too high order.

– since the ANNs typically use exponential functions, their evaluation requires more
computer time than using polynomials.



PRISM (Piecewise Reusable Maps)
■ Polynomial approach (Tonse et al. 1999) whereby fitted polynomial functions are

developed during the calculation, and then reused when the region of composition space
is revisited in subsequent time steps or different spatial regions (c.f. ISAT later).

■ Uses second-order polynomials so that in order to cover the realisable region, multiple
expressions are used, each valid over a different portion of composition space.

■ Integration of full kinetic equations provides the solution at selected points throughout a
hypercube, in order to determine the polynomial coefficients.

– Increase in accuracy with reduced hypercube size.

■ Trade-off between accuracy and the efficiency of polynomial generation as well as
storage and retrieval.

– Polynomial construction only allowed for those hypercubes that are revisited enough
times to make the construction worthwhile.

■ Successful application to hydrogen ignition, a 1D laminar hydrogen flame, a 2D
axisymmetric turbulent jet (Tonse et al. 1999; Tonse et al. 2003) and a turbulent
premixed hydrogen flame (Bell et al. 2000).



Tabulation vs. Fitted Models?

Tabulation

■ Highly accurate at tabulation points.

■ Requires interpolation methods in
between so accuracy depends on
resolution.

■ Trade off between resolution and
storage and retrieval requirements.

■ Can provide significant speed-ups
over implicit integration methods.

■ If in situ-then unlikely to lead to
extrapolation but this leads to higher
cost penalty.

Fitted Models
■ Need to store far less information since

not storing all input-output mapping – just
fitted coefficients.

■ Not necessarily 100% accurate anywhere.
Depends on quality of fit and therefore
sample size OR hypercube fitting region
resolution.

■ Unless calculated in-site (e.g. PRISM)
needs to be re-fitted each time model
updated.

■ Can provide significant speed-ups over
implicit integration methods.

■ Extrapolation dangerous.



Summary of lecture 3-2
■ We briefly reviewed simple lumping methods for reducing the number of species in a

chemical kinetic model.
– Approximate lumping methods are seen to be more appropriate for combustion

models due to their inherently non-linear nature.

■ The rate constants for lumped reactions can be developed either by fitting to simulations of
the full scheme, or through algebraic relations to the original rate constants if functions can
be developed.

– Easier if structural similarities have been used to estimate rate constants!
– Applies to large hydrocarbon systems with many parallel pathways of similar isomers.

■ Even through lumping, integer stoichiometric coefficients in a kinetic scheme can be lost -
or we loose the kinetic formulation altogether i.e. we are left with a mathematical model
and not chemical reactions.

■ In fitted models this is very much the case – the models have a highly empirical basis and
are only applicable in the region of fitting.

– Extrapolate at your peril!


