Tamás
Turányi and Alison
S.
Tomlin:
Analysis
of
kinetic reaction mechanisms
Springer,
2014
with 1025
references
Table
of Contents
DOWNLOAD
the chapters
Flyer
Chemical
processes in many fields of science and
technology, including
combustion, atmospheric chemistry, environmental
modelling, process
engineering, and systems biology, can be
described by detailed reaction
mechanisms consisting of numerous reaction
steps. This book describes
methods that are applicable in all these fields.
Topics addressed
include: how sensitivity and uncertainty
analyses allow the calculation
of the overall uncertainty of simulation results
and the identification
of the most important input parameters, the ways
in which mechanisms
can be reduced without losing important kinetic
and dynamic detail, and
the application of reduced models for more
accurate engineering
optimizations. This monograph is invaluable for
researchers and
engineers dealing with detailed reaction
mechanisms, but is also useful
for graduate students of related courses in
chemistry, mechanical
engineering, energy and environmental science
and biology.
Content
Index
References
Chapter 2: Reaction
Kinetics Basics
Abstract
This chapter provides an introduction to the basic concepts of
reaction
kinetics simulations. The level corresponds mainly to
undergraduate
teaching in chemistry and in process, chemical and mechanical
engineering. However, some topics are discussed in more detail and
depth in order to underpin the later chapters. The section
“parameterising rate coefficients” contains several topics that
are
usually not present in textbooks. For example, all reaction
kinetics
textbooks discuss the pressure dependence of the rate coefficients
of
unimolecular reactions, but usually do not cover those of
complex-forming bimolecular reactions. The chapter contains an
undergraduate level introduction to basic simplification
principles in
reaction kinetics. The corresponding sections also discuss the
handling
of conserved properties in chemical kinetic systems and the
lumping of
reaction steps.
You
may download here
the complete text of Chapter 2.
Content
1
Introduction.. 2
2
Reaction
kinetics basics. 2
2.1 Stoichiometry and reaction rate.. 2
2.1.1
Reaction
stoichiometry.
2.1.2
Molecularity
of an elementary reaction. 2
2.1.3
Mass
action kinetics and chemical rate equations. 2
2.1.4
Examples. 2
2.2 Parameterising rate coefficients. 2
2.2.1
Temperature
dependence of the rate coefficients. 2
2.2.2
Pressure
dependence of the rate coefficients. 2
2.2.3
Reversible
reaction steps. 2
2.3 Basic simplification principles
in reaction kinetics. 2
2.3.1
The
pool chemical approximation. 2
2.3.2
The
pre-equilibrium approximation. 2
2.3.3
Rate
determining step. 2
2.3.4
The
quasi-steady-state approximation (QSSA) 2
2.3.5
Conserved
properties. 2
2.3.6
Lumping
of reaction steps. 2
3
Mechanism
construction and the
sources of data.. 2
3.1 Automatic mechanism generation.. 2
3.2 Data sources. 2
4
Reaction
pathway analysis. 2
4.1 Species conversion pathways. 2
4.2 Pathways leading to the
consumption or production of a
species. 2
5
Sensitivity
and uncertainty
analyses. 2
5.1 Introduction.. 2
5.2 Local sensitivity analysis. 2
5.2.1
Basic
equations. 2
5.2.2
The
brute force method. 2
5.2.3
The
Green function method. 2
5.2.4
The
decoupled direct method. 2
5.2.5
Automatic
differentiation. 2
5.2.6
Application
to oscillating systems. 2
5.3 Principal component analysis of
the sensitivity matrix.. 2
5.4 Local uncertainty analysis. 2
5.5 Global uncertainty analysis. 2
5.5.1
Morris’
screening method. 2
5.5.2
Global
uncertainty analysis using sampling based
methods. 2
5.5.3
Sensitivity
indices. 2
5.5.4
Fourier
Amplitude Sensitivity Test (FAST) 2
5.5.5 Response Surface Methods (RSMs) 2
5.5.6
Moment-independent
global sensitivity analysis methods. 2
5.6 Uncertainty analysis of gas
kinetic models. 2
5.6.1
Uncertainty
of the rate coefficients. 2
5.6.2
Characterization
of the uncertainty of the Arrhenius
parameters. 2
5.6.3
Local
uncertainty analysis of reaction kinetic models. 2
5.6.4
Examples
of the application of uncertainty analysis to
methane flame models. 2
5.6.5
Applications
of response surface
techniques to
uncertainty analysis in gas kinetic models. 2
5.6.6
Handling
correlated inputs within global uncertainty
and sensitivity studies. 2
5.7 Uncertainty analysis in systems
biology.. 2
5.8 Uncertainty analysis: general
conclusions. 2
6
Time-scale
analysis. 2
6.1 Introduction.. 2
6.2 Species lifetimes and
time-scales. 2
6.3 Application of perturbation
theory to chemical kinetic
systems. 2
6.4 Computational singular
perturbation (CSP) theory.. 2
6.5 Slow manifolds in the space of
variables. 2
6.6 Time-scales in reactive flow
models. 2
6.7 Stiffness of reaction kinetic
models. 2
6.8 Operator Splitting and Stiffness. 2
7
Reduction
of reaction
mechanisms. 2
7.1 Introduction.. 2
7.2 Reaction rate and Jacobian
based methods for species removal.. 2
7.2.1
Species
removal via the inspection of rates. 2
7.2.2
Species
elimination via trial and error.
7.2.3
Connectivity
method: connections between the species
defined by the Jacobian. 2
7.2.4
Simulation
Error Minimization Connectivity Method
(SEM-CM) 2
7.3 Identification of redundant
reaction steps using
rate-of-production and sensitivity methods 2
7.4 Identification of redundant
reaction steps based on entropy
production.. 2
7.5 Graph Based Methods. 2
7.5.1
Directed
Relation Graph (DRG) method. 2
7.5.2
DRG-aided
sensitivity analysis (DRGASA) 2
7.5.3
DRG
with error propagation (DRGEP) 2
7.5.4
The
Path Flux Analysis (PFA) method. 2
7.5.5
Comparison
of methods for species elimination. 2
7.6 Optimisation Approaches. 2
7.6.1
Integer
programming methods. 2
7.6.2
Genetic
algorithm (GA) based methods. 2
7.6.3
Optimisation
of reduced models to experimental data. 2
7.6.4
Application
to oscillatory systems. 2
7.7 Species Lumping.. 2
7.7.1
Chemical
Lumping. 2
7.7.2
Linear
lumping. 2
7.7.3
Linear
lumping in systems with time-scale separation. 2
7.7.4
General
nonlinear methods. 2
7.7.5
Approximate
nonlinear lumping in systems with
time-scale separation. 2
7.7.6
Continuous
lumping. 2
7.7.7
The
application of lumping to biological and
biochemical systems. 2
7.8 The quasi-steady-state
approximation (QSSA) 2
7.8.1
Basic
equations. 2
7.8.2
Historical
context 2
7.8.3
The
analysis of errors. 2
7.8.4
Further
recent approaches to the selection of
QSS-species. 2
7.8.5
Application
of the QSSA in spatially distributed
systems. 2
7.8.6
Practical
applications of the QSSA. 2
7.9 CSP-based mechanism reduction.. 2
7.10
Numerical
reduced models derived from the rate equations of
the detailed model 2
7.10.1
Slow
manifold methods. 2
7.10.2
Intrinsic
low -dimensional
manifolds (ILDMs) 2
7.10.3
Application
of ILDM methods in
reaction diffusion systems. 2
7.10.4
Thermodynamic
approaches for
the calculation of manifolds. 2
7.11
Numerical
reduced models based on geometric approaches. 2
7.11.1
Calculation
of slow invariant
manifolds (SIMs) 2
7.11.2
The
minimal entropy production
trajectory method (MEPT) 2
7.11.3
Calculation
of temporal
concentration changes based on the self similarity of the
concentration
curves. 2
7.12
Tabulation
approaches 2
7.12.1
The
use of look-up tables. 2
7.12.2
In
situ tabulation. 2
7.12.3
Controlling
errors and the invariant
constrained equilibrium pre-image curve (ICE-PIC) method. 2
7.12.4
Flamelet
generated manifolds. 2
7.13
Numerical
reduced models based on fitting. 2
7.13.1
Calculation
of temporal
concentration changes using difference equations. 2
7.13.2
Calculation
of concentration
changes by assuming the presence of slow manifolds. 2
7.13.3
Fitting
polynomials using
factorial design. 2
7.13.4
Fitting
polynomials using
Taylor expansions. 2
7.13.5
Orthonormal
polynomial fitting
methods. 2
7.13.6
High-dimensional
model representations
(HDMRs) 2
7.13.7
Artificial
neural networks. 2
7.13.8
Piecewise
reusable maps
(PRISM) 2
7.14
Adaptive
reduced mechanisms. 2
8
Similarity
of sensitivity
functions. 2
8.1 Introduction and basic
definitions. 2
8.2 The origins of local similarity
and scaling relationships. 2
8.3 The origin of global similarity.. 2
8.4 Similarity of the sensitivity
functions of biological models. 2
8.5 The importance of the
similarity of sensitivity functions. 2
9
Computer
codes for the study
of complex reaction systems. 2
9.1 General simulation codes in
reaction kinetics. 2
9.2 Simulation of gas kinetics
systems. 2
9.3 Analysis of reaction mechanisms. 2
9.4 Investigation of biological
reaction kinetic systems. 2
9.5 Global uncertainty analysis. 2
10 Summary and concluding remarks. 2
11 Index.. 2
12 Literature.. 2
activation
temperature
active mode
Active
Thermochemical
Table (ATcT)
ACUCHEM program
adaptive
chemistry
adaptive reduced
mechanism
ADIFOR
analytical
solution
ANOVA
decomposition
approximate slow
invariant manifold (ASIM)
Arrhenius
equation
Arrhenius plot
artificial
neural network (ANN)
ASIM. see Approximate Slow
Invariant Manifold
automatic
differentiation
automatic
differentiation in FORTRAN. see ADIFOR
autonomous
system
of ODEs
backward
reaction
bath gas
bimolecular
reaction
binary search
tree
(BST)
Bodenstein-principle. see quasi-steady-state
approximation
branching ratio
brute force
method
Cantera program
CARM program
package
cell cycle
channel ratio
characteristic
timescale
CHEMATA code
chemical
explosive mode analysis (CEMA)
Chemical
Kinetics
Simulator (CKS) program
chemical lumping
CHEMKIN program
package
circadian clock
models
cluster analysis
collision
efficiency
Common
Representative Intermediates (CRI) mechanism
complementary
set
of species
complex-forming
bimolecular reaction
computational
singular perturbation (CSP)
connectivity
method
(CM)
conserved moiety
conserved
property
consistent
mechanism
constrained
equilibrium manifold (CEM)
constrained
species
lumping
continuous
species
COPASI program
CSP. see computational
singular
perturbation theory
CSP Importance
Index
CSP
Participation
Index
CSP Pointer
DAKOTA program
package
data
collaboration
DDM. see decoupled direct
method
decoupled direct
method
direct method
DRG method
DRG with error
propagation (DRGEP)
DRG-aided
sensitivity analysis (DRGASA)
DRGEP-aided
sensitivity analysis (DRGEP-ASA)
dynamic adaptive
chemistry (DAC)
dynamical
dimension
E-CELL code
ellipsoid of
accuracy (EOA)
empirical
low-dimensional manifold (ELDM)
equivalence
ratio
exact-steady-state
adaptive
chemistry (ESAC)
EXGAS code
explicit methods
for the solution of ODEs
extended
Arrhenius
equation
external species
fall-off region
family method
fast equilibrium
approximation. see pre-equilibrium
approximation
fast equivalent
operational model (FEOM)
fast variable
FGM. see flamelet generated
manifolds
first order
sensitivity index
flame
prolongated
ILDM (FPI)
flamelet
generated
manifolds (FGM)
FlameMaster
program
flow-controlled
chemistry tabulation (FCCT) method
Flux balance
analysis (FBA)
FluxViewer
program
forward reaction
Fourier
Amplitude
Sensitivity Test (FAST)
FPI. see Flamelet
Prolongated ILD
functional
principal component analysis (fPCA)
functional
sensitivity analysis
Gaussian error
propagation rule
Gaussian process
emulator methods
genetic
algorithm
(GA)
genetic
regulatory
network (GRN) model
GeneWays code
Gepasi program
global error
global
sensitivity
analysis
global
similarity
global
uncertainty
analysis
greedy approach
Green function
GUI-HDMR program
half life
HDMR. see high-dimensional
model representation
heuristics-aided
quantum chemistry (HAQC)
methodology
high-dimensional
model representation (HDMR)
Horner
representation
ILDM
implicit methods
for the solution of ODEs
important
feature
important
species
impulse
parametric
sensitivity analysis (iPSA)
in
situ adaptive tabulation
(ISAT)
induction period
information-theoretic
sensitivity
analysis
initial
concentration sensitivity coefficient.
see Green function
internal species
invariant
constrained equilibrium edge preimage curve (ICE-PIC) method
irreversible
reaction step
ISAT. see in
situ adaptive tabulation
KEGG database
KINAL program
package
KINALC program
kinetic reaction
mechanism
kinetic
simplification principles
kinetic system
of
ODEs
Kintecus program
KPP program
laminarSMOKE
program
Latin hypercube
sampling
law of mass
action
level of
importance
(LOI) index
lifetime
Lindemann
approach
linear species
lumping
living species
local error
local similarity
local
uncertainty
analysis
log p
formalism
LOGEsoft code
LOI. see level of importance
index
Lotka-Volterra model
lumped reaction
mechanism
lumping
MAMOX code
mass action
kinetics
Master Chemical
Mechanism (MCM)
Mechacut program
MECHMOD program
MEPT. see minimal entropy
production trajectory method
metabolism
network
method of
invariant
grid (MIG)
method of
invariant
manifold (MIM)
MIG. see method of
invariant grid
MIM. see method of
invariant manifold
minimal entropy
production trajectory (MEPT) method
mode
modified
Arrhenius
equation
molecular signal
transfer
molecularity
moment-independent
global
sensitivity analysis methods
Monte Carlo
uncertainty analysis
Morris’ method
multichannel
reactions
NASA polynomials
necessary
species
negative cross
effect
Network of
Computed
Reaction Enthalpies to Atom-Based Thermochemistry (NEAT)
NF-kB signalling pathway
NO relaxation
approach (NORA) method
nominal
parameter
set
nonautonomous
system of ODEs
nonlinear
species
lumping
nonreactive
collisions
normalised
sensitivity coefficient
odd oxygen
species
on-the-fly
mechanism reduction
operator
splitting
optimal
artificial neural
network (OANN)
orthonormal
polynomials
oscillating
reactions
overall order of
a
reaction
overall reaction
equation
overall
sensitivity
pairwise mixing
stirred reactor (PMSR)
partial
equilibrium
approximation. see pre-equilibrium
approximation
Path Flux
Analysis
(PFA) method
PCAF-method.
see principal
component analysis of matrix F
PCAS method.
see principal
component analysis of matrix S
phase response
curve (PRC)
phase space
physiologically
based pharmacokinetic (PBPK) model
pool chemical
approximation
pool component
approximation. see pool
chemical approximation
PottersWheel
toolbox for MATLAB
pre-equilibrium
approximation (PEA)
PREP-SPOP
program
package
PrIMe
collaboration
principal
component
analysis (PCA) of the composition space
principal
component
analysis of matrix F (PCAF)
principal
component
analysis of matrix S (PCAS)
production rate
proper
orthogonal
decomposition (POD)
proper species
lumping
pseudo-first-order
approximation
QSSA. see quasi-steady-state
approximation
quasi-steady-state
approximation
(QSSA)
radial design
method
Range
Identification and Optimization Tool (RIOT) code
rate coefficient
rate constant.
see rate
coefficient
rate determining
step
rate-controlled
constrained equilibrium method (RCCE)
rate-of-production
analysis
RCARM code
RCCE. see rate-controlled
constrained equilibrium method
reachable
species
reaction channel
reaction
invariant.
see conserved property
reaction
mechanism
reaction order
with
respect to a species
reaction pathway
analysis
reaction rate
reaction step
reaction-diffusion manifold (REDIM) method
REACTION\ANALYSIS
code
ReactionKinetics
program
redundant
species
repro-modelling
response
surface methods (RSMs)
reversible
reaction
step
rkmGen program
RMG code
SaSAT program
SBML data format
SBML Toolbox for
MATLAB
SBML-PET program
SBML-PET-MPI
program
SBML-SAT program
scaling law
screening
methods
second order
sensitivity index
self-organising
map
(SOM)
SEM program
package
seminormalised
sensitivity coefficient
sensitivity
analysis
sensitivity
analysis based (SAB) method
sensitivity
coefficient
sensitivity
index
sensitivity
matrix
SIM. see slow invariant
manifold
SimBiology
toolbox
for MATLAB
SimLab program
package
simulated
annealing
optimisation
simulation error
Simulation Error
Minimization Connectivity Method (SEM-CM)
skeletal model
reduction
slow invariant
manifold (SIM)
slow manifold
slow variable
stiff system of
differential equations
stiffness index
stiffness ratio
stochastic
kinetic
modelling
stoichiometric
coefficient
stoichiometric
equation
stoichiometric
matrix
SUNDIALS program
package
symbolic
solution
Systems Biology
Toolbox for MATLAB
Systems Biology
Workbench program
Tenua program
THERGAS code
THERM code
third body
time scale
Titan, the moon
of
Saturn
total
sensitivity
index
trajectory
Troe
parameterisation
uncertainty
analysis
uncertainty
parameter f
unimolecular
reaction
variable volume
tabulated homogeneous chemistry (VVTHC) approach
WINPP/XPP
program
References
ACUCHEM:
Chemical kinetics simulation program.
In: http://sourceforge.net/projects/acuchem/
Adrover,
A., Creta, F., Giona,
M., Valorani, M., Vitacolonna, V.: Natural tangent dynamics with
recurrent
biorthonormalizations: A geometric computational approach to
dynamical
systems
exhibiting slow manifolds and periodic/chaotic limit sets. Physica D
213, 121-146 (2006)
Aerodyne-Research:
ExploreHD.
In. http://www.aerodyne.com/products/explorehd,
(2014)
Ahmed,
S.S., Mauß, F.,
Moréacz, G., Zeuch, T.: A comprehensive and compact n-heptane
oxidation
model
derived using chemical lumping. PCCP 9,
1107–1126 (2007)
Al-Khateeb,
A., N, Powers,
J.M., Paolucci, S., Sommese, A.J., Diller, J.A., Hauenstein, J.D.,
Mengers,
J.D.: One-dimensional slow invariant manifolds for spatially
homogenous
reactive systems. J. Chem. Phys. 131,
024118 (2009)
An, J.,
Jiang, Y.: Differences
between direct relation graph and error-propagation-based reduction
methods for
large hydrocarbons. Procedia Eng. 62,
342 – 349 (2013)
Anderson,
J., Chang, Y.-C.,
Papachristodoulou, A.: Model decomposition and reduction tools for
large-scale
networks in systems biology. Automatica 47,
1165–1174 (2011)
Androulakis,
I.P.: Kinetic
mechanism reduction based on an integer programming approach. AIChE
J. 46, 361-371 (2000)
Androulakis,
I.P.: “Store and
retrieve” representations of dynamic systems motivated by studies in
gas phase
chemical kinetics. Comput. Chem. Eng. 28,
2141–2155 (2004)
Androulakis,
I.P.:
New approaches for representing, analyzing and visualizing
complex
kinetic transformations. Comp. Chem. Eng. 31,
41–50 (2006)
Androulakis,
I.P.,
Grenda, J.M., Bozzelli, J.W.: Time-integrated pointers for
enabling the
analysis of detailed reaction mechanisms. AIChE J. 50,
2956-2970 (2004)
Apri, M.,
de Gee, M., Molenaar, J.: Complexity reduction preserving dynamical
behavior of
biochemical networks. J. Theor. Biol. 304,
16–26 (2012)
Apri, M.,
de Gee, M., van Mourik, S., Molenaar, J.: Identifying optimal models
to
represent biochemical systems. PLoS ONE 9,
e83664 (2014)
Arányi,
P.,
Tóth, J.: A full stochastic description of the Michaelis-Menten
reaction for
small systems. Acta Biochim. Biophys. Acad. Sci. Hung. 12,
375-388 (1977)
Aris, R.:
Reactions in continous mixtures. AIChE J. 35,
539-548 (1989)
Aris, R.,
Gavalas, G.R.: On the theory of reactions in continuous mixtures Philos. Trans. R. Soc. A260,
351-393 (1966)
Astarita,
G.: Lumping nonlinear kinetics: Apparent overall order of reaction.
AIChE J. 35, 529-532 (1989)
Astarita,
G., Nigam, A.: Lumping nonlinear kinetics in a CSTR. AIChE J. 35,
1927-1932 (1989)
Astarita,
G., Ocone, R.: Lumping nonlinear kinetics. AIChE J. 34,
1299-1309 (1986)
Astarita,
G., Ocone, R.: Chemical reaction engineering of complex mixtures.
Chem.
Eng.
Sci. 47, 2135-2147 (1992)
Astarita,
G., Sandler, S.I. (eds.): Kinetic and thermodynamic lumping of
multicomponent
mixtures. Elsevier, Amsterdam (1991)
Atanga,
G.F.: Direct numerical simulation of turbulent flames on parallel
computers,
PhD Thesis. Otto-von-Guericke-Universitat (2012)
Atherton,
R.W., Schainker, R.B., Ducot, E.R.: On the statistical sensitivity
analysis of
models for chemical kinetics. AIChE J. 21,
441-448 (1975)
Atkins,
P.,
de Paula, J.: Atkins' Physical Chemistry, 9th
Edition. Oxford
University Press, (2009)
Atkinson,
R.: Kinetics and mechanisms of gas phase reactions of the hydroxyl
radical with
organic compounds under atmospheric conditions. Chem. Rev. 86,
69-201 (1986)
Atkinson,
R.: A structure-activity relationship for the estimation of rate
constants for
the gas-phase reactions of OH radicals with organic compounds. Int.
J.
Chem.
Kinet. 19, 799-828 (1987)
Atkinson,
R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes,
R.G.,
Jenkin,
M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical
data
for
atmospheric chemistry: Volume I – gas phase reactions of Ox,
HOx,
NOx and SOx species.
Atmos. Chem. Phys. 4, 1461-1738
(2004)
Atkinson,
R.,
Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G.,
Jenkin,
M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical
data
for
atmospheric chemistry: Volume III – gas phase reactions of inorganic
halogens.
Atmos. Chem. Phys. 7, 981-1191
(2007)
Atkinson,
R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes,
R.G.,
Jenkin,
M.E., Rossi, M.J., Troe, J., IUPAC_Subcommittee: Evaluated kinetic
and
photochemical data for atmospheric chemistry: Volume II – gas phase
reactions
of organic species. Atmos. Chem. Phys. 6,
3625-4055 (2006)
Atkinson,
R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes,
R.G.,
Jenkin,
M.E., Rossi, M.J., Troe, J., Wallington, T.J.: Evaluated kinetic and
photochemical data for atmospheric chemistry: Volume IV – gas phase
reactions
of organic halogen species. Atmos. Chem. Phys. 8,
4141-4496 (2008)
Austin,
J.:
On the explicit versus family solution of the fully diurnal
photochemical
equations of the stratosphere. J. Geophys. Res.-Atmos. 96(D7),
12941-12974
(1991)
Ay, A.,
Arnosti, D.N.: Mathematical modeling of gene expression: a guide for
the
perplexed biologist. Critical Reviews in Biochemistry and Molecular
Biology 46, 137-151 (2011)
Bahlouli,
K., Atikol, U., Saray, R.K., Mohammadi, V.: A reduced mechanism for
predicting
the ignition timing of a fuel blend of natural-gas and n-heptane
in
HCCI engine. Energy Conversion and Management 79,
85–96 (2014)
Bailey,
J.E.: Lumping analysis of reactions in continuous mixtures. Chem.
Eng.
J. 3, 52-71 (1972)
Balakrishnan,
S.,
Georgopoulos, P., Banerjee, I., Ierapetritou, M.: Uncertainty
consideration
for describing complex reaction systems. AIChE J. 48,
2875-2889 (2002)
Bamford,
C.H., Tipper, C.F.H., Compton, R.G. (eds.): Theory of kinetics.
Elsevier,
Amsterdam (1969)
Banerjee,
I., Ierapetritou, M.G.: Development of an adaptive chemistry model
considering
micromixing effects. Chem. Eng. Sci. 58,
4537-4555 (2003)
Banerjee,
I., Ierapetritou, M.G.: An adaptive reduction scheme to model
reactive
flow.
Combust. Flame 144, 619-633 (2006)
Battin-Leclerc,
F.:
Detailed chemical kinetic models for the low-temperature combustion
of
hydrocarbons with application to gasoline and diesel fuel
surrogates.
Prog.
Energ. Combust. Sci. 34, 440-498
(2008)
Battin-Leclerc,
F.,
Blurock, E., Simmie, J. (eds.): Development of detailed chemical
kinetic
models for cleaner combustion. Springer, Heidelberg (2013)
Battin-Leclerc,
F.,
Glaude, P.A., Warth, V., Fournet, R., Scacchi, G., Côme, G.M.:
Computer
tools for modelling the chemical phenomena related to combustion.
Chem.
Eng.
Sci. 55, 2883-2893 (2000)
Baulch,
D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A.,
Pilling,
M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J.:
Evaluated
kinetic data for combustion modeling: Supplement II. J. Phys. Chem.
Ref. Data 34, 757-1397 (2005)
Baulch,
D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, T., Kerr,
J.A.,
Pilling, M.J., Troe, J., Walker, R.W., Warnatz, J.: Evaluated
kinetic
data for
combustion modeling. J. Phys. Chem. Ref. Data 21,
411-734 (1992)
Baulch,
D.L., Cobos, C.J., Cox, R.A., Frank, J.H., Hayman, G., Just, T.H.,
Kerr, J.A.,
Murrels, T., Pilling, M.J., Troe, J., Walker, B.F., Warnatz, J.:
Summary table
of evaluated kinetic data for combustion modeling - Supplement-1.
Combust.
Flame 98, 59-79 (1994)
Becker,
S.A., Feist, A.M., Mo, M.L., Hannum, G., Palsson, B.O., Herrgard,
M.J.:
Quantitative prediction of cellular metabolism with constraint-based
models:
the COBRA Toolbox. Nat. Protocols 2,
727-738 (2007)
Becker,
T.,
Weispfenning, V.: Gröbner bases (A computational approach to
communicative
algebra). Springer-Verlag, (1993)
Bekdemir,
C., Somers, L.M.T., de Goey, L.P.H.: Modeling diesel engine
combustion
using
pressure dependent Flamelet Generated Manifolds. Proc. Combust.
Inst. 33, 2887-2894 (2011)
Bell,
J.B.,
Brown, N.J., Day, M.S., Frenklach, M., Grcar, J.F., Propp, R.M.,
Tonse,
S.R.,
Wagner, A.: Scaling and efficiency of PRISM in adaptive simulations
of
turbulent premixed flames. Proc. Combust. Inst. 28,
107-113 (2000)
Bell, N.,
Heard, D.E., Pilling, M.J., Tomlin, A.S.: Atmospheric lifetime as a
probe of
radical chemistry in the boundary layer. Atmos. Environ. 37,
2193-2205 (2003)
Belousov,
B.P.:
Периодически
действующая
реакция и ее механизм.
Сборник
рефератов по
радиационной
медицине 147, 145 (1959)
Belousov,
B.P.: A periodic reaction and its mechanism. In: Field, R.J.,
Burger,
M. (eds.)
Oscillations and traveling waves in chemical systems. Wiley, New
York
(1985)
Bendtsen,
A.B., Glarborg, P., Dam-Johansen, K.: Visualization methods in
analysis
of
detailed chemical kinetics modelling. Comput. Chem. 25,
161-170 (2001)
Benson,
S.W.: The induction period in chain reactions. J. Chem. Phys. 20,
1605-1612 (1952)
Benson,
S.W.: Thermochemical kinetics, second edition. Wiley, New York
(1976)
Beretta,
G.P., Keck, J.C., Janbozorgi, M., Metghalchi, H.: The
Rate-Controlled
Constrained-Equilibrium Approach to Far-From-Local-Equilibrium
Thermodynamics.
Entropy 14(2), 92-130 (2012)
Berger,
J.O.: Statistical decision theory and Bayesian analysis. Springer,
(1985)
Bergmann,
F.T., Sauro, H.M.: SBW - a modular framework for systems biology.
Proceedings
of the 37th conference on Winter simulation WSC '06, 1637-1645
(2006)
Berkenbosch,
A.C.,
Kaasschieter, E.F., Klein, R.: Detonation capturing for stiff
combustion
chemistry. Combust. Theory Model. 2,
313-348 (1998)
Berzins,
M., Ware, J.M.: Solving convection and convection-reaction problems
using the
method of lines. Appl. Numer. Math. 20,
83-99 (1996)
Bhattacharjee,
B.,
Schwer, D.A., Barton, P.I., Green, W.H.: Optimally-reduced kinetic
models:
reaction elimination in large-scale kinetic mechanisms. Combust.
Flame 135, 191-208 (2003)
Biet, J.,
Hakka, M.H., Warth, V.r., Glaude, P.-A., Battin-Leclerc, F.d.r.:
Experimental
and modeling study of the low-temperature oxidation of large
alkanes.
Energy
& Fuels 22, 2258-2269 (2008)
Bilgari,
A., Sutherland, J.C.: A filter-independent model identification
technique for
turbulent combustion modeling. Combust. Flame 159,
1960–1970 (2012)
Bilger,
R.W.: On reduced mechanisms for methane-air combustion in
non-premixed
flames.
Combust. Flame 80, 135-149 (1990)
Bischof,
C., Carle, A., Khademi, P., Mauer: The ADIFOR 2.0 system for the
automatic
differentiation of FORTRAN 77 programes. . A. IEEE J. Comput. Sci.
Eng.
3, 18-32. (1996)
Bischof,
C.H., Bucker, H.M., Rasch, A.: Sensitivity analysis of turbulence
models using
automatic differentiation. SIAM J. Sci. Comput. 26,
510-522 (2004)
Bischof,
C.H., Roh, L., Mauer-Oats, A.J.: ADIC: an extensible automatic
differentiation
tool for ANSI-C. . Soft. Pract. Exper. 27,
1427-1456 (1997)
Blanchard,
S.,
Papadopoulo, T., Benar, C.G., Voges, N., Clerc, M., Benali, H.,
Warnking,
J., David, O., Wendling, F.: Relationship between flow and
metabolism
in BOLD
signals: Insights from biophysical models. Brain Topography 24(1),
40-53 (2011)
Blasco,
J.A., Fueyo, N., C Dopazo, C., Chen, J.-Y.: A self-organizing-map
approach to
chemistry representation in combustion applications. Combust. Theory
Model. 4, 61-76 (2000)
Blasco,
J.A., Fueyo, N., Dopazo, C., Ballester, J.: Modelling the temporal
evolution of
a reduced combustion chemical system with an artificial neural
network.
Combust. Flame 113, 38-52 (1998)
Blasco,
J.A., Fueyo, N., Larroya, J.C., Dopazo, C., Chen, Y.J.: A
single-step
time-integrator of a methane–air chemical system using artificial
neural
networks. Comput. Chem. Eng. 23,
1127-1133 (1999)
Blasenbrey,
T.:
Entwicklung und Implementierung automatisch reduzierter
Reaktionsmechanismen für die Verbrennung von Kohlenwasserstoffen.
Stuttgart
University (2000)
Blasenbrey,
T.,
Maas, U.: ILDMs of higher hydrocarbons and the hierarchy of
chemical
kinetics. Proc. Comb. Inst. 28,
1623-1630 (2000)
Blatman,
G., Sudret, B.: Efficient computation of global sensitivity indices
using
sparse polynomial chaos expansions. Reliab. Eng. Syst. Saf. 95,
1216-1229 (2010)
Blouza,
A.,
Coquel, F., Hamel, F.: Reduction of linear kinetic systems with
multiple
scales. Combust. Theory Modell. 4,
339-362 (2000)
Blurock,
E., Battin-Leclerc, F., Faravelli, T., Green, W.H.: Automatic
generation of
detailed mechanisms. In: Battin-Leclerc, F., Blurock, E., Simmie, J.
(eds.)
Development of detailed chemical kinetic models for cleaner
combustion.
pp.
59-92. Springer, Heidelberg (2013)
Blurock,
E.S.: Reaction: System for modeling chemical reactions. J. Chem.
Information
and Comput. Sci. 35, 607-616 (1995)
Blurock,
E.S.: Characterizing complex reaction mechanisms using machine
learning
clustering techniques. Int. J. Chem. Kinet. 36,
107-118 (2004a)
Blurock,
E.S.: Detailed mechanism generation. 1. Generalized reactive
properties
as
reaction class substructures. J Chem Inf Comput Sci 44,
1336–1347 (2004b)
Blurock,
E.S.: Detailed mechanism generation. 2. Aldehydes, ketones, and
olefins. J Chem
Inf Comput Sci 44, 1348–1357 (2004c)
Blurock,
E.S.: Automatic characterization of ignition processes with machine
learning
clustering techniques. Int. J. Chem. Kinet. 38,
621-633 (2006)
Blurock,
E.S., Tuner, M., Mauss, F.: Phase optimized skeletal mechanisms for
engine
simulations. Combustion Theory and Modelling 14,
295-313 (2010)
Bodenstein,
M.:
Eine Theorie der photochemischen Reaktionsgeschwindigkeiten. Z.
Phys. Chem.
85, 329-397 (1913)
Bodenstein,
M.,
Lutkemeyer, H.: Die photochemische Bildung von Bromwasserstoff und
die
Bildungsgeschwindigkeit der Brommolekel - aus den Atomen. Z. Phys.
Chem. 114, 208-236 (1924)
Bogaevski,
V.N.,
Povzner, A.: Algebraic Method in Nonlinear Perturbation Theory.
Springer,
New York (1991)
Bongers,
H., Van Oijen, J.A., De Goey, L.P.H.: Intrinsic low-dimensional
manifold method
extended with diffusion. Proc. Combust. Inst. 29,
1371-1378 (2002)
Bongers,
H., van Oijen, J.A., de Goey, L.P.H.: The Flamelet Generated
Manifold
method
applied to steady planar partially premixed counterflow flames.
Comb.
Sci.
Tech. 177, 2373-2393 (2005)
Borghans,
J.A.M., De Boer, R.J., Segel, L.A.: Extending the quasi-steady state
approximation by changing variables. Bull. Math. Biol. 58,
43–63 (1996)
Borgonovo,
E.,
Castaings, W., Tarantola, S.: Moment independent importance
measures: New
results and analytical test cases. Risk Analysis 31(3),
404-428
(2011)
Borgonovo,
E.,
Tarantola, S.: Moment independent and variance-based sensitivity
analysis
with correlations: An application to the stability of a chemical
reactor. Int.
J. Chem. Kinet. 40(11), 687-698
(2008)
Bosschaart,
K.J.,
de Goey, L.P.H.: Detailed analysis of the heat flux method for
measuring
burning velocities. Combust. Flame 132,
170-180 (2003)
Boudart,
M., Djega-Mariadassou, G.: Kinetics of heterogeneous catalytic
reactions.
Princeton Univ. Press, Princeton (1982)
Boulier,
F., Lefranc, M., Lemaire, F., Morant, P.-E.: Model reduction of
chemical
reaction systems using elimination. Math. Comput. Sci. 5,
289 (2011)
Bounaceur,
R.,
Warth, V., Glaude, P.A., Battin-Leclerc, F., Scacchi, G., Come,
G.M.,
Faravelli, T., Ranzi, E.: Chemical lumping of mechanisms generated
by
computer
- Application to the modeling of normal-butane oxidation. J. Chim.
Phys.
Phys.-Chim. Biol. 93, 1472-1491
(1996)
Box,
G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for experiments. An
introduction
to design, data analysis, and model building. Wiley, New York (1978)
Börger,
I.,
Merkel, A., Lachmann, J., Spangenberg, H.-J., Turányi, T.: An
extended
kinetic
model and its reduction by sensitivity analysis for the
methanol/oxygen
gas-phase thermolysis. Acta Chim. Hung. 129,
855-864 (1992)
Brad,
R.B.,
Tomlin, A.S., Fairweather, M., Griffiths, J.F.: The application of
chemical
reduction methods to a combustion system exhibiting complex
dynamics.
Proc.
Combust. Inst. 31, 455-463 (2007)
Braman,
K.,
Oliver, T.A., Raman, V.: Bayesian analysis of syngas chemistry
models.
Combust
Theory Model. 17, 858-887 (2013)
Brauer,
F.,
Castillo-Chavez, C.: Mathematical models in population biology and
epidemiology.
Springer, (2011)
Braun,
W.,
Herron, J.T., K., K.D.: ACUCHEM - A computer program for modeling
complex
chemical reaction systems. Int. J. Chem. Kinet. 20,
51-62 (1988)
Briggs,
G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action.
Biochem. J. 19, 339-339 (1925)
Brochot,
C., Tóth, J., Bois, F.Y.: Lumping in pharmacokinetics. J.
Pharmacokinet.
Pharmacodyn. 32, 719-736 (2005)
Brown,
M.J., Smith, D.B., Taylor, S.C.: Influence of uncertainties in rate
constants
on computed burning velocities. Combust. Flame 117,
652-656 (1999)
Brown,
N.J., Revzan, K.L.: Comparative sensitivity analysis of transport
properties
and reaction rate coefficients. Int. J. Chem. Kinet. 37,
538-553 (2005)
Brown,
N.J., Tonse, S.R.: PRISM Piecewise reusable implementation of
solution
mapping
to improve computational economy. Abstracts of Papers of the
American
Chemical
Society 228, U308-U308 (2004)
Buda,
F.,
Bounaceur, R., Warth, V., Glaude, P.A., Fournet, R., Battin-Leclerc,
F.:
Progress toward a unified detailed kinetic model for the
autoignition
of
alkanes from C4 to C10
between 600 and 1200 K. Combust.
Flame 142, 170-186 (2005)
Bunker,
D.L., Garrett, B., Kliendienst, T., Long III, G.S.: Discrete
simulation
methods
in combustion kinetics. Combust. Flame 23,
373-379 (1974)
Burcat,
A.:
Thermodyanamic database at http://garfield.chem.elte.hu/Burcat/burcat.html.
Burcat,
A.:
Thermochemical data for combustion calculations. Springer, New York
(1984)
Burcat,
A.,
Ruscic, B.: Third Millenium ideal gas and condensed phase
thermochemical
database for combustion with updates from Active Thermochemical
Tables.
Argonne
National Laboratory report ANL-05/20 (2005)
Burden,
R.L., Faires, J.D.: Numerical Analysis (5th ed.). Prindle, Weber and
Schmidt,
Boston (1993)
Burke,
M.,
Chaos, M., Ju, Y., Dryer, F.L., Klippenstein, S.: Comprehensive H2/O2
kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 444-474 (2012)
Burke,
M.P., Klippenstein, S.J., Harding, L.B.: A quantitative explanation
for
the
apparent anomalous temperature dependence of OH + HO2
= H2O
+ O2 through multi-scale modeling. Proc.
Combust. Inst. 34, 547-555 (2013)
Büki,
A.,
Perger, T., Turányi, T., Maas, U.: Repro-modelling based generation
of
intrinsic low-dimensional manifolds. J. Math. Chem. 31,
345-362 (2002)
Bykov,
V.,
Gol’dshtein, V.: Fast and slow invariant manifolds in chemical
kinetics.
Comput. Math. Appl. 65, 1502–1515
(2013)
Bykov,
V.,
Goldfarb, I., Gol’dshtein, V., Sazhin, S., Sazhina, E.: System
decomposition
technique for spray modelling in CFD codes. Comput. Fluids 36,
601–610 (2007)
Bykov,
V.,
Griffiths, J.F., Piazzesi, R., Sazhin, S.S., Sazhina, E.M.: The
application of
the Global Quasi-Linearisation technique to the analysis of the
cyclohexane/air
mixture autoignition. Appl. Math. Comput. 219,
7338–7347 (2013)
Bykov,
V.,
Maas, U.: The extension of the ILDM concept to reaction-diffusion
manifolds.
Combust. Theory Model. 11, 839-862
(2007a)
Bykov,
V.,
Maas, U.: Extension of the ILDM method to the domain of slow
chemistry.
Proc.
Combust. Inst. 31, 465-472 (2007b)
Bykov,
V.,
Maas, U.: Investigation of the hierarchical structure of kinetic
models
in
ignition problems. Z. Phys. Chem. 223,
461–479 (2009a)
Bykov,
V.,
Maas, U.: Problem adapted reduced models based on Reaction-Diffusion
Manifolds
(REDIMs). Proc. Combust. Inst. 32,
561-568 (2009b)
Campolongo,
F.,
Cariboni, J., Saltelli, A.: An effective screening design for
sensitivity
analysis of large models. Env. Model. Softw. 22,
1509-1518 (2007)
Campolongo,
F.,
Cariboni, J., Saltelli, A., Schoutens, W.: Enhancing the Morris
method.
Proc. 4th International Conference on Sensitivity Analysis of Model
Output
(SAMO 2004), 369−379 (2005)
Campolongo,
F.,
Saltelli, A., Cariboni, J.: From screening to quantitative
sensitivity
analysis. A unified approach. Comput. Phys. Comm. 182,
978-988 (2011)
Campolongo,
F.,
Tarantola, S., Saltelli, A.: Tackling quantitatively large
dimensionality
problems. Comp. Phys. Commun. 117,
75-85 (1999)
Cannon,
S.M., Brewster, B.S., Smoot, L.D.: PDF modeling of lean premixed
combustion
using in situ tabulated chemistry.
Combust. Flame 119, 233-252 (1999)
Cantera:
An
open-source, object-oriented software suite for combustion. In: http://sourceforge.net/projects/cantera/, http://code.google.com/p/cantera/.
Carr,
R.W.
(ed.) Modeling of chemical reactions. Elsevier, (2007)
Carrasco,
N.,
Alcaraz, C., Dutuit, O., Plessis, S., Thissen, R., Vuitton, V.,
Yelle, R.,
Pernot, P.: Sensitivity of a Titan ionospheric model to the
ion-molecule
reaction parameters. Planetary and Space Science 56,
1644-1657 (2008a)
Carrasco,
N.,
Dutuit, O., Thissen, R., Banaszkiewicz, M., Pernot, P.: Uncertainty
analysis of bimolecular reactions in Titan ionosphere chemistry
model.
Planetary and Space Science 55,
141-157 (2007)
Carrasco,
N.,
Pernot, P.: Modeling of branching ratio uncertainty in chemical
networks by
Dirichlet distributions. J. Phys. Chem. A 111,
3507-3512 (2007)
Carrasco,
N.,
Plessis, S., Dobrijevic, M., Pernot, P.: Toward a reduction of the
bimolecular reaction model for Titan's ionosphere. Int. J. Chem.
Kinet.
40, 699-709 (2008b)
Carslaw,
N., Jacobs, P.J., J, P.M.: Modeling OH, HO2, and
RO2
radicals in the marine boundary layer 2. Mechanism reduction and
uncertainty
analysis. J. Geophys. Res. D 104,
30257-30273 (1999)
Carstensen,
H.H.,
Dean, A.M.: The kinetics of pressure-dependent reactions. In:
Carr, R.W.
(ed.) Modeling of chemical reactions, vol. 42. pp. 105-187. (2007)
Cary,
M.P.,
Bader, G.D., Sande, C.r.: Pathway information for systems biology.
FEBS
Letters
579, 1815–1820 (2005)
Chapman,
D.L., Underhill, L.K.: The interaction of chlorine and hydrogen. The
influence
of mass. J. Chem. Soc. Trans. 103,
496-508 (1913)
Charzyńska,
A.,
Nałęcz, A., Rybiński, M., Gambin, A.: Sensitivity analysis of
mathematical
models of signaling pathways. BioTechnologia 93,
291-308 (2012)
Chatzopoulos,
A.K.,
Rigopoulos, S.: A chemistry tabulation approach via
rate-controlled
constrained equilibrium (RCCE) and artificial neural networks
(ANNs),
with
application to turbulent non-premixed CH4/H2/N2
flames. Proc Combust Inst 34,
1465–1473 (2013)
CHEMKIN/CHEMKIN-PRO
Visualization
manual, CK-VIS-10101-0810-UG-1. Reaction Design, San
Diego (2010)
Chen,
C.C.,
Csikász-Nagy, A., Győrffy, B., Val, J., Novák, B., Tyson, J.J.:
Kinetic
analysis of a molecular model of the budding yeast cell cycle.
Molec.
Biol.
Cell 11, 369-391 (2000a)
Chen,
J.Y.:
A general procedure for constructing reduced reaction-mechanisms
with
given
independent relations. Combust. Sci. Technol. 57,
89-94 (1988)
Chen,
J.Y.:
Analysis of in situ adaptive
tabulation performance for combustion chemistry and improvement with
a
modified
search algorithm. Combust. Sci. Technol. 176,
1153-1169 (2004)
Chen,
J.Y.,
Blasco, J.A., Fueyo, N., Dopazo, C.: An economical strategy for
storage
of
chemical kinetics: Fitting in situ
adaptive tabulation with artificial neural networks. Proc. Comb.
Inst. 28, 115-121 (2000b)
Chen,
J.Y.,
Chang, W.C., Koszykowski, M.: Numerical simulation and scaling of
NOx
emissions
from turbulent hydrogen jet flames with various amounts of helium
dilution.
Combust. Sci. Technol. 111, 505-529
(1995)
Chen,
J.Y.,
Tham, Y.F.: Speedy solution of quasi-steady-state species by
combination of
fixed-point iteration and matrix inversion. Combust. Flame 153,
634-646 (2008)
Chen,
S.,
Brune, W.H.: Global sensitivity analysis of ozone production and
O-3-NOx-VOC
limitation based on field data. Atmospheric Environment 55,
288-296 (2012)
Chen,
S.,
Brune, W.H., Oluwole, O.O., Kolb, C.E., Bacon, F., Li, G.Y., Rabitz,
H.: Global
Sensitivity Analysis of the Regional Atmospheric Chemical Mechanism:
An
Application of Random Sampling-High Dimensional Model Representation
to
Urban
Oxidation Chemistry. Environmental Science & Technology 46(20),
11162-11170 (2012)
Cheng,
H.Y., Sandu, A.: Uncertainty quantification and apportionment in air
quality
models using the polynomial chaos method. Environ. Modell. Softw. 24, 917-925 (2009)
Chevalier,
C.,
Warnatz, J., Melenk, H.: Automatic generation of reaction
mechanisms for
description of oxidation of higher hydrocarbons. Ber. Bunsenges.
Phys.
Chem. 94, 1362-1367 ( 1990)
Chiavazzo,
E.,
Gorban, A.N., Karlin, I.V.: Comparison of invariant manifolds for
model
reduction in chemical kinetics. Commun. Comput. Phys. 2,
964-992 (2007)
Chiavazzo,
E.,
Karlin, I.V., Frouzakis, C.E., Boulouchos, K.: Method of invariant
grid for
model reduction of hydrogen combustion. Proc. Combust. Instit. 32,
519-526 (2009)
Chinnick,
S.J.,
Baulch, D.L., Ayscough, P.B.: An expert system for hydrocarbon
pyrolysis
reactions. Chemometrics and Intelligent Lab. Syst. 5,
39-52 (1988)
Choi,
Y.,
Chen, J.Y.: Fast prediction of start-of-cornbustion in HCCI with
combined
artificial neural networks and ignition delay model. Proc. Combust.
Inst. 30, 2711-2718 (2005)
Chou,
M.Y.,
Ho, T.C.: Continuum theory for lumping nonlinear reactions. AIChE J.
34, 1519-1527 (1988)
Christo,
F.C., Masri, A.R., Nebot, E.M.: Artificial neural network
implementation of
chemistry with pdf Simulation of H2
/ CO2 flames. Combust. Flame 106,
406-427 (1996a)
Christo,
F.C., Masri, A.R., Nebot, E.M., Pope, S.B.: An integrated PDF/neural
network
approach for simulating turbulent reacting systems. Proc. Comb.
Inst. 26, 43-48 (1996b)
Christo,
F.C., Masri, A.R., Nebot, E.M., Turányi, T.: Utilising artifical
neural
network
and repro-modelling in turbulent combustion. Proc. IEEE Internat.
Conf.
on
Neural Networks 1, 911-916 (1995)
Chu, Y.,
Serpas, M., Hahn, J.: State-preserving nonlinear model reduction
procedure.
Chem. Eng. Sci. 66, 3907–3913 (2011)
Cicarelli,
P.,
Astarita, G., A., G.: Continuous kinetic lumping of catalytic
cracking
processes. AIChE J. 38, 1038-1044
(1992)
Ciliberto,
A.,
Capuani, F., Tyson, J.J.: Modeling networks of coupled enzymatic
reactions
using the total quasi-steady state approximation. PLoS Comput. Biol.
3, e45 (2007)
Clarke,
A.G., Tomlin, A.S.: The Atmosphere. In: Harrison, R.M. (ed.)
Understanding our
Environment. Royal Society of Chemistry, Cambridge (1999)
Clarke,
B.L.: Stoichiometric network analysis. Cell Biophys. 12,
237–253 (1988)
Clifford,
L.J.,
Milne, A.M., Turányi, T., Boulton, D.: An induction parameter
model for
shock-induced hydrogen combustion simulations. Combust. Flame 113,
106-118 (1998)
.
Colin,
O.,
Pires da Cruz, A., Jay, S.: Detailed chemistry-based auto-ignition
model
including low temperature phenomena applied to 3-D engine
calculations.
Proc.
Combust. Inst. 30, 2649-2656 (2005)
Considine,
D.B.,
Stolarski, R.S., Hollandsworth, S.M., Jackman, C.H., Fleming,
E.L.: A
Monte Carlo uncertainty analysis of ozone trend predictions in a
two-dimensional model. J. Geophys. Res. Atm. 104,
1749–1765 (1999)
Contino,
F., Jeanmart, H., Lucchini, T., D'Errico, G.: Coupling of in
situ adaptive tabulation and dynamic
adaptive chemistry: An
effective method for solving combustion in engine simulations. Proc.
Combust.
Inst. 33, 3057-3064 (2011)
COPASI:
a
COmplex PAthway SImulator. In: www.copasi.org.
Cord,
M.,
Sirjean, B., Fournet, R., Tomlin, A., Ruiz-Lopez, M.,
Battin-Leclerc,
F.:
Improvement of the modeling of the low-temperature oxidation of n-butane: Study of the primary
reactions. J. Phys. Chem. A 116(24),
6142-6158 (2012)
Coussement,
A.,
Gicquel, O., Parente, A.: Kernel density weighted principal
component
analysis of combustion processes. Combust. Flame 159,
2844–2855 (2012)
Coussement,
A.,
Gicquel, O., Parente, A.: MG-local-PCA method for reduced order
combustion
modeling. Proc. Combust. Inst. 34,
1117–1123 (2013)
Crutzen,
P.J.: Ozone production rates in an oxygen-hydrogen-nitrogen oxide
atmosphere J. Geophys. Res. 76, 7311-7327 (1971)
Cukier,
R.,
Fortuin, C., Shuler, K., Petschek, A.,Schaibly, J.H.: Study of the sensitivity
of
coupled reaction systems
to uncertainties
in rate coefficients
I. Theory. J. Chem. Phys. 59,
3873-3878
(1973)
Cukier,
R.I., Levine, H.B., Shuler, K.E.: Nonlinear sensitivity analysis of
multiparameter model systems. J. Phys. Chem. 81,
2365-2366 (1977)
Cukier,
R.I., Levine, H.B., Shuler, K.E.: Nonlinear sensitivity analysis of
multi-parameter model systems. J. Comput. Phys. 26,
1-42 (1978)
Cukier,
R.I., Schaibly, J.H., Shuler, K.E.: Study of sensitivity of coupled
reaction
systems to uncertainties in rate coefficients 3. Analysis of
approximations. J.
Chem. Phys. 63, 1140-1149 (1975)
Cunha
Jr,
A., da Silva, L.F.F.: Assessment of a transient homogeneous reactor
through in situ adaptive
tabulation. J Braz.
Soc. Mech. Sci. Eng. 36, 377–391
(2014)
Cuoci,
A.,
Frassoldati, A., Faravelli, T., Ranzi, E.: A computational tool for
the
detailed kinetic modeling of laminar flames: application to C2H4/CH4
coflow flames. Combust. Flame 160,
870–886 (2013a)
Cuoci,
A.,
Frassoldati, A., Faravelli, T., Ranzi, E.: Numerical modeling of
laminar flames
with detailed kinetics based on the operator-splitting method.
Energy
Fuels 27, 7730–7753 (2013b)
Császár,
A.G., Furtenbacher, T.: From a network of computed reaction
enthalpies
to
atom-based thermochemistry (NEAT). Chem. Eur. J. 16,
4826-4835 (2010)
Daescu,
D.,
Sandu, A., Carmichael, G.R.: Direct and adjoint sensitivity analysis
of
chemical kinetic systems with KPP: Part II - Validation and
numerical
experiments. Atm. Environm. 37,
5097-5114 (2003)
Dagaut,
P.,
Cathonnet, M.: The ignition, oxidation, and combustion of kerosene:
A
review of
experimental and kinetic modeling. Prog. Energy Combust. Sci. 32,
48-92 (2006)
Dagaut,
P.,
Gail, S.: Chemical kinetic study of the effect of a biofuel additive
on
Jet-A1
combustion. J. Phys. Chem. A 111,
3992-4000 (2007)
DAKOTA:
Design Analysis Kit for Optimization and Terascale Applications. In: http://www.cs.sandia.gov/DAKOTA/.
Damian,
V.,
Sandu, A., Damian, M., Potra, F., Carmichael, G.R.: The Kinetic
PreProcessor
KPP - A software environment for solving chemical kinetics. Comp.
Chem.
Eng. 26, 1567-1579 (2002)
Danby,
S.J., Echekki, T.: Proper orthogonal decomposition analysis of
autoignition
simulation data of nonhomogeneous hydrogen-air mixtures. Combust.
Flame
144, 126-138 (2006)
Danis,
J.,
Turányi, T.: Sensitivity analysis of bacterial chemotaxis models.
Procedia
Computer Science 7, 233-234 (2011)
Dano,
S.,
Madsen, M.F., Schmidt, H., Cedersund, G.: Reduction of a biochemical
model with
preservation of its basic dynamic properties. Febs J. 273,
4862-4877 (2006)
Davis,
M.J.: Low-dimensional manifolds in reaction−diffusion equations. 1.
Fundamental aspects. J. Phys. Chem. A 110,
5235-5256 (2006a)
Davis,
M.J.: Low-dimensional manifolds in reaction−diffusion equations. 2.
Numerical analysis and method development. J. Phys. Chem. A 110,
5257-5272 (2006b)
Davis,
M.J., Skodje, R.T.: Geometric investigation of low-dimensional
manifolds in
systems approaching equilibrium. J. Chem. Phys. 111,
859-874 (1999)
Davis,
M.J., Skodje, R.T., Tomlin, A.S.: Global sensitivity analysis of
chemical-kinetic reaction mechanisms: Construction and
deconstruction
of the
probability density function. J. Phys. Chem. A 115,
1556-1578 (2011)
Davis,
M.J., Tomlin, A.S.: Spatial dynamics of steady flames 1.
Phase space structure and
the dynamics of
individual trajectories. J. Phys. Chem. A 112,
7768-7783 (2008a)
Davis,
M.J., Tomlin, A.S.: Spatial dynamics of steady flames 2.
Low-dimensional manifolds
and the role of
transport processes. J. Phys. Chem. A 112,
7784-7805 (2008b)
Davis,
S.G., Mhadeshwar, A.B., Vlachos, D.G., Wang, H.: A new approach to
response
surface development for detailed gas-phase and surface reaction
kinetic
model
optimization. Int. J. Chem. Kinet. 36,
94-106 (2004)
De
Avillez
Pereira, R., Baulch, D., Pilling, M.J., Robertson, S.H., Zeng, G.:
Temperature
and pressure dependence of the multichannel rate coefficients for
the CH3
+ OH system. J. Phys. Chem. A 101,
9681-9693 (1997)
de Goey,
L.P.H., van Oijen, J.A., H., B., Groot, G.R.A.: New flamelet based
reduction
methods: the bridge between chemical reduction techniques and
flamelet
methods.
In: Proc. ECM 2003
de Jong,
H.: Modeling and simulation of genetic regulatory systems: A
literature
review.
J. Comput. Biol. 9, 67-103 (2002)
Degasperi,
A.,
Gilmore, S.: Sensitivity analysis of stochastic models of bistable
biochemical reactions. Lect. Notes Comput. Sci. 5016,
1-20 (2008)
Derwent,
R., Hov, Ø.: Application of sensitivity and uncertainty analysis
techniques to a photochemical ozone model. J. Geophys. Res. Atm. 93, 5185–5199 (1988)
Derwent,
R.G.: Treating uncertainty in models of the atmospheric chemistry of
nitrogen
compounds. Atmos. Environ. 21,
1445-1454 (1987)
Di
Carlo,
P., Brune, W.H., Martinez, M., Harder, H., Lesher, R., Ren, X.R.,
Thornberry,
T., Carroll, M.A., Young, V., Shepson, P.B., Riemer, D., Apel, E.,
Campbell,
C.: Missing OH reactivity in a forest: Evidence for unknown reactive
biogenic
VOCs. Science 304(5671), 722-725
(2004)
Dickinson,
R.P.,
Gelinas, R.J.: Sensitivity analysis of ordinary differential
equation
systems - Direct Method. J. Comput. Phys. 21,
123-143 (1976)
Djouad,
R.,
Audiffren, N., Sportisse, B.: A sensitivity analysis study for RADM2
mechanism
using automatic differentiation. Atmos. Environ. 37,
3029-3038 (2003a)
Djouad,
R.,
Sportisse, B.: Partitioning techniques for reduction in chemical
kinetics.
APLA: an Automatic Partitioning and Lumping Algorithm. Appl.
Numeric.
Math. 43, 383-398 (2002)
Djouad,
R.,
Sportisse, B., Audiffren, N.: Reduction of multiphase atmospheric
chemistry. J.
Atm. Chem. 46, 131-157 (2003b)
Dobrijevic,
M.,
Carrasco, N., Hébrard, E., Pernot, P.: Epistemic bimodality and
kinetic
hypersensitivity in photochemical models of Titan's atmosphere.
Planetary and
Space Science 56, 1630-1643 (2008)
Dobrijevic,
M.,
Hébrard, E., Plessis, S., Carrasco, N., Pernot, P., Bruno-Claeys,
M.:
Comparison of methods for the determination of key reactions in
chemical systems:
Application to Titan’s atmosphere. Adv. Space Res. 45,
77-91 (2010)
Dokoumetzidis,
A.,
Aarons, L.: A method for robust model order reduction in
pharmacokinetics.
J. Pharmacokinet. Pharmacodyn. 36,
613-628 (2009a)
Dokoumetzidis,
A.,
Aarons, L.: Proper lumping in systems biology models. IET Syst
Biol. 3, 40-51 (2009b)
Douglass,
A.R.,
Kawa, S.R.: Contrast between 1992 and 1997 high-latitude spring
Halogen
Occultation Experiment observations of lower stratospheric HCl. J.
Geophys.
Res.-Atmos. 104(D15), 18739-18754
(1999)
Drake,
G.W.F. (ed.) Springer Handbook of Atomic, Molecular, and Optical
Physics
Springer, (2005)
Dresch,
J.M., Liu, X.Z., Arnosti, D.N., Ay, A.: Thermodynamic modeling of
transcription: sensitivity analysis differentiates biological
mechanism
from
mathematical model-induced effects. BMC Systems Biology 4
(2010)
Dunker,
A.M.: Efficient calculation of sensitivity coefficients for complex
atmospheric
models. Atm. Environ. 15, 1155-1161
(1981)
Dunker,
A.M.: The Decoupled Direct Method for calculating sensitivity
coefficients in
chemical kinetics. J. Chem. Phys. 81,
2385-2393 (1984)
Dunker,
A.M.: The reduction and parameterization of chemical mechanisms for
inclusion
in atmospheric reaction-transport models. Atm. Environ. 20,
479-486 (1986)
Dyer,
R.S.,
Korakianitis, T.: Pre-integrated response map for inviscid
propane-air
detonation. Combust Sci Technol 179,
1327–1347 (2007)
Edelson,
D.: On the solution of differential equations arising in chemical
kinetics. J.
Comput. Phys. 11, 455-457 (1973)
Edelson,
D., Allara, D.L.: A computational analysis of the alkane pyrolysis
mechanism:
Sensitivity analysis of individual reaction steps. Int. J. Chem.
Kinet.
12, 605–621 (1980)
Edelson,
D., Thomas, V.M.: Sensitivity analysis of oscillating reactions. J.
Phys. Chem.
85, 1555-1558 (1981)
Edwards,
K., Edgar, T.F., Manousiouthakis, V.I.: Kinetic model reduction
using
genetic
algorithms. Comput. Chem. Eng. 22,
239-246 (1998)
Edwards,
K., Edgar, T.F., Manousiouthakis, V.I.: Reaction mechanism
simplification using
mixed-integer nonlinear programming. Comput. Chem. Eng. 24,
67-79 (2000)
Eggels,
R.L.G.M., de Goey, L.P.H.: Mathematically reduced reaction
mechanisms
applied
to adiabatic flat hydrogen/air flames. Combust. Flame 100,
559-570 (1995)
Elliott,
L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson,
C.W.:
Genetic algorithms for optimisation of chemical kinetics reaction
mechanisms.
Prog. Energy Combust. Sci. 30,
297-328 (2004)
Elliott,
L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson,
C.W.:
Reaction mechanism reduction and optimization using genetic
algorithms.
Indust.
& Eng. Chem. Res. 44,
658-667
(2005)
Elliott,
L., Ingham, D.B., Kyne, A.G., Merab, N.S., Pourkashanian, M.,
Whittaker, S.:
Reaction mechanism reduction and optimisation for modelling aviation
fuel
oxidation using standard and hybrid genetic algorithms. Comput.
Chem.
Eng. 30, 889–900 (2006)
Elliott,
S., Shen, M., Kao, C.Y.J., Turco, R.P., Jacobson, M.Z.: A
streamlined
family
photochemistry module reproduces major nonlinearities in the global
tropospheric ozone system. Comput. Chem. 20,
235-259 (1996)
Elliott,
S., Turco, R.P., Jacobson, M.Z.: Tests on combined projection
forward
differencing integration for stiff photochemical family systems at
long-time
step. Comput. Chem. 17, 91-102
(1993)
Enjalbert,
N.,
Domingo, P., Vervisch, L.: Mixing time-history effects in Large
Eddy
Simulation of non-premixed turbulent flames: Flow-Controlled
Chemistry
Tabulation. Combust. Flame 159,
336-352 (2012)
Érdi,
P.,
Lente, G.: Stochastic chemical kinetics: Theory and (mostly) systems
biological
applications. Springer, Heidelberg (2014)
Érdi,
P.,
Sipos, T., Tóth, J.: Összetett kémiai reakciók sztochasztikus
szimulálása
számítógéppel (Stochiastic simulation of complex chemical reactions
using
computer). Magyar Kémiai Folyóirat 79,
97-108 (1973)
Érdi,
P.,
Tóth, J.: A kémiai reakció termodinamikájának sztochasztikus
formulázásáról (On
the stochiastic formulation of the thermodynamics of chemical
reactions), vol.
41. A kémia újabb eredményei. Akadémiai Kiadó, Budapest (1976)
Érdi,
P.,
Tóth, J.: Mathematical models of chemical reactions. Princeton Univ.
Press,
Princeton (1989)
Esposito,
G.,
Chelliah, H.K.: Effect of binary diffusion and chemical kinetic
parameter
uncertainties in simulations of premixed and non-premixed laminar
hydrogen
flames. Combust. Flame 159,
3522–3529 (2012)
Everitt,
B.S., Landau, S., Leese, M.: Cluster analysis. Oxford Univ. Press.,
(2001)
Fall,
C.P.,
Marland, E.S., Wagner, J.M., Tyson, J.J.: Computational cell
biology.
Springer,
(2005)
Farkas,
G.:
Kinetic lumping schemes. Chem. Eng. Sci. 54,
3909–3915 (1999)
Farrow,
L.A., Edelson, D.: Steady-state approximation - Fact or fiction?
Int.
J. Chem.
Kinet. 6, 787-800 (1974)
Faure,
C.:
An automatic differentiation platform: Odyssée. Fut. Gen. Comput.
Sys. 21, 1391-1400 (2005)
Faure,
H.:
Good permutations for extreme discrepancy. J. Num. Theor. 42,
47-56 (1992)
Feeley,
R.,
Frenklach, M., Onsum, M., Russi, T., Arkin, A., Packard, A.: Model
discrimination using data collaboration. J. Phys. Chem. A 110,
6803-6813 (2006)
Feeley,
R.,
Seiler, P., Packard, A., Frenklach, M.: Consistency of a reaction
dataset. J.
Phys. Chem. A 108, 9573-9583 (2004)
Feil,
B.,
Kucherenko, S., Shah, N., Ieee: Comparison of Monte Carlo and Quasi
Monte Carlo
Sampling Methods in High Dimensional Model Representation. Simul:
2009
First
International Conference on Advances in System Simulation. Ieee, New
York
(2009)
Feng,
X.-J., Hooshangi, S., Chen, D., Li, G., Weiss, R., Rabitz, H.:
Optimizing
genetic circuits by global sensitivity analysis. Biophys. J. 87,
2195–2202 (2004)
Fenichel,
N.:
Geometric singular perturbation theory for ordinary differential
equations.
J. Diff. Equations 31, 53–98 (1979)
Field,
R.J., Kőrös, E., Noyes, R.M.: Oscillations in chemical systems II.
Thorough
analysis of temporal oscillation in the bromate-cerium-malonic acid
system. J.
Am. Chem. Soc. 94, 8649-8664 (1972)
Field,
R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle
behavior
in a model of a real reaction. J. Chem. Phys. 60,
1877-1884 (1974)
Fiorina,
B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.:
Approximating the
chemical structure of partially premixed and diffusion counterflow
flames using
FPI flamelet tabulation. Combust. Flame 140,
147-160 (2005)
Fischer,
M., Riedel, U.: Combustion chemistry and parameter estimation. In:
Bock, H.G.,
Carraro, T., Jäger, W., Körkel, S., Rannacher, R., Schlöder, J.P.
(eds.) Model
based parameter estimation. Theory and applications., vol. 4. pp.
207-226.
Springer, Berlin Heidelberg (2013)
Fish,
D.J.:
The automatic generation of reduced mechanisms for tropospheric
chemistry
modelling. Atm. Environ. 34,
1563-1574 (2000)
Fishtik,
I., Callaghan, C.A., Datta, R.: Wiring diagrams for complex reaction
networks.
Ind. Eng. Chem. Res. 45, 6468-6476
(2006)
Flach,
E.H., Schnell, S.: Use and abuse of the quasi-steady-state
approximation. IEE
Proc. Syst. Biol. 153, 187–191
(2006)
FlameMaster:
In: http://www.stanford.edu/group/pitsch/FlameMaster.htm
http://www.itv.rwth-aachen.de/downloads/flamemaster/.
(2014)
Flemming,
F.,
Sadiki, A., Janicka, J.: LES using artificial neural networks for
chemistry
representation. Prog. Comput. Fluid Dynamics 5,
375-385 (2000)
FluxViewer:
Visualisation
tool for element fluxes. In:
http://garfield.chem.elte.hu/Combustion/fluxviewer.htm.
Fotache,
C.G., Kreutz, T.G., Law, C.K.: Ignition of counterflowing methane
versus heated
air under reduced and elevated pressures. Combust. Flame 108,
442-470 (1997)
Fournet,
R., Warth, V., Glaude, P.A., Battin-Leclerc, F., Scacchi, G., Côme,
G.M.:
Automatic reduction of detailed mechanisms of combustion of alkanes
by
chemical
lumping. Int. J. Chem. Kinet. 32,
36-51 (2000)
Frank-Kamenetskii,
D.A.:
Условия
примениности
метода
Боденштейна
в химической
кинетике (Conditions for the
applicability of the Bodenstein method in chemical kinetics) Ж.
Физ. Хим. 14, 695-700 (1940)
Fraser,
S.J.: The steady state and equilibrium approximations: a geometrical
picture.
J. Chem. Phys. 88, 4732–4738 (1988)
Fraser,
S.J., Roussel, M.R.: Phase-plane geometries in enzyme-kinetics.
Canadian
Journal of Chemistry-Revue Canadienne De Chimie 72,
800-812 (1994)
Frenklach,
M.:
Computer modeling of infinite reaction sequences - a chemical
lumping.
Chem. Eng. Sci. 40, 1843-1849 (1985)
Frenklach,
M.:
Reduction of chemical reaction models. In: Oran, E.S., Boris, J.P.
(eds.)
Numerical approaches to combustion modeling. pp. 129-154. American
Institute of
Aeronautics and Astronautics, Inc., Washington, DC (1991)
Frenklach,
M.:
Transforming data into knowledge - process informatics for
combustion
chemistry. Proc. Combust. Inst. 31,
125-140 (2007)
Frenklach,
M.,
Harris, S.J.: Aerosol dynamics modeling using the method of
moments. J.
Colloid Interface Sci. 118, 252-261
(1987)
Frenklach,
M.,
Kailasanath, K., Oran, E.S.: Systematic development of reduced
mechanisms
for dynamic modeling. Prog. Astronaut. Aeronautics 105,
365-376 (1986)
Frenklach,
M.,
Packard, A., Seiler, P., Feeley, R.: Collaborative data processing
in
developing predictive models of complex reaction systems. Int. J.
Chem.
Kinet. 36, 57-66 (2004)
Frenklach,
M.,
Wang, H., Rabinowitz, M.J.: Optimization and analysis of large
chemical
kinetic mechanisms using the solution mapping method - combustion of
methane.
Prog. Energy Combust. Sci. 18,
47-73
(1992)
Frouzakis,
C.E.,
Boulouchos, K.: Analysis and reduction of the CH4-air
mechanism at lean conditions. Comb. Sci. Tech. 159,
281-303 (2000)
Frouzakis,
C.E.,
Kevrekidis, Y.G., Lee, J., Boulouchos, K., Alonso, A.A.: Proper
orthogonal decomposition of direct numerical simulation data: Data
reduction
and observer construction. Proc. Comb. Inst. 28,
75-81 (2000)
Fürbringer,
J.-M.,
Roulet, C.-A.: Confidence of simulation results: put a
sensitivity
analysis module in your MODEL. The IEA-ECBCS Annex 23 experience of
model
evaluation. Energy and Buildings 30,
61-71 (1999)
Gadewar,
S.B., Doherty, M.F., Malone, M.F.: A systematic method for reaction
invariants
and mole balances for complex chemistries. Comput. Chem. Eng. 25,
1199-1217 (2001)
Galanti,
S., Jung, A.:
Low-discrepancy sequences: Monte Carlo simulation of option prices. J.
Deriv. 5, 63–83 (1997)
Gao, D.,
Stockwell, W.R., Milford, J.B.: First-order sensitivity and
uncertainty
analysis for a regional-scale gas-phase chemical mechanism. J.
Geophys.
Res.
Atm. 100, 23153–23166 (1995)
Gao,
D.F.,
Stockwell, W.R., Milford, J.B.: Global uncertainty analysis of a
regional-scale
gas-phase chemical mechanism. J. Geophys. Res. Atm. 101,
9107-9119 (1996)
García-Ybarra,
P.L.,
Treviño, C.: Asymptotic analysis of the boundary layer H2
ignition by a hot flat plate with thermal diffusion. Combust. Flame
96, 293-303 (1994)
Gear,
C.W.:
The automatic integration of ordinary differential equations.
Numerical
Mathematics 14, 176-190 (1971)
Gear,
C.W.,
Petzold, L.R.: ODE methods for the solution of differential
algebraic
systems.
SIAM J. Numer. Anal. 21, 716-728
(1984)
Georgakis,
C.,
Aris, R.: Diffusion, reaction and the pseudo-steady-state
hypothesis. Math.
Biochem 25, 237-258 (1975)
GEPASI:
http://www.gepasi.org/. In.
Gery,
M.W.,
Whitten, G.Z., Killus, J.P., Dodge, M.C.: A photochemical kinetics
mechanism
for urban and regional scale computer modeling. J. Geophys. Res. D94, 12925-12956 (1989)
Gicquel,
O., Darabiha, N., Thevenin, D.: Laminar premixed hydrogen/air
counterflow flame
simulations using Flame Prolongation of ILDM with differential
diffusion. Proc.
Comb. Inst. 28, 1901-1908 (2000)
Gicquel,
O.,
Ribert, O., Ribert, G., Gicquel, O., Darabiha, N., Veynante, D.:
Tabulation of complex
chemistry
based on self-similar behavior of laminar premixed flames. Combust.
Flame 146, 649-664 (2006)
Gicquel,
O., Thévenien, D., Hilka, M., Darabiha, N.: Direct numerical
simulation
of
turbulent premixed flames using intrinsic low-dimensional manifolds.
Combust.
Theory Modell. 3, 479-502 (1999)
Gilbert,
R.G., Luther, K., Troe, J.: Theory of thermal unimolecular reactions
in
the
fall-off range. II. Weak collision rate constants. Berichte
Bunsenges.
phys.
Chem. 87, 169-177 (1983)
Gillespie,
D.T.:
A general method for numerically simulating the stochastic time
evolution
of coupled chemical reactions. J. Comput. Phys. 22,
403-434 (1976)
Gillespie,
D.T.:
Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem.
81, 2340-2361 (1977)
Gillespie,
D.T.:
Stochastic simulation of chemical kinetics. Annu. Rev. Phys.
Chem. 58, 35-55 (2007)
Glaude,
P.A., Battin-LeClerc, F., Fournet, R., Warth, V., Côme, G.M.,
Scacchi,
G.:
Construction and simplification of a model for the oxidation of
alkanes.
Combust. Flame 122, 451-462 (2000)
Glaude,
P.A., Herbinet, O., Bax, S., Biet, J., Warth, V., Battin-Leclerc,
F.:
Modeling
of the oxidation of methyl esters-Validation for methyl hexanoate,
methyl
heptanoate, and methyl decanoate in a jet-stirred reactor. Combust.
Flame 157, 2035-2050 (2010)
Godel,
G.,
Domingo, P., Vervisch, L.: Tabulation of NOx chemistry for
Large-Eddy
Simulation of non-premixed turbulent flames. Proc. Combust. Inst. 32, 1555-1561 (2009)
Gokulakrishnan,
P.,
Joklik, R., Viehe, D., Trettel, A., E, G.-J., Klassen, M.:
Optimization of
reduced kinetic models for reactive flow simulations. J. Eng. Gas
Turbines
Power 136, 011503 (2013)
Gokulakrishnan,
P.,
Lawrence, A.D., McLellan, P.J., Grandmaison, E.W.: A functional-PCA
approach for analyzing and reducing complex chemical mechanisms.
Comput. Chem.
Eng. 30, 1093-1101 (2006)
Goldsmith,
C.F.,
Tomlin, A.S., Klippenstein, S.J.: Uncertainty propagation in the
derivation of phenomenological rate coefficients from theory: A case
study of n-propyl radical
oxidation. Proc.
Combust. Inst. 34, 177-185 (2013)
Golub,
G.H., Van Loan, C.F.: Matrix computations, second ed. John Hopkins,
Baltimore
(1983)
Gomez,
M.C., Tchijov, V.: The FEOM technique applied to a three-dimensional
model of
diffusion/advection of pollutants. Environ. Modell. Softw. 25,
602-606 (2010)
Goos,
E.,
Lendvay, G.: Calculation of molecular thermochemical data and their
availability in databases. In: Battin-Leclerc, F., Simmie, J.M.,
Blurock, E.
(eds.) Cleaner combustion: Developing detailed chemical kinetic
models.
pp.
515-547. Springer, London (2013)
Gorban,
A.,
Karlin, I., Zinovyev, A.: Invariant grids: method of complexity
reduction in reaction
networks. ComPlexUs 2, 110–127
(2004a)
Gorban,
A.,
Karlin, I.V.: Invariant manifolds for physical and chemical
kinetics.
Springer,
Berlin (2005)
Gorban,
A.N., Karlin, I.V.: Method of invariant manifold for chemical
kinetics.
Chem.
Eng. Sci. 58, 4751–4768 (2003)
Gorban,
A.N., Karlin, I.V., Zinovyev, A.Y.: Constructive methods of
invariant
manifolds
for kinetic problems. Phys. Rep. 396,
197-403 (2004b)
Gorban,
A.N., Karlin, I.V., Zinovyev, A.Y.: Invariant grids for reaction
kinetics.
Physica A 333, 106-154 (2004c)
Gou, X.,
Chen, Z., Sun, W., Ju, Y.: A dynamic adaptive chemistry scheme with
error
control for combustion modeling with a large detailed mechanism.
Combust. Flame
160, 225–231 (2013)
Goussis,
D.A.: On the construction and use of reduced chemical kinetic
mechanisms
produced on the basis of given algebraic relations. J. Comput. Phys.
128, 261-273 (1996)
Goussis,
D.A.: Quasi steady state and partial equilibrium approximations:
their
relation
and their validity. Combust. Theory Modell. 16,
869-926 (2012)
Goussis,
D.A., Lam, S.H.: A study of homogeneous methanol oxidation kinetics
using CSP.
Proc. Comb. Inst. 24, 113-120 (1992)
Goussis,
D.A., Maas, U.: Model reduction for combustion chemistry. In:
Echekki,
T.,
Mastorakos, E. (eds.) Turbulent Combustion Modeling. pp. 193-220.
Springer,
(2011)
Goussis,
D.A., Najm, H.N.: Model reduction and physical understanding of
slowly
oscillating processes: the circadian cycle. SIAM Multiscale Model.
Simul., 5, 1297-1332 (2006)
Goussis,
D.A., Skevis, G.: Nitrogen chemistry controlling steps in
methane-air
premixed
flames. In: Bathe, K.J. (ed.) Computational Fluid and Solid
Mechanics.
pp.
650-653. Elsevier, Amsterdam (2005)
Goussis,
D.A., Skevis, G., Mastorakos, E.: Transport-chemistry interactions
in
laminar
premixed hydrogen-air flames near flammability limits. Proc. ECM
(2005a)
Goussis,
D.A., Valorani, M.: An efficient iterative algorithm for the
approximation of
the fast and slow dynamics of stiff systems. J. Comput. Phys. 214,
316-346 (2006)
Goussis,
D.A., Valorani, M., Creta, F., Najm, H.N.: In: Bathe, K. (ed.)
Computational
Fluid and Solid Mechanics, vol. 2. pp. 1951-1954. Elsevier,
Amsterdam
(2003)
Goussis,
D.A., Valorani, M., Creta, F., Najm, H.N.: Reactive and
reactive-diffusive time
scales in stiff reaction-diffusion systems. Progress in
Computational
Fluid
Dynamics 5, 316-326 (2005b)
Granata,
S., Faravelli, T., Ranzi, E.: A wide range kinetic modeling study of
the
pyrolysis and combustion of naphthenes. Combust Flame 132,
533-544 (2003)
Green,
W.H.: Predictive Kinetics: A New Approach for the 21st Century. In:
Guy, B.M.
(ed.) Advances in Chemical Engineering, vol. 32. pp. 1-50. Academic
Press,
(2007)
Green,
W.H., Allen, J.W., Buesser, B.A., Ashcraft, R.W., Beran, G.J.,
Class,
C.A.,
Gao, C., Goldsmith, C.F., Harper, M.R., Murat Keceli, A.J., Magoon,
G.R.,
Matheu, D.M., Merchant, S.S., Mo, J.D., Petway, S., Raman, S.,
Sharma,
S.,
Song, J., Suleymanov, Y., Van Geem, K.M., Wen, J., West, R.H., Wong,
A., Wong,
H.-W., Yelvington, P.E., Yee, N., Yu, J.: RMG - Reaction Mechanism
Generator
v4.0.1. http://rmg.sourceforge.net/
(2013).
Accessed March, 2014
Green,
W.H., Barton, P.I., Bhattacharjee, B., Matheu, D.M., Schwer, D.A.,
Song, J.,
Sumathi, R., Carstensen, H.H., Dean, A.M., Grenda, J.M.: Computer
construction
of detailed chemical kinetic models for gas-phase reactors. Ind Eng
Chem Res 40, 5362–5370 (2001)
Grenda,
J.M., Androulakis, I.P., Dean, A.M., Green, W.H.: Application of
computational
kinetic mechanism generation to model the autocatalytic pyrolysis of
methane.
Ind. Eng. Chem. Res. 42, 1000-1010
(2003)
Griffiths,
J.F.:
Reduced kinetic-models and their application to practical
combustion
systems. Prog. Energy Combust. Sci. 21,
25-107 (1995)
GUI-HDMR:
http://www.gui-hdmr.de/. In.
Gunawan,
R., Cao, Y., Petzold, L., Doyle, F.J.: Sensitivity analysis of
discrete
stochastic systems. Biophys. J. 88,
2530-2540 (2005)
Gupta,
S.,
Im, H.G., Valorani, M.: Classification of ignition regimes in HCCI
combustion
using computational singular perturbation. Proc. Combust. Inst. 33, 2991-2999 (2011)
Gutenkunst,
R.N.,
Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna,
J.P.:
Universally sloppy parameter sensitivities in systems biology
models.
PLoS
Comput. Biol. 3, e189 (2007)
Hadjinicolaou,
M.,
Goussis, D.A.: Asymptotic solution of stiff PDEs with the CSP
method: The
reaction diffusion equation. SIAM J. Sci. Comput. 20,
781-810 (1998)
Hakka,
M.H., Bennadji, H., Biet, J., Yahyaoui, M., Sirjean, B., Warth, V.,
Coniglio,
L., Herbinet, O., Glaude, P.A., Billaud, F., Battin-Leclerc, F.:
Oxidation of
methyl and ethyl butanoates. Int. J. Chem. Kinet. 42,
226-252 (2010)
Halton,
J.H.: On the efficiency of certain quasi-random sequences of points
in
evaluating
multi-dimensional integrals. Numerische Mathematik 2,
84-90 (1960)
Hannemann-Tamás,
R.,
Gábor, A., Szederkényi, G., Hangos, K.M.: Model complexity
reduction of
chemical reaction networks using mixed-integer quadratic
programming.
Comput.
Math. Appl. (2014)
Hansen,
N.,
Harper, M.R., Green, W.H.: High-temperature oxidation chemistry of n-butanol – experiments in low-pressure
premixed flames and detailed kinetic modeling. PCCP 13,
20262–20274 (2011)
Hansen,
N.,
Merchant, S.S., Harper, M.R., Green, W.H.: The predictive capability
of
an
automatically generated combustion chemistry mechanism: Chemical
structures of
premixed iso-butanol flames.
Combust.
Flame 160, 2343-2351 (2013)
Happel,
J.,
Sellers, P.H.: Multiple reaction mechanisms in catalysis. Ind. Eng.
Chem.
Fundam. 21, 67–76 (1982)
Harper,
M.R., Van Geem, K.M., Pyl, S.P., Marin, G.B., Green, W.H.:
Comprehensive
reaction mechanism for n-butanol
pyrolysis and combustion. Combust. Flame 158,
16–41 (2011)
Harris,
S.D., Elliott, L., Ingham, D.B., Pourkashanian, M., Wilson, C.W.:
The
optimisation of reaction rate parameters for chemical kinetic
modelling
of
combustion using genetic algorithms. Computer Methods in Applied
Mechanics and
Engineering 190, 1065-1090 (2000)
Harstad,
K., Bellan, J.: A model of reduced oxidation kinetics using
constituents and
species: Iso-octane and its
mixtures
with n-pentane, iso-hexane
and n-heptane.
Combust. Flame 157, 2184-2197
(2010a)
Harstad,
K.G., Bellan, J.: A model of reduced kinetics for alkane oxidation
using
constituents and species: Proof of concept for n-heptane.
Combust.
Flame 157,
1594–1609 (2010b)
He, K.,
Androulakis, I.P., Ierapetritou, M.G.: On-the-fly reduction of
kinetic
mechanisms using element flux analysis. Chem. Eng. Sci. 65,
1173–1184 (2010)
He, K.,
Ierapetritou, M.G., Androulakis, I.P.: A graph-based approach to
developing
adaptive representations of complex reaction mechanisms. Combust.
Flame
155, 585-604 (2008)
He, S.,
Carmichael, G.R., Sandu, A., Hotchkiss, B., Damian-Iordache, V.:
Application of
ADIFOR for air pollution model sensitivity studies. Environ. Model.
Soft. 15, 549-557 (2000)
Heard,
A.C., Pilling, M.J., Tomlin, A.S.: Mechanism reduction techniques
applied to
tropospheric chemistry. Atm. Environ. 32,
1059-1073 (1998)
Hébrard,
E., Dobrijevic, M., Pernot, P., Carrasco, N., Bergeat, A., Hickson,
K.M.,
Canosa, A., Le Picard, S.D., Sims, I.R.: How measurements of rate
coefficients
at low temperature increase the predictivity of photochemical models
of
Titan’s
atmosphere. . J. Phys. Chem. A 113,
11227–11237 (2009)
Heineken,
F.G.,
Tsuchiya, H.M., Aris, R.: On the mathematical status of the
pseudo-steady-state hypothesis of biochemical kinetics. Math.
Biosci. 1, 95-113 (1967)
Helton,
J.C., Davis, F.J.: Latin hypercube sampling and the propagation of
uncertainty
in analyses of complex systems. Reliab. Engng Syst. Safety 81,
23–69 (2003)
Helton,
J.C., Johnson, J.D., Sallaberry, C.J., Storlie, C.B.: Survey of
sampling-based
methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst.
Saf. 91, 1175-1209 (2006)
Herbinet,
O.,
Pitz, W., Westbrook, C.K.: Detailed chemical kinetic mechanism for
the
oxidation of biodiesel fuels blend surrogate. Combust. Flame 157,
893-908 (2010)
Herbinet,
O.,
Pitz, W.J., Westbrook, C.K.: Detailed chemical kinetic oxidation
mechanism
for a biodiesel surrogate Combust. Flame
154, 507-528 ( 2008)
Hernández,
J.J.,
Ballesteros, R., Sanz-Argent, J.: Reduction of kinetic mechanisms
for
fuel oxidation through genetic algorithms. Math. Comput. Modelling 52, 1185-1193 (2010)
Hessler,
J.P., Ogren, P.J.: Correlation analysis of complex kinetic systems:
A
new
scheme for utilizing sensitivity coefficients. J. Chem. Phys. 97,
6249 (1992)
Hesstvedt,
E.,
Hov, O., Isaksen, I.S.A.: Quasi-steady-state approximations in
air-pollution modeling - comparison of two numerical schemes for
oxidant
prediction. Int. J. Chem. Kinet. 10,
971-994 (1978)
Higham,
N.J.: Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia (1996)
Hiremath,
V.,
Pope, S.B.: A study of the rate-controlled constrained-equilibrium
dimension reduction method and its different implementations.
Combust.
Theory
Model. 17, 260-293 (2013)
Hiremath,
V.,
Ren, Z.Y., Pope, S.B.: A greedy algorithm for species selection in
dimension reduction of combustion chemistry. Combust. Theory Model.
14, 619-652 (2010)
Hiremath,
V.,
Ren, Z.Y., Pope, S.B.: Combined dimension reduction and tabulation
strategy
using ISAT-RCCE-GALI for the efficient implementation of combustion
chemistry.
Combust. Flame 158, 2113-2127 (2011)
Ho,
T.C.,
Aris, R.: On apparent second-order kinetics. AIChE J. 33,
1050-1051 (1987)
Hoare,
A.,
Regan, D.G., Wilson, D.P.: Sampling and sensitivity analyses tools
(SaSAT) for
computational modelling. Theor. Biol. Med. Modelling 5,
4 (2008)
Homma,
T.,
Saltelli, A.: Importance measures in global sensitivity analysis of
nonlinear
models. Reliability Engineering Syst. Safety 52,
1–17 (1996)
Hong,
Z.,
Davidson, D.F., Hanson, R.K.: An improved H2/O2
mechanism
based on recent shock tube/laser absorption measurements Combust.
Flame
158, 633-644 (2011)
Honnet,
S.,
Seshadri, K., Niemann, U., Peters, N.: A surrogate fuel for
kerosene.
Proc.
Combust. Inst. 32, 485-492 (2009)
Hoops,
S.,
Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M.,
Xu,
L.,
Mendes, P., Kummer, U.: COPASI — a COmplex PAthway SImulator.
Bioinformatics 22, 3067-3074 (2006)
Horiuti,
J.: Theory of reaction rates as based on the stoichiometric number
concept.
Annals New York
Acad. Sci. 213, 5-30 (1973)
Hovland,
P.D., Norris, B., Mills Strout, M., Bhowmick, S., Utke, J.:
Sensitivity
analysis and design optimization through automatic differentiation.
J.
Phys.
Conf. Ser. 16, 466-470 (2005)
Hu, D.,
Braun-Unkhoff, M., Frank, P.: Modeling study on soot formation at
high
pressures. Combust. Sci. Technol. 149,
79-94 (1999)
Huang,
H.,
Fairweather, M., Griffiths, J.F., Tomlin, A.S., Brad, R.B.: A
systematic
lumping approach for the reduction of comprehensive kinetic models.
Proc.
Combust. Inst. 30, 1309-1316 (2005)
Hughes,
K.J., Fairweather, M., Griffiths, J.F., Porter, R., Tomlin, A.S.:
The
application of the QSSA via reaction lumping for the reduction of
complex
hydrocarbon oxidation mechanisms. Proc. Combust. Inst. 32,
543-551 (2009)
Hughes,
K.J., Griffiths, J.F., Fairweather, M., Tomlin, A.S.: Evaluation of
models for
the low temperature combustion of alkanes through interpretation of
pressure-temperature ignition diagrams. PCCP 8,
3197-3210 (2006)
Hughes,
K.J., Tomlin, A.S., Hampartsoumian, E., Nimmo, W., Zsély, I.G.,
Ujvári,
M.,
Turányi, T., Clague, A.R., Pilling, M.J.: An investigation of
important
gas-phase reactions of nitrogenous species from the simulation of
experimental
measurements in combustion systems. Combust. Flame 124,
573-589 (2001a)
Hughes,
K.J., Turányi, T., Clague, A.R., Pilling, M.J.: Development and
testing
of a
comprehensive chemical mechanism for the oxidation of methane. Int.
J.
Chem.
Kinet. 33, 513-538 (2001b)
Hwang,
J.T.: Nonlinear sensitivity analysis in chemical kinetics. Proc.
Natl.
Sci.
Council B. ROC 6, 20-29 (1982)
Hwang,
J.T., Dougherty, E.P., Rabitz, S., Rabitz, H.: Greens Function
Method
of
sensitivity analysis in chemical kinetics. J. Chem. Phys. 69,
5180-5191 (1978)
Ihekwaba,
A.E.,
Broomhead, D.S., Grimley, R.L., Benson, N., Kell, D.B.:
Sensitivity
analysis of parameters controlling oscillatory signalling in the NF-kB pathway: the
roles of IKK and IkBa. Syst Biol
1, 93-103 (2004)
Ihme,
M.,
Marsden, A.L., Pitsch, H.: Generation of optimal artificial neural
networks
using a pattern search algorithm: Application to approximation of
chemical
systems. Neural Computation 20,
573-601 (2008)
Ihme,
M.,
Schmitt, C., Pitsch, H.: Optimal artificial neural networks and
tabulation
methods for chemistry representation in LES of a bluff-body
swirl-stabilized
flame. Proc. Combust. Inst. 32,
1527-1535 (2009)
Imbert,
B.,
Lafosse, F., Catoire, L., Paillard, C.-É., Khasainov, B.:
Formulation
reproducing the ignition delays simulated by a detailed mechanism:
Application
to n-heptane combustion. Combust.
Flame 155, 380-408 (2008)
Ingalls,
B.P.: Autonomously oscillating biochemical systems: Parametric
sensitivities of
extrema and period. IEE Systems Biology 1,
62–70 (2004)
Ingber,
L.,
Rosen, B.: Genetic algorithms and very fast simulated re-annealing -
A
comparison. Math. Comput. Modell. 16,
87-100 (1992)
Ingham,
T.,
Goddard, A., Whalley, L.K., Furneaux, K.L., Edwards, P.M., Seal,
C.P.,
Self,
D.E., Johnson, G.P., Read, K.A., Lee, J.D., Heard, D.E.: A flow-tube
based
laser-induced fluorescence instrument to measure OH reactivity in
the
troposphere. Atmospheric Measurement Techniques 2,
465-477 (2009)
Ishmurzin,
A.,
Schramm, B., Lebiedz, D., Warnatz, J.: Reduction of detailed
reaction
mechanisms for large hydrocarbons combustion by the ILDM method. In:
Proc. ECM
2003
Ismail,
H.M., Ng, H.K., Gan, S., Lucchini, T., Angelo Onorati, A.:
Development
of a
reduced biodiesel combustion kinetics mechanism for CFD modelling of
a
light-duty diesel engine. Fuel 106,
388–400 (2013)
Isukapalli,
S.S.,
Roy, A., Georgopoulos, P.G.: Efficient sensitivity/uncertainty
analysis
using the combined stochastic response surface method and automated
differentiation: application to environmental and biological
systems.
Risk
Anal. 20, 591-602 (2000)
Jacobson,
M.Z.:
Fundamentals of atmospheric modeling 2nd edition ed. Cambridge
University
Press, (2005)
Jakeman,
A.J., Letcher, R.A., Norton, J.P.: Ten iterative steps in
development
and
evaluation of environmental models. Environ. Modell. Softw. 21,
602-614 (2006)
Jalan,
A.,
West, R.H., H., G.W.: An extensible framework for capturing solvent
effects in
computer generated kinetic models. J Phys Chem B 117,
2955-2970 (2013)
James,
S.,
Anand, M.S., Razdan, M.K., Pope, S.B.: In
situ detailed chemistry calculations in combustor flow
analyses. J. Eng.
Gas. Turbines Power-Trans. ASME 123,
747-756 (2001)
Jasper,
A.W., Klippenstein, S.J., Harding, L.B., Ruscic, B.: Kinetics of the
reaction
of methyl radical with hydroxyl radical and methanol decomposition.
J.
Phys.
Chem. A 111, 3932−3950 (2007)
Jay,
L.O.,
Sandu, A., Potra, F.A., Carmichael, G.R.: Improved
quasi-steady-state-approximation methods for atmospheric chemistry
integration.
SIAM J. Sci. Comput. 18, 182-202
(1997)
Jay, S.,
Colin, O.: A variable volume approach of tabulated detailed
chemistry
and its
applications to multidimensional engine simulations. Proc. Combust.
Inst. 33, 3065-3072 (2011)
JCGM:
International vocabulary of metrology - Basic and general concepts
and
associated terms (VIM). In: http://www.bipm.org/. (2008)
Jenkin,
M.E., Watson, L.A., Utembe, S.R., Shallcross, D.E.: A Common
Representative
Intermediates (CRI) mechanism for VOC degradation. Part 1: Gas phase
mechanism
development. Atmospheric Environment 42,
7185-7195 (2008)
Jiang,
Y.,
Qiu, R.: Reduction of large kinetic mechanisms of hydrocarbon fuels
with
directed relation graph. Acta Physico-Chimica Sinica 25,
1019-1025 (2009)
Johnson,
B.G., Corio, P.L.: Computer construction of reaction mechnisms. J.
Phys. Chem. 97, 12100–12105 (1993)
Johnston,
H.,
Kinnison, D.: Methane photooxidation in the atmosphere: Contrast
between
two methods of analysis. J. Geophys. Res. 103,
21967–21984 (1998)
Jones,
W.P., Rigopoulos, S.: Rate-controlled constrained equilibrium:
Formulation and
application to nonpremixed laminar flames. Combust. Flame 142,
223-234 (2005a)
Jones,
W.P., Rigopoulos, S.: Reduction of comprehensive chemistry via
constraint
potentials. Proc. Combust. Inst. 30,
1325-1331 (2005b)
Jones,
W.P., Rigopoulos, S.: Reduced chemistry for hydrogen and methanol
premixed
flames via RCCE. Combust. Theory Model. 11,
755-780 (2007)
Kalachev,
L.V.,
Field, R.J.: Reduction of a model describing ozone oscillations
in the
troposphere: Example of an algorithmic approach to model reduction
in
atmospheric chemistry. J. Atm. Chem. 39,
65-93 (2001)
Kanehisa,
M.,
Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids
Research 28, 27-30 (2000)
Kanehisa,
M.,
Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: KEGG for
representation
and analysis of molecular networks involving diseases and drugs.
Nucleic Acids
Research 38(suppl 1), D355-D360
(2010)
Karp,
P.D.,
Riley, M., Saier, M., Paulsen, I.T., Paley, S.M., Pellegrini-Toole,
A.:
The
EcoCyc and MetaCyc databases. Nucleic Acids Research 28,
56-59 (2000)
Katare,
S.,
Bhan, A., Caruthers, J.M., Delgass, W.N., Venkatasubramanian, V.: A
hybrid
genetic algorithm for efficient parameter estimation of large
kinetic
models.
Comput. Chem. Eng. 28, 2569–2581
(2004)
Kazakov,
A., Frenklach, M.: Dynamic modeling of soot particle coagulation and
aggregation: Implementation with the method of moments and
application
to
high-pressure laminar premixed flames. Combust. Flame 114,
484-501 (1998)
Keating,
S.M., Bornstein, B.J., Finney, A., Hucka, M.: SBMLToolbox: an SBML
toolbox for
MATLAB users. Bioinformatics 22,
1275–1277 (2006)
Keck,
J.C.:
Rate-controlled constrained-equilibrium theory of chemical-reactions
in
complex-systems. Prog. Energy Combust. Sci. 16,
125-154 (1990)
Keck,
J.C.,
Gillespie, D.: Rate-controlled partial-equilibrium method for
treating
reacting
gas-mixtures. Combust. Flame 17,
237–248 (1971)
Kee,
R.J.,
Grcar, J.F., Smooke, M.D., Miller, J.A.: PREMIX: A FORTRAN program
for
modeling
steady laminar one-dimensional premixed flames. In. Sandia National
Laboratories, (1985)
Kee,
R.J.,
Rupley, F.M., Miller, J.A.: CHEMKIN-II: A FORTRAN chemical kinetics
package for
the analysis of gas-phase chemical kinetics. In. Sandia National
Laboratories,
(1989)
Kelley,
A.P.,
Liu, W., Xin, Y.X., Smallbone, A.J., Law, C.K.: Laminar flame
speeds,
non-premixed stagnation ignition, and reduced mechanisms in the
oxidation of iso-octane. Proc.
Combust. Inst. 33, 501-508 (2011)
Kent,
E.,
Neumann, S., Kummer, U., Mendes, P.: What can we learn from global
sensitivity
analysis of biochemical systems? PLoS ONE 8
(2013)
Kerdouci,
J.,
Picquet-Varrault, B., Doussin, J.F.: Structure-activity
relationship for
the gas-phase reactions of NO3 radical with organic compounds:
Update
and
extension to aldehydes. Atmos. Environ. 84,
363-372 (2014)
KINAL:
program package for the simulation and analysis of reaction
mechanisms.
In: http://garfield.chem.elte.hu/Combustion/kinal.htm.
KINALC:
CHEMKIN based program for KInetic aNALysis. In:
http://garfield.chem.elte.hu/Combustion/kinalc.htm.
Kintecus:
http://www.kintecus.com/. In. (2014)
Kiparissides,
A.,
Kucherenko, S.S., Mantalaris, A., Pistikopoulos, E.N.: Global
sensitivity
analysis challenges in biological systems modeling. Ind. Eng. Chem.
Res. 48, 7168-7180 (2009)
Kiparissides,
A.,
Rodriguez-Fernandez, M., Kucherenko, S., Mantalaris, A.,
Pistikopoulos, E.:
Application of global sensitivity analysis to biological models. In:
Braunschweig, B., Joulia, X. (eds.) 18th European Symposium on
Computer
Aided
Process Engineering, vol. 25. Computer-Aided Chemical Engineering,
pp.
689-694.
Elsevier Science Bv, Amsterdam (2008)
Kirchner,
F.:
The chemical mechanism generation programme CHEMATA--Part 1: The
programme
and first applications. Atm. Environ. 39,
1143-1159 (2005)
Kirkpatrick,
S.:
Optimization by simulated annealing. Science 220,
671-681 (1983)
Klamt,
S.,
Stelling, J., Ginkel, M., Gilles, E.D.: FluxAnalyzer: exploring
structure,
pathways, and flux distributions in metabolic networks on
interactive
flux
maps. Bioinformatics 19, 261-269
(2003)
Klipp,
E.,
Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems biology
in
practice.
Wiley-VCH, Weinheim (2005)
Klipp,
E.,
Liebermeister, W., Wierling, C., Kowland, A., Lehrach, H., Herwig,
R.:
Systems
biology: a textbook. Wiley-VCH Verlag, (2009)
Klippenstein,
S.J.,
Harding, L.B., Davis, M.J., Tomlin, A.S., Skodje, R.T.:
Uncertainty
driven theoretical kinetics studies for CH3OH
ignition: HO2+CH3OH
and O2+CH3OH. Proc.
Combust. Inst. 33, 351-357 (2011)
Klonowski,
W.:
Simplifying principles for chemical and enzyme reaction kinetics.
Biophys.
Chem. 18, 73-87 (1983)
Knio,
O.M.,
Najm, H.N., Wyckoff, P.S.: A semi-implicit numerical scheme for
reacting flow
II. Stiff, operator-split formulation. J. Comput. Phys. 154,
428-467 (1999)
Konnov,
A.A.: Remaining uncertainties in the kinetic mechanism of hydrogen
combustion.
Combust. Flame 152, 507-528 (2008)
Kooshkbaghi,
M.,
Frouzakis, C.E., Boulouchos, K., Karlin, I.V.: Entropy production
analysis
for mechanism reduction. Combust. Flame 161,
1507–1515 (2014)
Kourdis,
P.D., Bellan, J.: Heavy-alkane oxidation kinetic-mechanism reduction
using
dominant dynamic variables, self similarity and chemistry
tabulation.
Combust.
Flame 161, 1196–1223 (2014)
Kourdis,
P.D., Goussis, D.A.: Glycolysis in saccharomyces cerevisiae:
Algorithmic
exploration of robustness and origin of oscillations. Math. Biosci.
243, 190–214 (2013)
Kourdis,
P.D., Steuer, R., Goussis, D.A.: Physical understanding of complex
multiscale
biochemical models via algorithmic simplification: Glycolysis in Saccharomyces cerevisiae. Physica D 239,
1798-1817 (2010)
Kouri,
T.M., Crabtree, J.D., Huynh, L., Dean, A.M., Mehta, D.P.: RCARM:
Reaction
classification using automated reaction mapping. Int J Chem Kinet 45, 125–139 (2013)
Kovács,
K.,
Vízvári, B., Riedel, M., Tóth, J.: Decomposition of the
permanganate/oxalic
acid overall reaction to elementary steps based on integer
programming
theory.
PCCP 6, 1236-1242 (2004)
Kovacs,
T.A., Brune, W.H.: Total OH loss rate measurement. J. Atmos. Chem. 39, 105-122 (2001)
König,
K.,
Maas, U.: On-demand generation of reduced mechanisms based on
hierarchically
extended intrinsic low-dimensional manifolds in generalized
coordinates. Proc
Combust Inst. 32, 553-560 (2009)
Könnyű,
B.,
Sadiq, S.K., Turányi, T., Hírmondó, R., Müller, B., Kräusslich,
H.G.,
Coveney,
P.V., Müller, V.: Gag-Pol Processing during HIV-1 virion maturation:
a
systems
biology approach. PLoS Comput. Biol. 9,
e1003103 (2013)
KPP:
Kinetic Preprocessor. In: http://people.cs.vt.edu/~asandu/Software/Kpp/.
Kraft,
M.,
Wagner, W.: An improved stochastic algorithm for
temperature-dependent
homogeneous gas phase reactions. J. Comput. Phys. 185,
139-157 (2003)
Kramer,
M.A., Calo, J.M., Rabitz, H.: An improved computational method for
sensitivity
analysis - Greens Function Method with AIM. Appl. Math. Modell. 5, 432-441 (1981)
Kramer,
M.A., Rabitz, H., Calo, J.M., Kee, R.J.: Sensitivity analysis in
chemical
kinetics - recent developments and computational comparisons. Int.
J.
Chem.
Kinet. 16, 559-578 (1984)
Kremling,
A.,
Fischer, S., Sauter, T., Bettenbrock, K., Gilles, E.D.: Time
hierarchies in
the Escherichia coli carbohydrate
uptake and metabolism. . Biosystems 73,
57-71 (2004)
Kucherenko,
S.:
Application of global sensitivity indices for measuring the
effectiveness
of quasi-Monte Carlo methods and parameter estimation. . In: Fifth
International Conference on Sensitivity Analysis of Model Output,
Budapest
2007, pp. 35–36
Kucherenko,
S.:
SOBOLHDMR: A general-purpose modeling software. In: Polizzi, K.M.,
Kontoravdi, C. (eds.) Synthetic Biology, vol. 1073. Methods in
Molecular
Biology, pp. 191-224. Humana Press Inc, Totowa (2013)
Kucherenko,
S.,
Tarantola, S., Annoni, P.: Estimation of global sensitivity indices
for
models with dependent variables. Comput. Phys. Commun. 183,
937-946 (2012)
Kumar,
A.,
Mazumder, S.: Adaptation and application of the in
situ Adaptive Tabulation (ISAT) procedure to reacting flow
calculations
with complex surface chemistry. Comput. Chem. Eng. 35,
1317-1327 (2011)
Kumar,
K.,
Sung, C.J.: Autoignition of methanol: Experiments and computations.
Int. J.
Chem. Kinet. 43, 175-184 (2011)
Kurtz,
T.G.: The relationship between stochastic and deterministic models
of
chemical
reactions. J. Chem. Phys. 57,
2976-2978 (1972)
Kwok,
E.S.C., Atkinson, R.: Estimation of hydroxyl radical reaction rate
constants
for gas-phase organic compounds using a structure-reactivity
relationship: An
update. Atmos. Environ. 29,
1685-1695 (1995)
Lam,
S.H.:
Using CSP to understand complex chemical kinetics. Combust. Sci.
Technol. 89, 375-404 (1993)
Lam,
S.H.:
Reduced chemistry-diffusion coupling. Combust. Sci. Technol. 179,
767–786 (2006)
Lam,
S.H.:
Model reductions with special CSP data. Combust. Flame 160,
2707–2711 (2013)
Lam,
S.H.,
Goussis, D.A.: Understanding complex chemical kinetics with
computational
singular perturbation. Proc. Combust. Inst. 22,
931-941 (1988)
Lam,
S.H.,
Goussis, D.A.: Conventional asymptotics and computational singular
perturbation
for simplified kinetics modeling. In: Smooke, M.O. (ed.) Reduced
kinetic
mechanisms and asymptotic approximations for methane-air flames,
vol.
384.
Springer Lecture Notes, pp. 227–242. Springer, Berlin (1991)
Lam,
S.H.,
Goussis, D.A.: The CSP method for simplifying kinetics. Int. J.
Chem.
Kinet. 26, 461-486 (1994)
laminarSMOKE
web
site. http://www.opensmoke.polimi.it/
(2014).
Lamouroux,
J.,
Ihme, M., Fiorina, B., Gicquel, O.: Tabulated chemistry approach
for
diluted combustion regimes with internal recirculation and heat
losses.
Combust. Flame 161, 2120–2136 (2014)
Larter,
R.:
Sensitivity analysis of autonomous oscillators. Separation of
secular
terms and
determination of structural stability. J. Phys. Chem. 87,
3114-3121 (1983)
Law,
C.K.:
Combustion at a crossroads: Status and prospects. Proc. Combust
Inst. 31, 1-29 (2007)
Law,
C.K.,
Sung, C.J., Wang, H., Lu, T.F.: Development of comprehensive
detailed
and
reduced reaction mechanisms for combustion modeling. AIAA Journal 41, 1629-1646 (2003)
Laxminarasimhan,
C.S.,
Verma, R.P., Ramachandran, P.A.: Continuous lumping model for
simulation
of hydrocracking. AIChE J. 42,
2645-2653. (1996)
Lebiedz,
D.: Computing minimal entropy production trajectories: An approach
to
model
reduction in chemical kinetics. J. Chem. Phys. 120,
6890–6897 (2004)
Lee,
C.H.,
Othmer, H.G.: A multi-time-scale analysis of chemical reaction
networks: I.
Deterministic systems. J. Math. Biol. 60,
387–450 (2010)
Lee,
J.C.,
Najm, H.N., Lefantzi, S., Ray, J., Frenklach, M., Valorani, M.,
Goussis, D.: On
chain branching and its role in homogeneous ignition and premixed
flame
propagation. In: Bathe, K. (ed.) Computational Fluid and Solid
Mechanics. pp.
717–720. Elsevier Science, (2005)
Lee,
J.C.,
Najm, H.N., Lefantzi, S., Ray, J., Frenklach, M., Valorani, M.,
Goussis, D.: A
CSP and tabulation-based adaptive chemistry model. Combust. Theory
Model. 11, 73–102. (2007)
Lee,
J.D.,
Young, J.C., Read, K.A., Hamilton, J.F., Hopkins, J.R., Lewis, A.C.,
Bandy,
B.J., Davey, J., Edwards, P., Ingham, T., Self, D.E., Smith, S.C.,
Pilling,
M.J., Heard, D.E.: Measurement and calculation of OH reactivity at a
United
Kingdom coastal site. J. Atm. Chem. 64,
53-76 (2009)
Lee,
J.M.,
Gianchandani, E.P., Papin, J.A.: Flux balance analysis in the era of
metabolomics. Briefings in Bioinformatics 7,
140-150 (2006)
Lehmann,
R.: Determination of dominant pathways in chemical reaction systems:
An
algorithm and its application to stratospheric chemistry. J. Atmos.
Chem. 41, 297–314 (2002)
Lehmann,
R.: An algorithm for the determination of all significant pathways
in
chemical
reaction systems. J. Atm. Chem. 47,
45-78 (2004)
Leloup,
J.-C., Goldbeter, A.: Modeling the mammmalian circadian clock:
Sensitivity
analysis and multiplicity of oscillatory mechanisms. . J Theor.
Biol. 230, 541–562 (2004)
Li, B.,
Li,
B.: Quasi-Steady-State Laws in reversible model of enzyme kinetics.
J
Math Chem
51, 2668–2686 (2013)
Li, B.,
Shen, Y., Li, B.: Quasi-Steady State Laws in enzyme kinetics. J.
Phys.
Chem. A 112, 2311–2321 (2008a)
Li, G.,
Rabitz, H.: A general analysis of exact lumping in chemical
kinetics.
Chem.
Eng. Sci. 44, 1413-1430 (1989)
Li, G.,
Rabitz, H.: Determination of constrained lumping schemes for
nonisothermal
first-order reaction systems. Chem. Eng. Sci. 46,
583-596 (1991)
Li, G.,
Rabitz, H.: A special singular perturbation methods for kinetic
model
reduction: With application to an H2/O2
oxidation model.
J. Chem. Phys. 105, 4065-4075
(1996a)
Li, G.,
Rabitz,
H.: Reduced kinetic equations of a CO/H2/air
oxidation model by a
special perturbation method. Chem. Eng. Sci. 52,
4317-4327 (1997)
Li, G.,
Rabitz, H., Tóth, J.: A general analysis of exact nonlinear lumping
in
chemical
kinetics. Chem. Eng. Sci. 49,
343-361
(1994a)
Li, G.,
Rosenthal, C., Rabitz, H.: High dimensional model representations.
J.
Phys.
Chem. A 105, 7765 -7777. (2001)
Li, G.,
Tomlin, A.S., Rabitz, H., Tóth, J.: Determination of approximate
lumping
schemes by a singular perturbation method. J. Chem. Phys. 99,
3562-3574 (1993)
Li, G.,
Tomlin, A.S., Rabitz, H., Tóth, J.: A general analysis of
approximate
nonlinear
lumping in chemical kinetics. I. Unconstrained lumping. J. Chem.
Phys. 101, 1172-1187 (1994b)
Li, G.,
Tomlin, A.S., Rabitz, H., Tóth, J.: A general analysis of
approximate
nonlinear
lumping in chemical kinetics. II. Constrained lumping. J. Chem.
Phys. 101, 1188-1201 (1994c)
Li, G.,
Wang, S.-W., Rabitz, H.: Practical approaches to construct RS-HDMR
component
functions. J. Phys. Chem. A 106,
8721-8733 (2002a)
Li, G.,
Wang, S.-W., Rabitz, H., Wang, S., Jaffé, P.: Global uncertainty
assessments by
high dimensional model representations (HDMR). Chem. Eng. Sci. 57,
4445-4460 (2002b)
Li,
G.Y.,
Rabitz, H.: A lumped model for H2/O2
oxidation in the
oscillatory regime. J. Chem. Phys. 102,
7006-7016 (1995)
Li,
G.Y.,
Rabitz, H.: Combined symbolic and numerical approach to constrained
nonlinear
lumping - With application to an H2/O2
oxidation model.
Chem. Eng. Sci. 51, 4801-4816
(1996b)
Li,
G.Y.,
Rabitz, H.: General formulation of HDMR component functions with
independent
and correlated variables. J. Math. Chem. 50,
99-130 (2012)
Li,
G.Y.,
Rabitz, H., Hu, J.S., Chen, Z., Ju, Y.: Regularized random-sampling
high
dimensional model representation (RS-HDMR). J. Math. Chem. 43,
1207–1232 (2008b)
Li,
G.Y.,
Rabitz, H., Yelvington, P.E., Oluwole, O.O., Bacon, F., Kolb, C.E.,
Schoendorf,
J.: Global sensitivity analysis for systems with independent and/or
correlated
inputs. J. Phys. Chem. A 114,
6022-6032 (2010)
Li, H.,
Cao, Y., Petzold, L.R., Gillespie, D.T.: Algorithms and software for
stochastic
simulation of biochemical reacting systems. Biotechnol Prog. 24,
56-61 (2008c)
Li, K.,
Crittenden, J.: Computerized pathway elucidation for hydroxyl
radical-induced
chain reaction mechanisms in aqueous phase advanced oxidation
processes.
Environm. Sci. Technol. 43,
2831-2837 (2009)
Liang,
L.,
Stevens, J.G., Farrell, J.T.: A dynamic adaptive chemistry scheme
for
reactive
flow computations. Proc. Combust. Inst. 32,
527-534 (2009a)
Liang,
L.,
Stevens, J.G., Raman, S., Farrell, J.T.: The use of dynamic adaptive
chemistry
in combustion simulation of gasoline surrogate fuels. Combust. Flame
156, 1493-1502 (2009b)
Liao,
J.C.,
Lightfoot, E.N.: Lumping analysis of biochemical reaction systems
with
time
scale separation. Biotechnol. Bioeng. 31,
869-879 (1988)
Libby,
P.A., Bray, K.N.C.: Implications of the laminar flamelet model in
premixed
turbulent combustion. Combust. Flame 39,
33-41 (1980)
Liew,
S.K.,
Bray, K.N.C., Moss, J.B.: A flamelet model of turbulent non-premixed
combustion. Combust. Sci. Technol. 27,
69-73 (1981)
Lindemann,
F.A.,
Arrhenius, S., Langmuir, I., Dhar, N.R., Perrin, J., McC. Lewis,
W.C.:
Discussion on “the radiation theory of chemical action”. Trans.
Faraday
Soc. 17, 598-606 (1922)
Liu,
B.J.D., Pope, S.B.: The performance of in
situ adaptive tabulation in computations of turbulent flames.
Combust.
Theory Model. 9, 549-568 (2005)
Liu, G.,
Swihart, M.T., Neelamegham, S.: Sensitivity, principal component and
flux analysis
applied to signal transduction: the case of epidermal growth factor
mediated
signaling. Bioinformatics 21,
1194–1202 (2005)
Liu,
J.-W.,
Xiong, S.-W., Ma, X.-S., Li, P., Li, X.-Y.: Development and
reduction
of n-decane detailed combustion
reaction mechanism
Tuijin Jishu/Journal of Propulsion Technology 33,
64-68 (2012)
Lodier,
G.,
Vervisch, L., Moureau, V., Domingo, P.: Composition-space premixed
flamelet
solution with differential diffusion for in
situ flamelet-generated manifolds. Combust. Flame(158),
2009-2016 (2011)
LOGE:
LOGEsoft v. 1.02. In: Engineering, L.C. (ed.). http://www.loge.se/Products/LOGE_Products.html,
(2014)
Logist,
F.,
Saucez, P., Van Impe, J., Wouwer, A.V.: Simulation of (bio)chemical
processes
with distributed parameters using Matlab (R). Chem. Eng. J. 155,
603-616 (2009)
Lotka,
A.J.: Contribution to the theory of periodic reaction. J. Phys.
Chem. 14, 271–274 (1910)
Lotka,
A.J.: Analytical note on certain rhythmic relations in organic
systems.
Proc.
Natl. Acad. Sci. U.S. 6, 410-415
(1920)
Løvås,
T.: Automatic generation of skeletal mechanisms for ignition
combustion
based
on level of importance analysis. Combust. Flame 156,
1348-1358 (2009)
Løvås,
T., Amneus, P., Mauss, F., Mastorakos, E.: Comparison of automatic
reduction
procedures for ignition chemistry. Proc. Combust. Inst. 29,
1387-1393 (2002a)
Løvås,
T., Houshfar, E., Bugge, M., Skreiberg, Ø.: Automatic generation of
kinetic skeletal mechanisms for biomass combustion. Energy Fuels 27, 6979−6991 (2013)
Løvås,
T., Mastorakos, E., Goussis, D.A.: Reduction of the RACM scheme
using
computational singular perturbation analysis. J. Geophys.
Res.-Atmos. 111, D13302 (2006)
Løvås,
T., Mauss, F., Hasse, C., Peters, N.: Development of adaptive
kinetics
for
application in combustion systems. Proc. Comb. Inst. 29,
1403-1410 (2002b)
Løvås,
T., Navarro-Martinez, S., Rigopoulos, S.: On adaptively reduced
chemistry in
large eddy simulations. Proc. Combust. Inst. 33,
1339-1346 (2011)
Løvås,
T., Nilsson, D., Mauss, F.: Automatic reduction procedure for
chemical
mechanisms applied to premixed methane/air flames. Proc. Combust.
Inst.
28, 1809-1815 (2000)
Lovrics,
A., Csikász-Nagy, A., Zsély, I.G., Zádor, J., Turányi, T., Novák,
B.:
Time
scale and dimension analysis of a budding yeast cell cycle model.
BMC
Bioinformatics 7, 494 (2006)
Lovrics,
A., Zsély, I.G., Csikász-Nagy, A., Zádor, J., Turányi, T., Novák,
B.:
Analysis
of a budding yeast cell cycle model using the shapes of local
sensitivity
functions. Int. J. Chem. Kinet. 40,
710–720 (2008)
Lowe,
R.,
Tomlin, A.: Low-dimensional manifolds and reduced chemical models
for
tropospheric
chemistry simulations. Atm. Environ. 34,
2425-2436 (2000a)
Lowe,
R.M.,
Tomlin, A.S.: The application of repro-modelling to a tropospheric
chemical
model. Env. Modell. Soft. 15,
611-618 (2000b)
Lu, B.,
Yue, H.: Sensitivity analysis of oscillatory biological
systems
with a
SVD-based algorithm.
Systemics and Informatics World
Network 10, 37-47 (2010)
Lu,
L.Y.,
Pope, S.B.: An improved algorithm for in
situ adaptive tabulation. J. Comput. Phys. 228,
361-386 (2009)
Lu, T.,
Ju,
Y., Law, C.K.: Complex CSP for chemistry reduction and analysis.
Combust. Flame
126, 1445-1455 (2001)
Lu, T.,
Law, C.: Linear time reduction of large kinetic mechanisms with
directed
relation graph: n-heptane and iso-octane.
Combust. Flame 144,
24-36 (2006a)
Lu, T.,
Law, C.K.: A directed relation graph method for mechanism reduction.
Proc.
Comb. Inst. 30, 1333–1341 (2005)
Lu, T.,
Law, C.K.: On the applicability of directed relation graphs to the
reduction of
reaction mechanisms. Combust. Flame 146,
472–483 (2006b)
Lu , T.,
Law, C.K.: Systematic approach to obtain analytic solutions of quasi
steady
state species in reduced mechanisms. J. Phys. Chem. A 110,
13202-13208 (2006)
Lu, T.,
Law, C.K.: A criterion based on computational singular perturbation
for
the
identification of quasi steady state species: A reduced mechanism
for
methane
oxidation with NO chemistry. Combust. Flame 154,
761-774 (2008a)
Lu, T.,
Law, C.K.: Strategies for mechanism reduction for large
hydrocarbons: n-heptane. Combust. Flame 154,
153–163 (2008b)
Lu, T.,
Law,
C.K.: Toward accommodating realistic fuel chemistry in large-scale
computations. Prog. Energy Combust. Sci. 35,
192-215 (2009)
Lu, T.,
Law, C.K., Yoo, C.S., Chen, J.H.: Dynamic stiffness removal for
direct
numerical simulations. Combust. Flame 156,
1542–1551 (2009)
Lu,
T.F.,
Yoo, C.S., Chen, J.H., Law, C.K.: Three-dimensional direct numerical
simulation
of a turbulent lifted hydrogen jet flame in heated coflow: a
chemical
explosive
mode analysis J. Fluid Mechanics 652,
45-64 (2010)
Luche,
J.,
Reuillon, M., Boettner, J.-C., Cathonnet, M.: Reduction of large
detailed
kinetic mechanisms: Application to kerosene/air combustion. Combust.
Sci. Tech.
176, 1935–1963 (2004)
Luo, Z.,
Plomer, M., Lu, T.F., Som, S., Longman, D.E.: A reduced mechanism
for
biodiesel
surrogates with low temperature chemistry for compression ignition
engine
application. Combust. Theory Model. 16,
369–385 (2012a)
Luo, Z.,
Plomer, M., Lu, T.F., Som, S., Longman, D.E., Sarathy, S.M., Pitz,
W.J.: A
reduced mechanism for biodiesel surrogates for compression ignition
engine
applications. Fuel 99, 143–153
(2012b)
Luo, Z.,
Som, S., Sarathy, S.M., Plomer, M., Pitz, W.J., Longman, D.E., Lu,
T.F.:
Development and validation of an n-dodecane
skeletal mechanism for Diesel spray-combustion applications.
Combust.
Theory
Model. 18,
187-203 (2014)
Luo, Z.,
Yoo, C.S., Richardson, E.S., Chen, J.H., Law, C.K., Lu, T.F.:
Chemical
explosive mode analysis for a turbulent lifted ethylene jet flame in
highly-heated coflow. Combust. Flame 159,
265-274 (2012c)
Luo,
Z.Y.,
Lu, T.F., Liu, J.W.: A reduced mechanism for ethylene/methane
mixtures
with
excessive NO enrichment. Combustion and Flame 158,
1245-1254 (2011)
Luo,
Z.Y.,
Lu, T.F., Maciaszek, M.J., Som, S., Longman, D.E.: A reduced
mechanism
for
high-temperature oxidation of biodiesel surrogates. Energy Fuels 24, 6283-6293 (2010a)
Luo,
Z.Y.,
Lu, T.F., Som, S., Longman, D.E., Asme: Numerical study on
combustion
characteristics of biodiesel using a new reduced mechanism for
methyl
decanoate
as surrogate. Proceedings of the ASME Internal Combustion Engine
Division Fall
Technical Conference, 873-884 (2010b)
Luong,
M.B., Luo, Z., Lu, T.F., Chung, S.H., Yoo, C.S.: Direct numerical
simulations
of the ignition of lean primary reference fuel/air mixtures under
HCCI
condition. Combust. Flame 160,
2038–2047 (2013)
Lüdtke,
N.,
Panzeri, S., Brown, M., Broomhead, D.S., Knowles, J., Montemurro,
M.A.,
Kell,
D.B.: Information-theoretic sensitivity analysis: a general method
for
credit
assignment in complex networks. J R Soc Interface. 26
(2007)
Lv, Y.,
Wang, Z.H., Zhou, J.H., Cen, K.F.: Reduced mechanism for hybrid NOx
control
process. Energy Fuels 23, 5920-5928
(2009)
Maas,
U.:
Coupling of chemical reaction with flow and molecular transport.
Appl.
Math. 40, 249-266 (1995)
Maas,
U.:
Efficient calculation of intrinsic low-dimensional manifolds for the
simplification of chemical kinetics. Computing and Visualization in
Science 1, 69-81 (1998)
Maas,
U.:
Mathematical modeling of the coupling of chemical kinetics with flow
and
molecular transport. In: Keil, F., Mackens, W., Voss, H., Werther,
J.
(eds.)
Scientific Computing in Chemical Engineering II. pp. 26-56. (1999)
Maas,
U.,
Bykov, V.: The extension of the reaction/diffusion manifold concept
to
systems
with detailed transport models. Proc. Combust. Inst. 33,
1253-1259 (2011)
Maas,
U.,
Pope, S.B.: Implementation of simplified chemical kinetics based on
intrinsic
low-dimensional manifolds. Proc. Combust. Inst. 24,
103-112 (1992a)
Maas,
U.,
Pope, S.B.: Simplifying chemical kinetics:Intrinsic low-dimensional
manifolds
in composition space. Combust. Flame 88,
239-264 (1992b)
Maas,
U.,
Pope, S.B.: Laminar flame calculations using simplified chemical
kinetics based
on intrinsic low-dimensional manifolds. Proc. Combust. Inst. 25,
1349-1356 (1994)
Maas,
U.,
Thévenin, D.: Correlation analysis of direct numerical simulation
data
of
turbulent non-premixed flames. Proc. Combust. Inst. 27,
1183-1189 (1998)
Maas,
U.,
Tomlin, A.S.: Time-scale splitting-based mechanism reduction. In:
Battin-Leclerc, F., Blurock, E., Simmie, J. (eds.) Development of
detailed
chemical kinetic models for cleaner combustion. pp. 467-484.
Springer,
Heidelberg (2013)
Maas,
U.,
Warnatz, J.: Ignition processes in hydrogen-oxigen mixtures.
Combust.
Flame 74, 53-69 (1988)
Machrafi,
H.,
Lombaert, K., Cavadias, S., Guibert, P., Amouroux, J.: Reduced
chemical
reaction mechanisms: experimental and HCCI modelling investigations
of
autoignition processes of iso-octane
in internal combustion engines. Fuel 84,
2330-2340 (2005)
Macken,
K.V., Sidebottom, H.W.: The reactions of methyl radicals with
chloromethanes.
Int. J. Chem. Kinet. 11, 511–527
(1979)
Maiwald,
T., Timmer, J.: Dynamical modeling and multi-experiment fitting with
PottersWheel. Bioinformatics 24,
2037-2043
(2008)
Malik,
A.,
Schramm, J., Nielsen, C., Løvås, T.: Development of surrogate for
Fischer-Tropsch biofuel and reduced mechanism for combustion in
Diesel
engine.
SAE Technical Paper 2013-2001-2599 (2013)
Maly,
T.,
Petzold, L.R.: Numerical methods and software for sensitivity
analysis
of
differential-algebraic systems. Appl. Numer. Math. 20,
57-79 (1996)
Manion,
J.A., Huie, R.E., Levin, R.D., Burgess Jr., D.R., Orkin, V.L.,
Tsang,
W.,
McGivern, W.S., Hudgens, J.W., Knyazev, V.D., Atkinson, D.B., Chai,
E.,
Tereza,
A.M., Lin, C.-Y., Allison, T.C., Mallard, W.G., Westley, F., Herron,
J.T.,
Hampson, R.F., Frizzell, D.H.: NIST Chemical Kinetics Database, NIST
Standard
Reference Database 17, Version 7.0 (Web Version), Release 1.6.7,
Data
Version
2013.03, National Institute of Standards and Technology,
Gaithersburg,
Maryland, 20899-8320. . http://kinetics.nist.gov/
(2013).
Mao, J.,
Ren, X., Brune, W.H., Olson, J.R., Crawford, J.H., Fried, A., Huey,
L.G.,
Cohen, R.C., Heikes, B., Singh, H.B., Blake, D.R., Sachse, G.W.,
Diskin, G.S.,
Hall, S.R., Shetter, R.E.: Airborne measurement of OH reactivity
during
INTEX-B. Atmos. Chem. Phys. 9,
163-173 (2009)
Maple. http://www.maplesoft.com/.
Mara,
T.A.,
Tarantola, S.: Variance-based sensitivity indices for models with
dependent
inputs. Reliab. Eng. Syst. Saf. 107,
115-121 (2012)
Maria,
G.:
A review of algorithms and trends in kinetic model identification
for
chemical
and biochemical systems. Chem. Biochem. Eng. Q. 18,
195-222 (2004)
Maria,
G.:
Application of lumping analysis in modelling the living systems - A
trade-off
between simplicity and model quality. Chem. Biochem. Eng. Q. 20,
353-373 (2006)
Maria,
G.:
Reduced modular representations applied to simulate some genetic
regulatory
circuits. Rev. Chim. 59, 318-324
(2008)
Maria,
G.:
Lumped dynamic model for a bistable genetic regulatory circuit
within a
variable-volume whole-cell modelling framework. Asia-Pac. J. Chem.
Eng.
4, 916-928 (2009)
Marinov,
N.M., Pitz, W.J., Westbrook, C.K., Castaldi, M.J., Senkan, S.M.:
Modeling of
aromatic and polycyclic aromatic hydrocarbon formation in premixed
methane and
ethane flames. Combust. Sci. Technol. 116,
211-287 (1996)
Marsden,
A.R., Frenklach, M., Reible, D.D.: Increasing the computational
feasibility of
urban air-quality models that employ complex chemical mechanisms.
JAPCA
37, 370-376 (1987)
Masri,
A.R., Cao, R., Pope, S.B., Goldin, G.M.: PDF calculations of
turbulent
lifted
flames of H2/N2 fuel
issuing into a vitiated co-flow.
Combust. Theory Model. 8, 1-22
(2004)
Massias,
A., Diamantis, D., Mastorakos, E., Goussis, D.A.: An algorithm for
the
construction of global reduced mechanisms with CSP data. Combust.
Flame
117, 685-708 (1999a)
Massias,
A., Diamantis, D., Mastorakos, E., Goussis, D.A.: Global reduced
mechanisms for
methane and hydrogen combustion with nitric oxide formation
constructed
with
CSP data. Combust. Theory Modell. 3,
233-257 (1999b)
Matheu,
D.M., Dean, A.M., Grenda, J.M., Green, W.H.: Mechanism generation
with
integrated pressure dependence: A new model for methane pyrolysis.
J.
Phys. Chem. A 107, 8552-8565 (2003)
Matheu,
D.M., Grenda, J.M.: A systematically generated, pressure-dependent
mechanism
for high-conversion ethane pyrolysis. 1. Pathways to the minor
products. J.
Phys. Chem. A 109, 5332–5342 (2005a)
Matheu,
D.M., Grenda, J.M.: A systematically generated, pressure-dependent
mechanism
for high-conversion ethane pyrolysis. 2. Radical
disproportionations,
missing
reaction families, and the consequences of pressure dependence. J.
Phys. Chem.
A 109, 5343–5351 (2005b)
Mauersberger,
G.:
ISSA (iterative screening and structure analysis)—a new reduction
method
and its application to the tropospheric cloud chemical
mechanism RACM/CAPRAM
2.4. Atm. Environm. 39, 4341-4350
(2005)
Maurya,
M.R., Bornheimer, S.J., Venkatasubramanian, V., Subramaniam, S.:
Mixed-integer
nonlinear optimisation approach to coarse-graining biochemical
networks. IET
Syst. Biol. 3, 24-39 (2009)
Mauryaa,
M.R., Katare, S., Patkar, P.R., Rundell, A.E., Venkatasubramanian,
V.:
A systematic
framework for the design of reduced-order models for signal
transduction
pathways from a control theoretic perspective. Comput. Chem. Eng. 30, 437–452 (2006)
Mavrovouniotis,
M.L.:
Synthesis of reaction mechanisms consisting of reversible and
irreversible
steps. 2. Formalization and analysis of the synthesis algorithm.
Ind.
Eng.
Chem. Res. 31, 1637–1653 (1992)
Mavrovouniotis,
M.L.,
Stephanopoulos, G., Stephanopoulos, G.: Computer-aided synthesis
of
biochemical pathways. Biotechnol. Bioeng. 36,
1119–1132 (1990)
Mazumder,
S.:
Adaptation of the in situ
adaptive tabulation (ISAT) procedure for efficient computation of
surface
reactions. Comput. Chem. Eng. 30,
115-124 (2005)
McKay,
M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods
for
selecting
values of input variables in the analysis of output from a computer
code.
Technometrics 42, 55-61 (2000)
MECHMOD:
Modification of CHEMKIN-format mechanisms. In:
http://garfield.chem.elte.hu/Combustion/mechmod.htm.
Meisel,
W.S., Collins, D.C.: Repro-modeling: An approach to efficient model
utilization
and interpretation. IEEE Trans. SMC-3/4,
349-358 (1973)
Mendes,
P.:
GEPASI: A software package for modelling the dynamics, steady states
and
control of biochemical and other systems. Comput. Applic. Biosci. 9, 563-571 (1993)
Mendes,
P.:
Biochemistry by numbers: simulation of biochemical pathways with
Gepasi
3.
Trends Biochem. Sci. 22, 361-363
(1997)
Mendes,
P.,
Kell, D.B.: Non-linear optimization of biochemical pathways:
applications to
metabolic engineering and parameter estimation. Bioinformatics 14,
869-883 (1998)
Mendiara,
T.,
Alzueta, M., Millera, A., Bilbao, R.: An augmented reduced
mechanism for
methane combustion. Energy Fuels 18,
619-627 (2004)
Mengers,
J.D., Powers, J.M.: One-dimensional slow invariant manifolds for
fully
coupled
reaction and micro-scale diffusion. SIAM J. Appl. Dyn. Syst. 12,
560-595 (2013)
Mersin,
I.E., Blurock, E.S., Soyhan, H.S., Konnov, A.A.: Hexadecane
mechanisms:
Comparison of hand-generated and automatically generated with
pathways.
Fuel 115, 132–144 (2014)
Metcalfe,
W.K.,
Burke, S.M., Ahmed, S.S., Curran, H.J.: A hierarchical and
comparative
kinetic modeling study of C1−C2 hydrocarbon and oxygenated fuels.
Int.
J.
Chem. Kinet. 45, 638–675 (2013)
Michael,
J.V., Kumaran, S.S., Su, M.C., Lim, K.P.: Thermal rate constants
over
thirty
orders of magnitude for the I + H2 reaction.
Chem. Phys. Lett. 319, 99-106 (2000)
Michaelis,
L.,
Menten, M.: Die Kinetik der Invertinwirkung. Biochem. Z. 49,
333-369 (1913)
Michel,
J.-B., Colin, O., Angelberger, C.: On the formulation of species
reaction rates
in the context of multi-species CFD codes using complex chemistry
tabulation
techniques. Combust Flame 157,
701-714 (2010)
Michel,
J.-B., Colin, O., Angelberger, C., Veynanteb, D.: Using the
tabulated
diffusion
flamelet model ADF-PCM to simulate a lifted methane-air jet flame.
Combust
Flame 156, 1318-1331 (2009)
Michel,
J.-B., Colin, O., Veynante, D.: Modeling ignition and chemical
structure of
partially premixed turbulent flames using tabulated chemistry.
Combust
Flame 152, 80-99 (2008)
Miki,
K.,
Prudencio, E.E., Cheung, S.H., Terejanu, G.: Using Bayesian analysis
to
quantify uncertainties in the H+O2→OH+O
reaction. Combust
Flame. 160, 861-869 (2013)
Miller,
J.A., Pilling, M.J., Troe, J.: Unravelling combustion mechanisms
through a
quantitative understanding of elementary reactions. Proc. Combust.
Inst. 30, 43-88 (2005)
Miller,
W.G., Alberty, R.A.: Kinetics of the reversible Michaelis–Menten
mechanism and
the applicability of the Steady-state Approximation. J. Am. Chem.
Soc. 80, 5146-5151 (1958)
Milner,
P.C.: The possible mechanisms of complex reactions involving
consecutive steps.
J. Electrochem. Soc. 111, 228–232
(1964)
Mirgolbabaei,
H.,
Echekki, T.: A novel principal component analysis-based
acceleration scheme
for LES–ODT: An a priori study.
Combust. Flame 160, 898–908 (2013)
Mirgolbabaei,
H.,
Echekki, T.: Nonlinear reduction of combustion composition space
with
kernel principal component analysis. Combust. Flame 161,
118–126 (2014)
Mirgolbabaei,
H.,
Echekki, T., Smaoui, N.: A nonlinear principal component analysis
approach
for turbulent combustion composition space. Int. J. Hydrogen Energy
39, 4622-4633 (2014)
Mishra,
M.K., Yetter, R.A., Reuven, Y., Rabitz, H.: On the role of transport
in
the
combustion kinetics of a steady-state premixed laminar CO+H2+O2
flame. Int. J. Chem. Kinet. 26,
437-453 (1994)
Mitsos,
A.,
Oxberry, G.M., Barton, P.I., Green, W.H.: Optimal automatic reaction
and
species elimination in kinetic mechanisms. Combust. Flame 155,
118–132 (2008)
Mittal,
G.,
Chaos, M., Sung, C.J., Dryer, F.L.: Dimethyl ether autoignition in a
rapid
compression machine: Experiments and chemical kinetic modeling. Fuel
Process.
Technol. 89, 1244-1254 (2008)
Mittal,
G.,
Sung, C.J., Fairweather, M., Tomlin, A.S., Griffiths, J.F., Hughes,
K.J.:
Significance of the HO2+CO reaction during the
combustion of CO+H2
mixtures at high pressures. Proc. Combust. Inst. 31,
419-427 (2007)
Montgomery,
C.J.,
Yang, C., Parkinson, A.R., Chen, J.-Y.: Selecting the optimum
quasi-steady-state species for reduced chemical kinetic mechanisms
using a
genetic algorithm. Combust. Flame 144,
37-52 (2006)
Mora-Ramirez,
M.A.,
Velasco, R.M.: Reduction of CB05 mechanism according to the CSP
method.
Atmos. Environ. 45, 235-243 (2011)
Moreac,
G.,
Blurock, E.S., Mauss, F.: Automatic generation of a detailed
mechanism
for the
oxidation of n-decane. Combust Sci
Technol 178, 2025–2038 (2006)
Morokoff,
W.,
Caflisch, R.: Quasi-Monte Carlo Integration. J. Comput. Phys. 122,
218-230 (1995)
Morris,
M.D.: Factorial sampling plans for preliminary computational
experiments.
Technometrics 33, 161-174 (1991)
Morris,
M.D.: Input screening: Finding the important model inputs on a
budget.
Reliab.
Eng. Syst. Safety 91, 1252-1256
(2006)
Mosbach,
S., Aldawood, A.M., Kraft, M.: Real-time evaluation of a detailed
chemistry
HCCI engine model using a tabulation technique. Combust. Sci.
Technol. 180, 1263-1277 (2008)
Mosbach,
S., Hong, J.H., Brownbridge, G.P.E., Kraft, M., Gudiyella, S.,
Brezinsky, K.:
Bayesian error propagation for a kinetic model of n-propylbenzene
oxidation in
a shock tube. Int. J. Chem. Kinet. 46,
389-404 (2014)
Moulik,
M.D., Milford, J.B.: Factors influencing ozone chemistry in subsonic
aircraft
plumes. Atmos. Environ. 33, 869-880
(1999)
Muller,
C.,
Michel, V., Scacchi, G., Côme, G.M.: THERGAS: a computer program for
the
evaluation of thermochemical data of molecules and free radicals in
the
gas
phase. Journal De Chimie Physique Et De Physico-chimie Biologique 92, 1154-1178 (1995)
Nafe,
J.,
Maas, U.: A general algorithm for improving ILDMs. Combust. Theory
Modell. 6, 697-709 (2002)
Nafe,
J.,
Maas, U.: Hierarchical generation of ILDMs of higher hydrocarbons.
Combust.
Flame 135, 17–26 (2003)
NAG:
Numerical Algorithms Group www.nag.co.uk. (2014).
Nagy,
A.L.,
Papp, D., Tóth, J.: ReactionKinetics — A Mathematica package with
applications.
Chem. Eng. Sci. 83, 12–23 (2012)
Nagy,
T.:
SEM: mechanism reduction based on simulation error minimization. http://garfield.chem.elte.hu/Combustion/sem.htm
(2009).
Nagy,
T.,
Turányi, T.: Reduction of very large reaction mechanisms using
methods
based on
simulation error minimization. Combust. Flame 156,
417–428 (2009a)
Nagy,
T.,
Turányi, T.: Relaxation of concentration perturbation in chemical
kinetic
systems. Reac. Kinet. Catal. Letters 96,
269-278 (2009b)
Nagy,
T.,
Turányi, T.: Uncertainty of Arrhenius parameters. Int.J.Chem.Kinet.
43, 359-378 (2011)
Nagy,
T.,
Turányi, T.: Determination of the uncertainty domain of the
Arrhenius
parameters needed for the investigation of combustion kinetic
models.
Reliability Engineering Syst. Safety 107,
29-34 (2012)
Naik,
C.V.,
Puduppakkam, K.V., Modak, A., Wang, C., Meeks, E.: Validated F-T
fuel
surrogate
model for simulation of jet-engine combustion. Proceedings of the
ASME
Turbo
Expo 2, 1301-1308 (2010)
Najafi-Yazdi,
A.,
Cuenot, B., Mongeau, L.: Systematic definition of progress
variables and
Intrinsically Low-Dimensional, Flamelet Generated Manifolds for
chemistry
tabulation. Combust. Flame 159,
1197-1204 (2012)
Najm,
H.,
Debusschere, B.J., Marzouk, Y.M., Widmer, S., Le Maître, O.P.:
Uncertainty
quantification in chemical systems. Int. J. Numer. Meth. Eng. 80,
789-814 (2009)
Najm,
H.N.,
Malorani, M.: Enforcing positivity in intrusive PC-UQ methods for
reactive ODE
systems. J. Comp. Phys. 270,
544-569
(2014)
Németh,
A.,
Vidóczy, T., Héberger, K., Kúti, Z., Wágner, J.: MECHGEN: Computer
aided
generation and reduction of reaction mechanisms. J. Chem. Inf.
Comput.
Sci. 42, 208-214 (2002)
Neophytou,
M.K.,
Goussis, D.A., van Loon, M., Mastorakos, E.: Reduced chemical
mechanisms
for atmospheric pollution using Computational Singular Perturbation
analysis.
Atm. Environ. 38, 3661-3673 (2004)
Nicolini,
P.,
Frezzato, D.: Features in chemical kinetics. I. Signatures of
self-emerging
dimensional reduction from a general format of the evolution law. J.
Chem.
Phys. 138, 234101 (2013a)
Nicolini,
P.,
Frezzato, D.: Features in chemical kinetics. II. A self-emerging
definition
of slow manifolds. J. Chem. Phys. 138,
234102 (2013b)
Niederreiter,
H.:
Low-discrepancy and low-dispersion sequences. J.
Num. Theor. 30, 51-70
(1988)
Niemann,
H., Schmidt, D., Maas, U.: An efficient storage scheme for reduced
chemical
kinetics based on orthogonal polynomials. J. Eng. Math. 31,
131-142 (1997)
Niemeyer,
K.E.,
Sung, C.J., Raju, M.P.: Skeletal mechanism generation for
surrogate fuels
using directed relation graph with error propagation and sensitivity
analysis.
Combust. Flame 157, 1760-1770 (2010)
Niemeyer,
K.E.,
Sung, C.J.: On the importance of graph search algorithms for
DRGEP-based mechanism reduction methods, Combust. Flame 158,
1439–1443 (2011)
Niemeyer,
K.E.,
Sung, C.J.: Mechanism reduction for multicomponent surrogates: A
case study using toluene reference fuels. Combust. Flame 161,
2752–2764 (2014)
Nikolaev,
E.V.,
Atlas, J.C., Shuler, M.L.: Sensitivity and control analysis of
periodically forced reaction networks using the Green’s function
method. J.
Theor. Biol. 247, 442-461 (2007)
Nilsson,
D., Løvås, T., Amneus, P., Mauss, F.: Reduction of complex fuel
chemistry for simulation of combustion in an HCCI engine.
VDI-Berichte 1492, 511-516 (1999)
Niu,
Y.-S.,
Vervisch, L., Tao, P.D.: An optimization-based approach to detailed
chemistry
tabulation: Automated progress variable definition. Combust. Flame 160, 776-785 (2013)
Novák,
B.,
Pataki, Z., A, C., Tyson, J.J.: Mathematical model of the cell
division
cycle
of fission yeast. Chaos 11, 277-286
(2001)
Ó
Conaire,
M., Curran, H.J., Simmie, J.M., Pitz, W.J., Westbrook, C.K.: A
comprehensive
modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 36,
603-622 (2004)
Oakley,
J.,
O'Hagan, A.: Bayesian inference for the uncertainty distribution of
computer
model outputs. Biometrika 89,
769-784 (2002)
Oakley,
J.E., O'Hagan, A.: Probabilistic sensitivity analysis of complex
models: A
Bayesian approach. Journal of the Royal Statistical Society. Series
B
(Statistical Methodology) 66,
751-769 (2004)
Ocone,
R.,
Astarita, G.: Lumping nonlinear kinetics in porous catalysts:
Diffusion-reaction lumping strategy. AIChE J. 39,
288-293 (1993)
Ogren,
P.J., Hessler, J.P.: Sensitivity and correlation analysis of the
physical
parameters in absorption, four-wave mixing, and Schlieren
experiments.
Int. J.
Chem. Kinet. 27, 719–738 (1995)
Okino,
M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of
chemical
reaction systems. Chem. Rev. 98,
391–408 (1998)
Olm, C.,
Zsély, I.G., Pálvölgyi, R., Varga, T., Nagy, T., Curran, H.J.,
Turányi,
T.:
Comparison of the performance of several recent hydrogen combustion
mechanisms.
Combust. Flame 161,
2219-2234 (2014)
Oluwole,
O.O., Bhattacharjee, B., Tolsma, J.E., Barton, P.I., H., G.W.:
Rigorous
valid
ranges for optimally reduced kinetic models. Combust. Flame 146,
348-365 (2006)
Oluwole,
O.O., Shi, Y., Wong, H.W., Green, W.H.: An Exact-Steady-state
Adaptive
Chemistry method for combustion simulations: Combining the
efficiency
of
reduced models and the accuracy of the full model. Combust. Flame 159, 2352–2362 (2012)
Orth,
J.D.,
Thiele, I., Palsson, B.O.: What is flux balance analysis? Nat
Biotech 28, 245-248 (2010)
Paczko,
G.,
Lefdal, P.M., Peters, N.: Reduced reaction schemes for methane,
methanol and
propane flames. Proc. Combust. Inst. 21,
739–748 (1986)
Panesi,
M.,
Miki, K., Prudhomme, S., Brandis, A.: On the assessment of a
Bayesian
validation methodology for data reduction models relevant to shock
tube
experiments. Comput Methods Appl Mech. Eng. 213–216,
383-398 (2012)
Pantazis,
Y.,
Katsoulakis, M.A., Vlachos, D.G.: Parametric sensitivity analysis
for
biochemical reaction networks based on pathwise information theory.
BMC
Bioinformatics 14, 311 (2013)
Pantea,
C.,
Gupta, A., Rawlings, J.B., Craciun, G.: The QSSA in chemical
kinetics:
As
taught and as practiced. In: Jonoska, N., Saito, M. (eds.) Discrete
and
topological models in molecular biology. pp. 419-442. Springer,
Berlin,
Heidelberg (2014)
Papin,
J.A., Stelling, J., Price, N.D., Klamt, S., Schuster, S., Palsson,
B.O.:
Comparison of network-based pathway analysis methods. Trends in
Biotechnology 22, 400-405 (2004)
Parente,
A., Sutherland, J.C., Dally, B.B., Tognotti, L., Smith, P.J.:
Investigation of
the MILD combustion regime via Principal Component Analysis. Proc.
Combust.
Inst. 33, 3333–3341 (2011)
Parente,
A., Sutherland, J.C., Tognotti, L., Smith, P.J.: Identification of
low-dimensional manifolds in turbulent flames. Proc. Combust. Inst.
32, 1579–1586 (2009)
Peng,
Z., Dobrijevic,
M., Hébrard, E., Carrasco, N., Pernot, P.: Photochemical modeling of
Titan
atmosphere at the “10 percent uncertainty horizon”. Faraday
Discussions
147, 137-153 (2010)
Pepiot-Desjardins,
P.,
Pitsch, H.: An efficient error-propagation-based reduction method
for large
chemical kinetic mechanisms. Combust. Flame 154,
67-81 (2008)
Pepiot,
P.,
Pitsch, H.: Systematic reduction of large chemical mechanisms. In:
4th
Joint
Meeting of the U.S. Sections of the Combustion Institute,
Philadelphia
2005
Pera,
C.,
Colin, O., Jay, S.: Development of a FPI detailed chemistry
tabulation
methodology for internal combustion engines. Oil & Gas Science
and
Technology Rev IFP 64:243-258 (2009)
Perger,
T.,
Kovács, T., Turányi, T., Treviño, C.: Determination of adsorption
and
desorption parameters from ignition temperature measurements in
catalytic
combustion systems. J. Phys. Chem. B 107,
2262-2274 (2003)
Perini,
F.,
Brakora, L.J., Reitz, D.R., Cantore, G.: Development of reduced and
optimized
reaction mechanisms based on genetic algorithms and element flux
analysis.
Combust. Flame 159, 103–119 (2012)
Perumal,
T.M., Gunawan, R.: Understanding dynamics using sensitivity
analysis:
caveat
and solution. BMC Systems Biol. 5,
41 (2011)
Perumal,
T.M., Gunawan, R.: pathPSA: A dynamical pathway-based parametric
sensitivity
analysis. Ind. Eng. Chem. Res. 53,
9149–9157 (2014)
Perumal,
T.M., Krishna, S.M., Tallam, S.S., Gunawan, R.: Reduction of kinetic
models
using dynamic sensitivities. Comput. Chem. Eng. 56,
37– 45 (2013)
Perumal,
T.M.,
Wu, Y., Gunawan, R.: Dynamical analysis of cellular networks based
on
the
Green’s function matrix. J. Theor. Biol. 261,
248–259 (2009)
Peters,
N.:
Numerical and asymptotic analysis of systematically reduced reaction
schemes
for hydrocarbon flames. Lecture Notes in Physics 241,
90-109 (1985)
Peters,
N.,
Kee, R.J.: The computation of stretched laminar methane-air
diffusion
flames
using a reduced four-step mechanism. Combust. Flame 68,
17–29 (1987)
Peters,
N.,
Paczko, G., Seiser, R., Seshadri, K.: Temperature cross-over and
non-thermal
runaway at two-stage ignition of n-heptane.
Combust. Flame 128, 38-59 (2002)
Peters,
N.,
Rogg, B. (eds.): Reduced kinetic mechanisms for applications in
combustion
systems. Springer, Berlin (1993)
Peters,
N.,
Williams, F.A.: The asymptotic structure of stoichiometric
methane-air
flames.
Combust. Flame 68, 185-207 (1987)
Petzold,
L., Zhu, W.: Model reduction for chemical kinetics: An optimization
approach.
AIChE Journal 45, 869-886 (1999)
Pierucci,
S.,
Ranzi, E.: A review of features in current automatic generation
software
for hydrocarbon oxidation mechanisms. Comp. Chem. Eng. 32,
805-826 (2008)
Pilling,
M.J.: From elementary reactions to evaluated chemical mechanisms for
combustion
models. Proc. Combust. Inst. 32,
27-44 (2009)
Pilling,
M.J., Seakins, P.W.: Reaction Kinetics. Oxford University Press,
Oxford
(1995)
Plessis,
S., Carrasco, N., Pernot, P.: Knowledge-based probabilistic
representations of
branching ratios in chemical networks: The case of dissociative
recombinations.
J. Chem. Phys. 133, 134110 (2010)
Polifke,
W., Geng, W., Döbbeling, K.: Optimization of rate coefficients for
simplified
reaction mechanisms with genetic algorithms. Combust. Flame 113,
119-135 (1998)
Pontryagin,
L.S.:
Ordinary differential equations. Elsevier, Amsterdam (1962)
Poon,
H.,
Ng, H., Gan, S., Pang, K., Schramm, J.: Evaluation and development
of
chemical
kinetic mechanism reduction scheme for biodiesel and Diesel fuel
surrogates.
SAE Int. J. Fuels Lubr. 6, 729-744
(2013)
Pope,
S.B.:
Computationally efficient implementation of combustion chemistry
using in situ adaptive tabulation. Combust.
Theory Modell. 1, 41-63 (1997)
Pope,
S.B.:
Small
scales,
many species and the manifold challenges of
turbulent combustion. Proc.
Combust.Inst. 34, 1–31 (2013)
Pope,
S.B.,
Ren, Z.: Efficient implementation of chemistry in computational
combustion.
Flow Turbulence Combust. 82,
437–453
(2009)
PottersWheel:
Multi-experiment
fitting. In: http://www.potterswheel.de/.
Prager,
J.,
Najm, H.N., Sargsyan, K., Safta, C., Pitz, W.J.: Uncertainty
quantification of
reaction mechanisms accounting for correlations introduced by rate
rules and
fitted Arrhenius parameters. Combust. Flame 160,
1583–1593 (2013)
Prager,
J.,
Najm, H.N., Valorani, M., Goussis, D.A.: Skeletal mechanism
generation
with CSP
and validation for premixed n-heptane flames. Proc. Combust. Inst. 32, 509-517 (2009)
Prasad,
G.N., Agnew, J.B., Sridhar, T.: Continuous reaction mixture for coal
liquefaction. Theory. AIChE J. 32,
1277-1287 (1986)
Prasolov,
V.V.:
Problems and theorems in linear algebra, vol. 134. Translations
of
Mathematical Monographs. American Mathematical Society, (1994)
PrIMe:
Process Informatics Model. In: http://www.primekinetics.org/.
Prüfert,
U., Hunger, F., Hasse, C.: The analysis of chemical time scales in a
partial
oxidation flame. Combust. Flame 161,
416–426 (2014)
Puszyński,
K.,
Lachor, P., Kardyńska, M., Śmieja, J.: Sensitivity analysis of
deterministic
signaling pathways models. Bull. Pol. Ac.: Tech. 60,
471-479 (2012)
Rabitz,
H.,
Aliş, O.F.: Managing the tyranny of parameters in mathematical
modelling of
physical systems. In: Saltelli, A., Chan, K., Scott, E. (eds.)
Sensitivity
Analysis. pp. 199-224. John Wiley & Sons, (2000)
Rabitz,
H.,
Aliş, Ö.F., Shorter, J., Shim, K.: Efficient input-output model
representations. Comput. Phys. Commun. 117,
11-20 (1999)
Rabitz,
H.,
Kramer, M., Dacol, D.: Sensitivity analysis in chemical-kinetics.
Ann.
Rev.
Phys. Chem. 34, 419-461 (1983)
Rabitz,
H.,
Smooke, M.D.: Scaling relations and self-similarity conditions in
strongly
coupled dynamical systems. J. Phys. Chem. 92,
1110-1119 (1988)
Radulescu,
O.,
Gorban, A.N., Zinovyev, A., Lilienbaum, A.: Robust simplifications
of
multiscale biochemical networks. BMC Systems Biol. 2,
86 (2008)
Raj, G.:
Chemical Kinetics. Krishna Prakashan Media P Ltd, Meerut (2010)
Ramaroson,
R.,
Pirre, M., Cariolle, D.: A box model for online computations of
diurnal-variations in a 1-d model - potential for application in
multidimensional cases. Ann. Geophys.-Atmos. Hydrospheres Space Sci.
10, 416-428 (1992)
Ramirez,
H.P., Hadj-Ali, K., Dievart, P., Dayma, G., Togbe, C., Moreac, G.,
Dagaut, P.:
Oxidation of commercial and surrogate bio-Diesel fuels (B30) in a
jet-stirred
reactor at elevated pressure: Experimental and modeling kinetic
study.
Proc.
Combust. Inst. 33, 375-382 (2011)
Rangarajan,
S.,
Bhan, A., Daoutidis, P.: Rule-based generation of thermochemical
routes to
biomass conversion. Ind. Eng. Chem. Res. 49,
10459-10470 (2010)
Ranzi,
E.,
Dente, M., Goldaniga, A., Bozzano, G., Faravelli, T.: Lumping
procedures in
detailed kinetic modeling of gasification, pyrolysis, partial
oxidation
and
combustion of hydrocarbon mixtures. Prog. Energy Combust. Sci. 27,
99-139 (2001)
Ranzi,
E.,
Faravelli, T., Gaffuri, P., Sogaro, A.: Low-temperature combustion:
Automatic
generation of primary oxidation reactions and lumping procedures.
Combust.
Flame 102, 179-192 (1995)
Ranzi,
E.,
Faravelli, T., Gaffuri, P., Sogaro, A., D'Anna, A., Ciajolo, A.: A
wide-range
modeling study of iso-octane
oxidation. Combust. Flame 108,
24-42
(1997)
Ranzi, E.,
Frassoldati, A., Granata, S., Faravelli, T.: Wide-range kinetic
modeling study
of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes.
Ind. Eng. Chem. Res. 44, 5170-5183 (2004)
Ranzi,
E.,
Frassoldati, A., Granata, S., Faravelli, T.: Wide-range kinetic
modeling study
of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes.
Ind. Eng. Chem. Res. 44, 5170-5183 (2005)
Rao,
C.V.,
Frenklach, M., Arkin, A.P.: An allosteric model for transmembrane
signaling in
bacterial chemotaxis. J. Mol. Biol. 343,
291–303 (2004)
Rappoport,
D.,
Galvin, C.J., Zubarev, D.Y., Aspuru-Guzik, A.n.: Complex chemical
reaction
networks from heuristics-aided quantum chemistry. J. Chem. Theory
Comput. 10, 897–907 (2014)
Ratto,
M.,
Pagano, A., Young, P.: State dependent parameter metamodelling and
sensitivity
analysis. Comput. Phys. Commun. 177,
863-876 (2007)
Ratto,
M.,
Pagano, A., Young, P.C.: Non-parametric estimation of conditional
moments for
sensitivity analysis. Reliab. Eng. Syst. Saf. 94,
237-243 (2009)
Ratto,
M.,
Paladino, O.: Analysis of controlled CSTR models with fluctuating
parameters
and uncertain parameters. Chem. Eng. J. 79,
13-21 (2000)
Reaction-Design:
Chemkin-Pro.
In. http://www.reactiondesign.com/products/chemkin/chemkin-pro/,
(2014)
Reaction-Engineering-International:
CARM
(Computer Assisted Reduction Method). In. http://www.reaction-eng.com/modeling_tools/carm.html,
(2014)
REACTION\ANALYSIS:
Software
system for the manipulation of chemical information through
statistics
and machine learning. In: http://esblurock.info.
ReactionDesign:
www.reactiondesign.com.
Reagan,
M.T., Najm, H.N., Debusschere, B.J., Le Maitre, O.P., Knio, O.M.,
Ghanem, R.G.:
Spectral stochastic uncertainty quantification in chemical systems.
Combust.
Theor. Model. 8, 607-632 (2004)
Reagan,
M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: Uncertainty
quantification
in
reacting-flow simulations through non-intrusive spectral projection.
Combust.
Flame 132(3), 545-555 (2003)
Reagan,
M.T., Najm, H.N., Pebay, P.P., Knio, O.M., Ghanem, R.G.: Quantifying
uncertainty in chemical systems modeling. Int. J. Chem. Kinet. 37,
368-382 (2005)
Ren, Z.,
Liu, Y., Lu, T., Lu, L., Oluwole, O.O., Goldin, G.M.: The use of
dynamic
adaptive chemistry and tabulation in reactive flow simulations.
Combust. Flame 161, 127–137 (2014a)
Ren, Z.,
Pope, S.B.: Species reconstruction using pre-image curves. Proc.
Combust. Inst.
30, 1293-1300 (2005)
Ren, Z.,
Pope, S.B.: The geometry of reaction trajectories and attracting
manifolds in
composition space. Combust. Theory Modell. 10,
361-388 (2006a)
Ren, Z.,
Pope, S.B.: The use of slow manifolds in reactive flows. Combust.
Flame
147, 243-261 (2006b)
Ren, Z.,
Pope, S.B.: Reduced description of complex dynamics in reactive
systems. J.
Phys. Chem. A 111, 8464-8474 (2007a)
Ren, Z.,
Pope, S.B.: Transport-chemistry coupling in the reduced description
of
reactive
flows. Combust. Theory Modell. 11,
715-739 (2007b)
Ren, Z.,
Pope, S.B., Vladimirsky, A., Guckenheimer, J.M.: The invariant
constrained
equilibrium edge preimage curve method for the dimension reduction
of
chemical
kinetics. J. Chem. Phys., 124,
114111 (2006)
Ren, Z.,
Pope, S.B., Vladimirsky, A., Guckenheimer, J.M., John, M.:
Application
of the
ICE-PIC method for the dimension reduction of chemical kinetics
coupled
with
transport. Proc. Comb. Inst. 31,
473–481 (2007)
Ren, Z.,
Xu, C., Lu, T., Singer, M.A.: Dynamic adaptive chemistry with
operator
splitting schemes for reactive flow simulations. J. Comput. Phys. 263, 19–36 (2014b)
Ren,
Z.Y.,
Pope, S.B.: Second-order splitting schemes for a class of reactive
systems. J.
Comput. Phys. 227, 8165-8176 (2008)
Reonhardt,
V.,
Winckler, M., Lebiedz, D.: Approximation of slow attracting
manifolds in
chemical kinetics by trajectory-based optimization approaches. J.
Phys.
Chem. A
112, 1712–1718 (2008)
Reuven,
Y.,
Smooke, M.D., Rabitz, H.: Sensitivity analysis of boundary value
problems:
Application to nonlinear reaction-diffusion systems. J. Comput.
Phys. 64, 27-55 (1986)
Revel,
J.,
Boettner, J.C., Cathonnet, M., Bachman, J.S.: Derivation of a global
chemical
kinetic mechanism for methane ignition and combustion. J. Chim.
Phys. 91, 365-382 (1994)
Rhodes,
C.,
Morari, M., Wiggins, S.: Identification of low order manifolds:
Validating the
algorithm of Maas and Pope. Chaos 9,
108-123 (1999)
Rice,
O.K.:
Conditions for a steady state in chemical kinetics. J. Phys. Chem. 64, 1851-1857 (1960)
Riedel,
U.,
Schmidt, D., Maas, U., Warnatz, J.: Laminar flame calculations based
on
automatically simplified chemical kinetics. In: Proc. Eutherm.
Seminar
#35,
Compact Fired Heating Systems, Leuven, Belgium 1994
Rigopoulos,
S.:
The rate-controlled constrained equilibrium (RCCE) method for
reducing
chemical kinetics in systems with time-scale separation. Int. J.
Multiscale
Comput. Eng. 5, 11-18 (2007)
Rigopoulos,
S.,
Løvås, T.: A LOI-RCCE methodology for reducing chemical
kinetics, with application to laminar premixed flames. Proc.
Combust.
Inst. 32, 569-576 (2009)
Ritter,
E.R., Bozzelli, J.W.: THERM: Thermodynamic property estimation for
gas
phase
radicals and molecules. Int. J. Chem. Kinet. 23,
767-778 (1991)
Rodiguin,
N.M.,
Rodiguina, E.N.: Consecutive chemical reactions. Mathematical
analysis
and development. .
D. van Nostrand,
Princeton (1964)
Ross,
J.:
Determination of complex reaction mechanisms. Analysis of chemical,
biological
and genetic networks. J. Phys. Chem. A 112,
2134-2143 (2008)
Ross,
J.,
Vlad, M.O.: Nonlinear kinetics and new approaches to complex
reaction
mechanisms. Ann. Rev. Phys. Chem. 50,
51-78 (1999)
Roussel,
M.R., Fraser, S.J.: Geometry of the steady-state approximation:
perturbation
and accelerated convergence methods. J. Chem. Phys. 93,
1072–1081 (1990)
Roussel,
M.R., Fraser, S.J.: Accurate steady-state approximation:
Implications
for
kinetics experiments and mechanism. J. Chem. Phys. 94,
7106-7113 (1991a)
Roussel,
M.R., Fraser, S.J.: On the geometry of transient relaxation. J.
Chem.
Phys. 94, 7106-7113 (1991b)
Roussel,
M.R., Fraser, S.J.: Invariant manifold methods for metabolic model
reduction.
Chaos 11, 196-206 (2001)
Roussel,
M.R., Tang, T.: The functional equation truncation method for
approximating
slow invariant manifolds: A rapid method for computing intrinsic
low-dimensional manifolds. J. Chem. Phys. 125,
214103 (2006)
Ruscic,
B.:
Active Thermochemical Tables (ATcT) http://atct.anl.gov/.
Ruscic,
B.:
Active thermochemical tables: Water and water dimer. J. Phys. Chem.
A 117, 11940-11953 (2013)
Ruscic,
B.:
Uncertainty quantification in thermochemistry, benchmarking
electronic
structure computations, and Active Thermochemical Tables. Int. J.
Quantum
Chem. 114,
1097-1101 (2014)
Ruscic,
B.,
Boggs, J.E., Burcat, A., Császár, A.G., Demaison, J., Janoschek, R.,
Martin,
J.M.L., Morton, M.L., Rossi, M.J., Stanton, J.F., Szalay, P.G.,
Westmoreland,
P.R., Zabel, F., Bérces, T.: IUPAC Critical Evaluation of
Thermochemical
Properties of Selected Radicals. Part I. J. Phys. Chem. Ref. Data 34, 573-656 (2003)
Ruscic,
B.,
Feller, D., Peterson, K.A.: Active thermochemical tables:
Dissociation
energies
of several homonuclear first-row diatomics and related
thermochemical
values.
Theor. Chem. Acc. 133,
1415/1411-1412 (2014)
Ruscic,
B.,
Pinzon, R.E., Morton, M.L., Srinivasan, N.K., Su, M.C., Sutherland,
J.W.,
Michael, J.V.: Active Thermochemical Tables: Accurate enthalpy of
formation of
hydroperoxyl radical, HO2. J. Phys. Chem. A 110,
6592-6601 (2006)
Ruscic,
B.,
Pinzon, R.E., Morton, M.L., von Laszevski, G., Bittner, S.J.,
Nijsure,
S.G.,
Amin, K.A., Minkoff, M., Wagner, A.F.: Introduction to Active
Thermochemical
Tables: Several "Key" Enthalpies of Formation Revisited. J. Phys.
Chem. A 108, 9979-9997 (2004)
Ruscic,
B.,
Pinzon, R.E., von Laszewski, G., Kodeboyina, D., Burcat, A., Leahy,
D.,
Montoya, D., Wagner, A.F.: Active Thermochemical Tables:
Thermochemistry for
the 21st Century. J. Phys. Conf. Ser. 16,
561-570 (2005)
Russi,
T.,
Packard, A., Feeley, R., Frenklach, M.: Sensitivity analysis of
uncertainty in
model prediction. J. Phys. Chem. A 112,
2579-2588 (2008)
Russi,
T.,
Packard, A., Frenklach, M.: Uncertainty quantification: Making
predictions of
complex reaction systems reliable. Chem. Phys. Lett. 499,
1-8 (2010)
Rzhetsky,
A.,
Iossifov, I., Koike, T., Krauthammer, M., Kra, P., Morris, M., Yu,
H.,
Duboué, P.A., Weng, W., Wilbur, W.J., Hatzivassiloglou, V.,
Friedman,
C.:
GeneWays: a system for extracting, analyzing, visualizing, and
integrating
molecular pathway data. J. Biomed. Inf. 37,
43-53 (2004)
Saltelli,
A.:
Making best use of model evaluations to compute sensitivity
indices.
Comput. Phys. Commun. 145, 280-297
(2002)
Saltelli,
A.,
Annoni, P.: How to avoid a perfunctory sensitivity analysis.
Environ.
Model. Softw. 25, 1508-1517 (2010)
Saltelli,
A.,
Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.:
Variance
based sensitivity analysis of model output. Design and estimator for
the total
sensitivity index. Comp. Phys. Commun. 181,
259–270 (2010)
Saltelli,
A.,
Bolado, R.: An alternative way to compute Fourier Amplitude
Sensitivity
Test (FAST). Comput. Stat. Data Anal. 26,
445-460 (1998)
Saltelli,
A.,
Funtowicz, S.: When all models are wrong: More stringent quality
criteria
are needed for models used at the science-policy interface. Issues
in
Science and
Technology Winter, 79-85 (2014)
Saltelli,
A.,
Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana,
M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley,
(2008)
Saltelli,
A.,
Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for
chemical
models. Chem. Reviews 105,
2811-2828
(2005)
Saltelli,
A.,
Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis
practices:
Strategies for model-based inference. Reliab. Engng Syst. Safety 91, 1109-1125 (2006)
Saltelli,
A.,
Ratto, M., Tarantola, S., Campolongo, F.: Update 1 of: Sensitivity
Analysis
for Chemical Models. Chem. Rev. 112,
PR1-PR21 (2012)
Saltelli,
A.,
Scott, M., Chen, K. (eds.): Sensitivity analysis. Wiley, Chichester
(2000)
Saltelli,
A.,
Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity analysis in
practice.
A guide to assessing scientific models. Wiley (2004)
Saltelli,
A.,
Tarantola, S., Chan, K.: A quantitative model-independent method
for global
sensitivity analysis of model output. Technometrics 41,
39 (1999)
Sander,
S.P., Abbatt, J., Barker, J.R., Burkholder, J.B., Friedl, R.R.,
Golden,
D.M.,
Huie, R.E., Kolb, C.E., Kurylo, M.J., Moortgat, G.K., Orkin, V.L.,
Wine, P.H.:
Chemical kinetics and photochemical data for use in atmospheric
studies, Evaluation
No. 17. In: JPL
Publication, vol. 10-6.
Jet Propulsion Laboratory, Pasadena, (2011)
Sandu,
A.,
Daescu, D.N., Carmichael, G.R.: Direct and adjoint sensitivity
analysis
ofchemical kinetic systems with KPP: Part I - theory and software
tools. Atm.
Environm. 37, 5083–5096 (2003)
Sandu,
A.,
Verwer, J.G., Blom, J.G., Spee, E.J., Carmichael, G.R., Potra, F.A.:
Benchmarking stiff ODE solvers for atmospheric chemistry problems
II:
Rosenbrock solvers. Atm. Environ. 31,
3459-3472 (1997a)
Sandu,
A.,
Verwer, J.G., Van Loon, M., Carmichael, G.R., Potra, F.A., Dabdub,
D.,
Seinfeld, J.H.: Benchmarking stiff ODE solvers for atmospheric
chemistry
problems I. implicit vs. explicit.
Atm. Environ. 31, 3151-3166 (1997b)
Sankaran,
R.,
Hawkes, E.R., Chen, J.H., Lu, T., Law, C.K.: Structure of a
spatially
developing turbulent lean methane–air Bunsen flame. Proc. Combust.
Inst. 31, 1291-1298 (2007)
SaSAT:
Sampling and sensitivity analyses tools. In:
http://www.nchecr.unsw.edu.au/NCHECRweb.nsf/page/BioModInfectDis.
Saunders,
S.M.,
Jenkin, M.E., Derwent, R.G., Pilling, M.J.: Protocol for the
development
of the Master Chemical Mechanism, MCM V3: tropospheric degradation
of
non-aromatic VOC. Atmospheric Chemistry and Physics 3,
161-180 (2003a)
Saunders,
S.M.,
Pascoe, S., Johnson, A.P., Pilling, M.J., Jenkin, M.E.:
Development and
preliminary test results of an expert system for the automatic
generation of
tropospheric VOC degradation mechanisms. Atm. Environ. 37,
1723-1735 (2003b)
Savage,
P.E.: Pyrolysis of a binary mixture of complex hydrocarbons -
reaction
modeling. Chem. Eng. Sci. 45,
859-873 (1990)
Saxena,
V.,
Pope, S.B.: PDF simulations of turbulent combustion incorporating
detailed
chemistry. Combust. Flame 117,
340-350 (1999)
Sayasov,
Y.S., Vasil'eva, A.B.:
Обоснование
и условия
применимости
метода
квазистационарных
концентраций
Семенова–Боденштейна.
Ж. Физ. Хим. 29, 802-810 (1955)
SBML-SAT:
SBML
based Sensitivity Analysis Tool. In:
http://sysbio.molgen.mpg.de/SBML-SAT/.
SBML:
Systems Biology Markup Language. In:
http://sbml.org/.
SBMLToolbox:
an
SBML toolbox for MATLAB users. In:
http://sbml.org/Software/SBMLToolbox.
sbtoolbox2.
http://www.sbtoolbox2.org.
SBtoolbox:
Systems
Biology Toolbox for MATLAB. In:
http://www.sbtoolbox.org/.
SBW:
Systems Biology Workbench. In: http://www.sys-bio.org.
Schaibly,
J.H.,
Shuler, K.E.: Study of the sensitivity of coupled reaction
systems to
uncertainties in rate coefficients II. Applications. J. Chem. Phys.
59, 3879-3888 (1973)
Schilling,
C.H.,
Letscher, D., Palsson, B.Ø.: Theory for the systematic definition
of metabolic pathways and their use in interpreting metabolic
function
from a
pathway-oriented perspective. J. Theor. Biol. 203,
229–248 (2000)
Schilling,
C.H.,
Schuster, S., Palsson, B.O., Heinrich, R.: Metabolic pathway
analysis:
basic concepts and scientific applications in the post-genomic era.
Biotechnol.
Prog. 15, 296–303 (1999)
Schmidt,
H., Jirstrand, M.: Systems Biology Toolbox for MATLAB: a
computational
platform
for research in systems biology. Bioinf. Appl. Note 22,
514–515 (2006)
Schuchardt,
K.,
Oluwole, O., Pitz, W., Rahn, L.A., Green, W.H., Leahy, D.,
Pancerella, C.,
Sjöberg, M., Dec, J.: Development of the RIOT web service and
information
technologies to enable mechanism reduction for HCCI simulations. J.
Phys. Conf.
Ser. 16, 107-112 (2005)
Schuchardt,
K.,
Pancerella, C., Rahn, L.A., Didier, B., Kodeboyina, D., Leahy, D.,
Myers,
J.D., Oluwole, O.O., Pitz, W., Ruscic, B., Song, J., von Laszewski,
G.,
Yang,
C.: Portal-based knowledge environment for collaborative science.
Concurrency
and Computation: Practice and Experience 19,
1703 - 1716 (2007)
Schuster,
R.,
Schuster, S.: Refined algorithm and computer program for
calculating all
nonnegative fluxes admissible in steady states of biochemical
reaction
systems
with or without some flux rates fixed. Comp. Appl. Biosci. 9,
79–85 (1993)
Schuster,
S.,
Danekar, T., Fell, D.A.: Detection of elementary flux modes in
biochemical
networks: A promising tool for pathway analysis and metabolic
engineering.
Trends Biotechnol. 17, 53–60 (1999)
Schuster,
S.,
Hilgetag, C.: On elementary flux modes in biochemical reaction
systems at
steady state. J. Biol. Syst. 2,
165–182 (1994)
Schuster,
S.,
Hilgetag, C., Woods, J.H., Fell, D.A.: Reaction routes in
biochemical
reaction systems: Algebraic properties, validated calculation
procedure
and
example from nucleotide metabolism. J. Math. Biol. 45,
153–181 (2002)
Schwer,
D.A., Lu, P., Green, W.H.: An adaptive chemistry approach to
modeling
complex
kinetics in reacting flows. Combust. Flame 133,
451-465 (2003a)
Schwer,
D.A., Lu, P., Green, W.H., Semiao, V.: A consistent-splitting
approach
to
computing stiff steady-state reacting flows with adaptive chemistry.
Combust.
Theory Modell. 7, 383-399 (2003b)
Scire,
J.J., Dryer, F.L., Yetter, R.A.: Comparison of global and local
sensitivity
techniques for rate constants determined using complex reaction
mechanisms.
Int. J. Chem. Kinet. 33, 784-802
(2001)
Scott,
S.K.: Chemical Chaos, vol. 24. International Series of Monographs on
Chemistry.
Clarendon Press, Oxford (1990)
Sedaghat,
A.R.,
Sherman, A., Quon, M.J.: A mathematical model of metabolic
insulin
signaling pathways. Am J Physiol Endocrinol Metab. 283,
E1084-E1101 (2002)
Segel,
L.A.: On the validity of the steady-state assumption of enzyme
kinetics. Bull.
Math. Biol. 50, 579–593 (1988)
Segel,
L.A., Slemrod, M.: The quasi-steady-state assumption: a case study
in
perturbation. SIAM Rev. 31, 446–477
(1989)
Seiler,
P.,
Frenklach, M., Packard, A., Feeley, R.: Numerical approaches for
collaborative
data processing. Optim. Eng. 7,
459-478 (2006)
Semenoff,
N.:
On the kinetics of complex reactions. J. Chem. Phys. 7,
683-699 (1939)
Semenov,
N.N.: Кинетика
сложных
гомогенных
реакции. Ж. Физ.
Хим. 17, 187-214
(1943)
Seressiotis,
A.,
Bailey, J.E.: MPS: An artificially intelligent software system for
the
analysis and synthesis of metabolic pathways. Biotechnol. Bioeng. 31, 587–602 (1988)
Seshadri,
K.,
Lu, T.F., Herbinet, O., Humer, S.B., Niemann, U., Pitz, W.J.,
Seiser, R.,
Law, C.K.: Experimental and kinetic modeling study of extinction and
ignition
of methyl decanoate in laminar non-premixed flows. Proc. Combust.
Inst.
32, 1067-1074 (2009)
Shanks,
D.:
Non-linear transformations of divergent and slowly convergent
sequences
and an
example from hydrodynamics. Phys. Review 76,
876-876 (1949)
Sheen,
D.,
Wang, H.: Combustion kinetic modeling using multispecies time
histories
in
shock-tube oxidation of heptane. Combust. Flame 158,
645-656 (2011a)
Sheen,
D.A., Rosado-Reyes, C.M., Tsang, W.: Kinetics of H atom attack on
unsaturated
hydrocarbons using spectral uncertainty propagation and minimization
techniques. Proc. Combust. Inst. 34,
527-536 (2013)
Sheen,
D.A., Wang, H.: The method of uncertainty quantification and
minimization using
polynomial chaos expansions. Combust. Flame 158,
2358–2374 (2011b)
Sheen,
D.A., You, X., Wang, H., Løvås, T.: Spectral uncertainty
quantification, propagation and optimization of a detailed kinetic
model for
ethylene combustion. Proc. Combust. Inst. 32,
535-542 (2009)
Sheen, D.A., Manion, J.A.:
Kinetics of the reactions of H and CH3 radicals with n-butane:
An
experimental design study using reaction network analysis J. Phys.
Chem. A, 118,
4929-4941 (2014)
Shenvi,
N.,
Geremia, J., Rabitz, H.: Efficient chemical kinetic modeling through
neural
network maps J. Chem. Phys. 120,
9942-9951 (2004)
Shi, Y.,
Ge, H.W., Brakora, J.L., Reitz, R.D.: Automatic chemistry mechanism
reduction
of hydrocarbon fuels for HCCI engines based on DRGEP and PCA methods
with error
control. Energy Fuels 24, 1646-1654
(2010a)
Shi, Y.,
Liang, L., Ge, H.W., Reitz, R.D.: Acceleration of the chemistry
solver
for
modeling DI engine combustion using dynamic adaptive chemistry (DAC)
schemes.
Combust. Theory Model. 14, 69-89
(2010b)
Shorter,
J.A., Ip, P.C., Rabitz, H.A.: An efficient chemical kinetics solver
using high
dimensional model representation. J. Phys. Chem. A 103,
7192-7198 (1999)
Sikalo,
N.,
Hasemann, O., Schulz, C., Kempf, A., Wlokas, I.: A genetic
algorithm-based
method for the automatic reduction of reaction mechanisms. Int J
Chem.
Kinet. 46, 41–59 (2014)
SimBiology:
Model,
simulate, and analyze biological systems. In:
http://www.mathworks.com/products/simbiology/.
Simlab:
Software package for uncertainty and sensitivity analysis. Joint
Research
Centre of the European Commission. http://simlab.jrc.ec.europa.eu
(2011).
Singer,
M.A., Pope, S.B.: Exploiting ISAT to solve the reaction-diffusion
equation.
Combust Theory Model 8, 361–383
(2004)
Singer,
M.A., Pope, S.B., Najm, H.N.: Operator-splitting with ISAT to model
reacting
flow with detailed chemistry. Combust. Theory Model. 10,
199-217 (2006)
Singh,
S.,
Powers, J.M., Paolucci, S.: On slow manifolds of chemically reactive
systems.
J. Chem. Phys. 117, 1482-1496 (2002)
Skodje,
R.T.,
Davis, M.J.: Geometrical simplification of complex kinetic systems.
J.
Phys.
Chem. A 105, 10356-10365 (2001)
Skodje,
R.T., Tomlin, A.S., Klippenstein, S.J., Harding, L.B., Davis, M.J.:
Theoretical
validation of chemical kinetic mechanisms: Combustion of methanol.
J.
Phys.
Chem. A 114, 8286-8301 (2010)
Smallbone,
A.J.,
Bhave, A., Kraft, M., A, D., McDavid, R.: Moving toward
establishing more
robust and systematic model development for IC engines using process
informatics. SAE Paper, 01-0572 (2010)
Smooke,
M.D., Rabitz, H., Reuven, Y., Dryer, F.L.: Application of
sensitivity
analysis
to premixed hydrogen-air flames. Combust. Sci. Technol. 59,
295-319 (1988)
Snow,
R.M.:
A chemical kinetics computer program for homogeneous and
free-radical
systems
of reactions. J. Phys. Chem. 70,
2780-2786 (1966)
Sobol',
I.M.: Sensitivity estimates for nonlinear mathematical models. Mat.
Model 2, 112-118 (1990)
Sobol',
I.M.: Sensitivity analysis for non-linear mathematical models. Math.
Model.
Comp. Exp. 1, 407-414 (1995)
Sobol',
I.M., Kucherenko, S.S.: On global sensitivity analysis of
quasi-Monte
Carlo
algorithms. Monte Carlo Meth. Appl. 11,
83-92 (2005)
Sobol,
I.M.: Global sensitivity indices for nonlinear mathematical models
and
their
Monte Carlo estimates. Math. Comput. Sim. 55,
271-280 (2001)
Sobol,
I.M., Kucherenko, S.: Derivative based global sensitivity measures
and
their
link with global sensitivity indices. Math. Comput. Simul. 79,
3009-3017 (2009)
Sobol’,
I.M.: On the distribution of points in a cube and the approximate
evaluation of
integrals. USSR Comput. Math. Math. Phys. 7,
86-112 (1967)
Soyhan,
H.,
Mauss, F., Sorusbay, C.: Chemical kinetic modeling of combustion in
internal
combustion engines using reduced chemistry. Combust. Sci. Tech. 174, 73–91 (2002)
Sportisse,
B.:
An analysis of operator splitting techniques in the stiff case. J.
Comput.
Phys. 161, 140-168 (2000)
Sportisse,
B.,
Djouad, R.: Reduction of chemical kinetics in air pollution
modelling. J.
Comp. Phys. 164, 354-376 (2000)
Sportisse,
B.,
Djouad, R.: Use of proper Orthogonal Decompositions for the
reduction of
atmospheric chemistry. J. Geophys. Res. - Atmos. 112,
D06303 (2007)
Stagni,
A.,
Cuoci, A., Frassoldati, A., Faravelli, T., Ranzi, E.: Lumping and
reduction of
detailed kinetic schemes: an effective coupling. Ind. Eng. Chem.
Res. 53, 9004–9016 (2014)
Stanford,
N.J.,
Lubitz, T., Smallbone, K., Klipp, E., Mendes, P., Liebermeister,
W.:
Systematic construction of kinetic models from genome-scale
metabolic
networks.
PLoS ONE 8 (2013)
Stelling,
J.,
Gilles, E.D., Doyle III, F.J.: Robustness properties of the
circadian clock
architectures. Proc Natl Acad Sci U S A 101,
13210–13125 (2004)
Stevens,
W.R., Ruscic, B., Baer, T.: The heats of formation of C6H5,
C6H5+,
and C6H5NO by
TPEPICO and active thermochemical tables analysis. J. Phys. Chem. A
114, 13134–13145 (2010)
Stewart,
P.H., Larson, C.W., Golden, D.M.: Pressure and temperature
dependence
of
reactions proceeding via a bound complex. 2. Application to 2CH3
→ C2H5 + H. Combust.
Flame 75, 25-31 (1989)
Stockmayer,
W.H.:
The steady-state approximation in polymerization kinetics. J.
Chem. Phys.
12, 143-144 (1944)
Stolarski,
R.S.,
Butler, D.M., Rundel, R.D.: Uncertainty propagation in a
stratospheric
model 2. Monte Carlo analysis of imprecisions due to reaction rates.
J.
Geophys. Res. Oceans 83, 3074–3078
(1978)
Stolarski,
R.S.,
Douglass, A.R.: Sensitivity of an atmospheric photochemistry
model to
chlorine perturbations including consideration of uncertainty
propagation. J.
Geophys. Res. Atm. 91, 7853–7864
(1986)
Storlie,
C.B., Helton, J.C.: Multiple predictor smoothing methods for
sensitivity
analysis: Description of techniques. Reliab. Eng. Syst. Safety 93,
28-54 (2008)
Strang,
G.:
On construction and comparison of difference schemes. SIAM J. Numer.
Anal. 5, 506-517 (1968)
Straube,
R., Flockerzi, D., Müller, S.C., Hauser, M.J.B.: Reduction of
chemical
reaction
networks using quasi-integrals. J. Phys. Chem. A 109,
441-450 (2005)
Ströhle,
J., Myhrvold, T.: Reduction of a detailed reaction mechanism for
hydrogen
combustion under gas turbine conditions. Combust. Flame 144,
545-557 (2006)
Sun,
W.T.,
Chen, Z., Gou, X.L., Ju, Y.G.: A path flux analysis method for the
reduction of
detailed chemical kinetic mechanisms Combust. Flame 157,
1298-1307 (2010)
Sundaram,
K.M.,
Froment, G.F.: Accuracy of pseudo-steady-state approximation for
radicals
in thermal-cracking. Int. J. Chem. Kinet. 10(11),
1189-1193 (1978)
SUNDIALS:
SUite
of Nonlinear and DIfferential/ALgebraic equation Solvers. In:
https://computation.llnl.gov/casc/sundials/.
Sung,
C.J.,
Law, C.K., Chen, J.Y.: Augmented reduced mechanisms for NO emission
in
methane
oxidation. Combust. Flame 125,
906-919 (2001)
Sunnaker,
M.,
Cedersund, G., Jirstrand, M.: A method for zooming of nonlinear
models of
biochemical systems. BMC Syst. Biol. 5
(2011)
Sunnaker,
M.,
Schmidt, H., Jirstrand, M., Cedersund, G.: Zooming of states and
parameters
using a lumping approach including back-translation. BMC Syst. Biol.
4 (2010)
Surovtsova,
I.,
Simus, N., Lorenz, T., König, A., Sahle, S., Kumme, U.: Accessible
methods
for the dynamic time-scale decomposition of biochemical systems.
Bioinformatics
25, 2816–2823 (2009)
Sutherland,
J.C.,
Parente, A.: Combustion modeling using principal component
analysis.
Proc. Combust. Inst. 32, 1563-1570
(2009)
Szabó,
Z.G.: Kinetic characterization of complex reaction systems. In:
Bamford, C.H.,
Tipper, C.F.H. (eds.) Comprehensive Chemical Kinetics, vol. 2.
Comprehensive
chemical kinetics, vol. , pp. 1-80. (1969)
Taing,
S.,
Masri, A.R., Pope, S.B.: pdf
calculations
of turbulent nonpremixed flames of H2/CO2
using reduced
chemical mechanisms. Combust. Flame 95,
133-150 (1993)
Tang,
Q.,
Pope, S.B.: Implementation of combustion chemistry by in
situ adaptive tabulation of rate-controlled constrained
equilibrium manifolds. Proc. Combust. Inst. 29,
1411-1417 (2002)
Tang,
Q.,
Pope, S.B.: A more accurate projection in the rate-controlled
constrained-equilibrium method for dimension reduction of combustion
chemistry.
Combust. Theory Model. 8, 255-279
(2004)
Tang,
Q.,
Xu, J., Pope, S.B.: Probability density function calculations of
local
extinction and no production in piloted-jet turbulent methane/air
flames.
Proceedings of the Combustion Institute 28,
133-139 (2000)
Taylor,
S.R., Doyle III, F.J., Petzold, L.R.: Oscillator model reduction
preserving the
phase response: application to the circadian clock. Biophys. J. 95, 1658-1673 (2008)
Tebes-Stevens,
C.L.,
Valocchi, A.J.: Calculation of reaction parameter sensitivity
coefficients in multicomponent subsurface transport models. Adv.
Water
Res. 23, 591-611 (2000)
Temkin,
M.I.: The kinetics of some industrial heterogeneous catalytic
reactions. Adv
Catal. 26, 173-291 (1979)
Tenua:
the
kinetics simulator for Java. In: http://bililite.com/tenua/.
Tihonov,
A.N.: Системы
дифференциальных
уравнений, содержащие
малые
параметры
при
производных.
Мат. Сборник 31, 575-586 (1952)
Tomita,
M.,
Hashimoto, K., Takahashi, K., Shimizu T, Matsuzaki Y, Miyoshi F,
Saito
K,
Tanida S, Yugi K, Venter JC, CA., H.: E-CELL: Software Environment
for
Whole
Cell Simulation. Bioinformatics 15,
72-84 (1999)
Tomlin,
A.,
Berzins, M., Ware, J., Smith, J., Pilling, M.J.: On the use of
adaptive
gridding methods for modelling chemical transport from multi-scale
sources.
Atmos. Environ. 31, 2945-2959
(1997a)
Tomlin,
A.S.: The use of global uncertainty methods for the evaluation of
combustion
mechanisms. Reliab. Eng. Syst. Safety 91,
1219-1231 (2006)
Tomlin,
A.S.: The role of sensitivity and uncertainty analysis in combustion
modelling.
Proc. Combust. Inst. 34, 159-176
(2013)
Tomlin,
A.S., Li, G.Y., Rabitz, H., Tóth, J.: A general-analysis of
approximate
nonlinear lumping in chemical-kinetics 2. Constrained lumping. J.
Chem.
Phys. 101, 1188-1201 (1994)
Tomlin,
A.S., Pilling, M.J., Turányi, T., Merkin, J.H., Brindley, J.:
Mechanism
reduction for the oscillatory oxidation of hydrogen: Sensitivity and
quasi-steady-state analyses. Combust. Flame 91,
107-130 (1992)
Tomlin,
A.S., Turányi, T.: Investigation and improvement of reaction
mechanisms
using
sensitivity analysis and optimization. In: Battin-Leclerc, F.,
Blurock,
E.,
Simmie, J. (eds.) Development of detailed chemical kinetic models
for
cleaner
combustion. pp. 411-445. Springer, Heidelberg (2013a)
Tomlin,
A.S., Turányi, T.: Mechanism reduction to skeletal form and species
lumping.
In: Battin-Leclerc, F., Blurock, E., Simmie, J. (eds.) Development
of
detailed
chemical kinetic models for cleaner combustion. pp. 447-466.
Springer,
Heidelberg (2013b)
Tomlin,
A.S., Turányi, T., Pilling, M.J.: Mathematical tools for the
construction,
investigation and reduction of combustion mechanisms. In: Pilling,
M.J.,
Hancock, G. (eds.) Low-temperature combustion and autoignition, vol.
35.
Comprehensive chemical kinetics, pp. 293-437. Elsevier, Amsterdam
(1997b)
Tomlin,
A.S., Whitehouse, L., Lowe, R., Pilling, M.J.: Low-dimensional
manifolds in
tropospheric chemical systems. Faraday Discussions 120,
125-146 (2001)
Tomlin,
A.S., Ziehn, T.: The use of global sensitivity methods for the
analysis,
evaluation and improvement of complex modelling systems. In: Gorban,
A.N.,
Roose, D. (eds.) Coping with complexity: Model reduction and data
analysis,
vol. 75. Lecture Notes in Computational Science and Engineering, pp.
9-36.
Springer, Berlin Heidelberg (2011)
Tonse,
S.R.,
Moriarty, N.W., Brown, N.J., Frenklach, M.: PRISM: Piece-wise
reusable
implementation of solution mapping. An economical strategy for
chemical
kinetics. Israel J. Chem. 39,
97–106
(1999)
Tonse,
S.R., Moriarty, N.W., Frenklach, M., Brown, N.J.: Computational
economy
improvements in PRISM. Int J Chem Kinet. 35,
438-452 (2003)
Tosatto,
L., Bennett, B.A.V., Smooke, M.D.: A transport-flux-based directed
relation
graph method for the spatially inhomogeneous instantaneous reduction
of
chemical kinetic mechanisms. Combust. Flame 158,
820–835 (2011)
Tosatto,
L., Bennett, B.A.V., Smooke, M.D.: Comparison of different DRG-based
methods
for the skeletal reduction of JP-8 surrogate mechanisms. Combust.
Flame
160, 1572-1582 (2013)
Tóth,
J.,
Érdi, P.: A formális reakciókinetika modelljei, problémái és
alkalmazásai (The
models, problems and applications of formal reaction kinetics), vol.
41. A
kémia újabb eredményei. Akadémiai Kiadó, Budapest (1978)
Toth,
J.,
Li, G.Y., Rabitz, H., Tomlin, A.S.: Effect of lumping and expanding
on
kinetic
differential equations. SIAM J. Appl. Math. 57(6),
1531-1556 (1997)
Treviño,
C.: Ignition phenomena in H2/O2
mixtures. Prog.
Astronaut. Aeronautics 131, 19-43
(1991)
Treviño,
C., Liñan, A.: Numerical and asymptotic analysis of ignition
processes.
In: Buckmaster, J., Jackson, T.L., Kumar, A. (eds.) Combustion in
high-speed
flows. pp. 477-490. Kluwer Academic Publishers, Dordrecht (1994)
Treviño,
C., Liñan, A.: Mixing layer ignition of hydrogen. Combust. Flame 103, 129-141 (1995)
Treviño,
C., Mendez, F.: Asymptotic analysis of the ignition of hydrogen by a
hot plate
in a boundary layer flow. Combust. Sci. Technol. 78,
197-216 (1991)
Treviño,
C., Mendez, F.: Reduced kinetic mechanism for methane ignition.
Proc.
Combust.
Inst. 24, 121-127 (1992)
Treviño,
C., Solorio, F.: Asymptotic analysis of high temperature ignition of
CO/H2/O2
mixtures.
Combust.
Flame 86, 285-295 (1991)
Troe,
J.:
The thermal dissociation/recombination reaction of hydrogen peroxide
H2O2(+M)=2OH(+M)
III. Analysis and representation of the temperature and pressure
dependence
over wide ranges. Combust. Flame 158,
594–601 (2011)
Tsang,
W.:
Chemical kinetic data base for propellant combustion. II. Reactions
involving
CN, NCO, and HNCO. J. Phys. Chem. Ref. Data 21,
753-791 (1992)
Tsang,
W.,
Hampson, R.F.: Chemical kinetic database for combustion chemistry 1.
Methane
and related compounds. J. Phys. Chem. Ref. Data 15,
1087-1279 (1986)
Turányi,
T.: KINAL - A program package for kinetic-analysis of
reaction-mechanisms.
Comput. Chem. 14, 253-254 (1990a)
Turányi,
T.: Reduction of large reaction mechanisms. New J. Chem. 14,
795-803 (1990b)
Turányi,
T.: Sensitivity analysis of complex kinetic systems. Tools and
applications. J.
Math. Chem. 5, 203-248 (1990c)
Turányi,
T.: Parametrization of reaction mechanisms using orthonormal
polynomials.
Comput. Chem. 18, 45-54 (1994)
Turányi,
T.: Application of repro-modelling for the reduction of combustion
mechanisms.
Proc. Combust. Inst. 25, 948-955
(1995)
Turányi,
T.: Applications of sensitivity analysis to combustion chemistry.
Reliab. Engng
Syst. Saf. 57, 41-48 (1997)
Turányi,
T., Bérces, T., Vajda, S.: Reaction rate analysis of complex kinetic
systems.
Int. J. Chem. Kinet. 21, 83-99
(1989)
Turányi,
T., Györgyi, L., Field, R.J.: Analysis and simplification of the GTF
model of
the Belousov-Zhabotinsky reaction. J. Phys. Chem. 97,
1931-1941 (1993a)
Turányi,
T., Nagy, T., Zsély, I.G., Cserháti, M., Varga, T., Szabó, B.T.,
Sedyó,
I.,
Kiss, P.T., Zempléni, A., J., C.H.: Determination of rate parameters
based on
both direct and indirect measurements. Int. J. Chem. Kinet. 44,
284-302 (2012)
Turányi,
T., Rabitz, H.: Local methods In: Saltelli, A., Chan, K., Scott,
E.M.
(eds.)
Sensitivity analysis. pp. 81-99. Wiley, Chichester (2000)
Turányi,
T., Tomlin, A.S.: Storage of chemical kinetic information. In:
Battin-Leclerc,
F., Blurock, E., Simmie, J. (eds.) Development of detailed chemical
kinetic
models for cleaner combustion. pp. 485-512. Springer, Heidelberg
(2013)
Turányi,
T., Tomlin, A.S., Pilling, M.J.: On the error of the
quasi-steady-state
approximation. J. Phys. Chem. 97,
163-172 (1993b)
Turányi,
T., Tóth, J.: Comments to an article of Frank-Kamenetskii on the
quasi-steady-state approximation. Acta Chim. Hung. - Models In
Chemistry 129(6), 903-907 (1992)
Turányi,
T., Zalotai, L., Dóbé, S., Bérces, T.: Effect of the uncertainty of
kinetic and
thermodynamic data on methane flame simulation results Phys. Chem.
Chem. Phys 4, 2568-2578 (2002)
Turco,
R.P., Whitten, R.C.: Comparison of several computational techniques
for
solving
some common aeronomic problems. J. Geophys. Res. 79,
3179-3185 (1974)
Turns,
S.R.: An introduction to combustion. Concepts and applications,
second
ed.
McGraw-Hill, Boston (2000)
Tzafriri,
A.R.,
Edelman, E.R.: The total quasi-steady-state approximation is
valid for
reversible enzyme kinetics. J. Theor. Biol. 226,
303–313 (2004)
Tzafriri,
A.R.,
Edelman, E.R.: On the validity of the quasi-steady state
approximation of
bimolecular reactions in solution. J. Theor. Biol. 233,
343-350 (2005)
Ugarte,
S.,
Gao, Y., Metghalchi, H.: Application of the maximum entropy
principle
in the
analysis of a non-equilibrium chemically reacting mixture. Int. J.
Thermodynamics 8, 43–53 (2005)
Vajda,
S.,
Rabitz, H.: Parametric sensitivity and self-similarity in thermal
explosion
theory. Chem. Engng Sci. 47,
1063-1078 (1992)
Vajda,
S.,
Rabitz, H., Yetter, R.A.: Effects of thermal coupling and diffusion
on
the
mechanism of H2 oxidation in steady premixed
laminar flames.
Combust. Flame 82, 270-297 (1990)
Vajda,
S.,
Turányi, T.: Principal component analysis for reducing the
Edelson-Field-Noyes
model of the Belousov-Zhabotinsky reaction. J. Phys. Chem. 90,
1664-1670 (1986)
Vajda,
S.,
Valkó, P., Turányi, T.: Principal component analysis of kinetic
models.
Int. J.
Chem. Kinet. 17, 55-81 (1985)
Vallabhajosyula,
R.R.,
Chickarmane, V., Sauro, H.M.: Conservation analysis of large
biochemical
networks. Bioinformatics 22,
346-353
(2006)
Valorani,
M.,
Creta, F., Donato, F., Najm, H.N., Goussis, D.A.: Skeletal
mechanism
generation and analysis for n-heptane
with CSP. Proc. Combust. Inst. 31,
483-490 (2007)
Valorani,
M.,
Creta, F., Goussis, D., Lee, J., Najm, H.: An automatic procedure
for the
simplification of chemical kinetic mechanisms based on CSP. Combust.
Flame 146, 29–51 (2006)
Valorani,
M.,
Creta, F., Goussis, D.A., Najm, H.N., Lee, J.C.: Chemical kinetics
mechanism simplification via CSP. In: Bathe, K.J. (ed.)
Computational
Fluid and
Solid Mechanics 2005a, pp. 900-904
Valorani,
M.,
Goussis, D.A.: Explicit time-scale splitting algorithm for stiff
problems:
auto-ignition of gaseous mixtures behind a steady shock. J. Comput.
Phys. 169, 44–79 (2001)
Valorani,
M.,
Goussis, D.A., Creta, F., Najm, H.N.: Higher order corrections in
the
approximation of low dimensional manifolds and the construction of
simplified
problems with the CSP method. J.Comput. Phys. 209,
754-786 (2005b)
Valorani,
M.,
Najm, H.N., Goussis, D.A.: CSP analysis of a transient flame-vortex
interaction: time scales and manifolds. Combust. Flame 134,
35-53 (2003)
Van
Delden,
H., Seppelt, R., White, R., Jakeman, A.J.: A methodology for the
design
and
development of integrated models for policy support. Environ. Model.
Softw. 26, 266-279 (2011)
Van
Geem,
K.M., Pyl, S.P., Marin, G.B., Harper, M.R., Green, W.H.: Accurate
high-temperature
reaction networks for alternative fuels: Butanol isomers. Ind. Eng.
Chem. Res. 49, 10399-10420 (2010)
Van
Geem,
K.M., Reyniers, M.-F., Marin, G.B., Song, J., Green, W.H., Matheu,
D.M.:
Automatic reaction network generation using RMG for steam cracking
of n-hexane. AIChE Journal 52,
718-730 (2006)
Van
Oijen,
J.A., Bastlaans, R.J.M., De Goey, L.P.H.: Low-dimensional manifolds
in
direct
numerical simulations of premixed turbulent flames. Proc. Combust.
Inst. 31, 1377-1384 (2007)
Van
Oijen,
J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using
Flamelet
Generated Manifolds. Comb. Sci.Tech. 161,
113-137 (2000)
Van
Oijen,
J.A., de Goey, L.P.H.: Modelling of premixed counterflow flames
using
the
flamelet-generated manifold method. Combust. Theory Modell. 6,
463-478 (2002)
Van
Oijen,
J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of complex premixed
burner
systems by using flamelet-generated manifolds. Combust. Flame 127,
2124-2134 (2001)
Varga,
L.,
Szabó, B., Zsély, I.G., Zempléni, A., Turányi, T.: Numerical
investigation of
the uncertainty of Arrhenius parameters. J. Math. Chem. 49,
1798-1809 (2011)
Varga,
T.,
Nagy, T., Olm, C., Zsély, I.G., Pálvölgyi, R., Valkó, É., Vincze,
G.,
Cserháti,
M., Curran, H.J., Turányi, T.: Optimization of a hydrogen combustion
mechanism
using both direct and indirect measurements. Proc. Combust. Inst. in press (2015)
Varga,
T.,
Zsély, I.G., Turányi, T., Bentz, T., Olzmann, M.: Kinetic analysis
of
ethyl
iodide pyrolysis based on shock tube measurements. Int. J. Chem.
Kinet.
46, 295–304 (2014)
Venkatech,
P.K.,
Chang, A.Y., Dean, A.M., Cohen, M.H., Carr, R.W.:
Parameterization of
pressure- and temperature-dependent kinetics in multiple well
reactions. AIChE
J. 43, 1331-1340 (1997)
Verhoeven,
L.M.,
Ramaekers, W.J.S., van Oijen, J.A., de Goey, L.P.H.: Modeling
non-premixed laminar co-flow flames using flamelet-generated
manifolds.
Combust. Flame 159, 230-241 (2012)
Vervisch,
P.E.,
Colin, O., Michel, J.-B., Darabiha, N.: NO Relaxation Approach
(NORA) to
predict thermal NO in combustion chambers. Combust. Flame 158,
1480-1490 (2011)
Vol'pert,
A.I.:
Дифференциальные
уравнения
на
графах. Мат.
Сборник 88, 578-588 (1972)
Vol'pert,
A.I.,
Hudjaev, S.I.: Analysis in classes of discontinuous functions and
equations of mathematical physics. Martinus Nijhoff, Dordrecht
(1985)
Volterra,
V.:
Variazioni e fluttuazioni del numero d’individui in specie animali
conviventi. Mem. Acad. Lincei Roma 2,
31-113 (1926)
von
Hohenbalken, B., Clarke, B.L., Lewis, J.E.: Least distance methods
for
the frame
of homogeneous equation systems. J. Comp. Appl. Math. 19,
231–241 (1987)
Vora,
N.,
Daoutidis, P.: Nonlinear model reduction of chemical reaction
systems.
AIChE
Journal 47, 2320–2332 (2001)
Waage,
P.,
Guldberg, C.M.: Studies concerning affinity. Forhandlinger:
Videnskabs-Selskabet i Christiana 35
(1864)
Wagner,
A.:
Robustness and evolvability in living systems. Princeton studies in
complexity.
Princeton University Press, (2013)
Wang,
H.,
Frenklach, M.: Detailed reduction of reaction mechanisms for
combustion
modeling. Combust. Flame 87,
365-370
(1991)
Wang,
H., Sheen, D.A.: Combustion kinetic model uncertainty
quantification,
propagation and minimization. Prog. Energy Combust. Sci. 47, 1–31
(2015)
Wang,
H.,
Yao, M., Reitz, R.D.: Development of a reduced primary reference
fuel
mechanism
for internal combustion engine combustion simulations. Energy Fuels
27, 7843−7853 (2013)
Wang,
H.,
You, X., Joshi, A.V.D., S G, Laskin, A., Egolfopoulos, F., Law,
C.K.:
USC Mech
Version II. High-temperature combustion reaction model of H2/CO/C1-C4
compounds.
http://ignis.usc.edu/USC_Mech_II.htm. (2007)
Wang,
L.,
Milford, J.B., Carter, W.P.L.: Reactivity estimates for aromatic
compounds.
Part 2. Uncertainty in incremental reactivities. Atmos. Environ. 34, 4349-4360 (2000a)
Wang,
L.,
Milford, J.B., Carter, W.P.L.: Reactivity estimates for aromatic
compounds.
Part I. Uncertainty in chamber-derived parameters. Atm. Environm. 34, 4337-4348 (2000b)
Wang,
L.G.,
Fox, R.O.: Application of in situ
adaptive tabulation to CFD simulation of nano-particle formation by
reactive
precipitation. Chem. Eng. Sci. 58,
4387-4401 (2003)
Wang,
Q.-D.: Skeletal mechanism generation for high-temperature combustion
of
H2/CO/C1−C4
hydrocarbons. Energy Fuels 27,
4021−4030 (2013)
Wang,
S.W.,
Balakrishnan, S., Georgopoulos, P.: Fast equivalent operational
model
of
tropospheric alkane photochemistry. AIChE Journal 51,
1297-1303 (2005)
Wang,
S.W.,
Georgopoulos, P.G., Li, G., Rabitz, H.: Computationally efficient
atmospheric
chemical kinetic modeling by means of high dimensional model
representation
(HDMR). Lect. Note Comput. Sci. 2179,
326-333 (2001)
Wang,
W.,
Rogg, B.: Premixed ethylene/air and ethane/air flames: Reduced
mechanisms based
on inner iteration. In: Peters, N., Rogg, B. (eds.) Reduced kinetic
mechanisms
for applications in combustion systems, vol. Monograph 15. Lecture
Notes in
Physics Monographs, pp. 82-107. Springer-Verlag, New York (1993)
Warnatz,
J.: Rate coefficients in the C/H/O system. In: Gardiner, W.C. (ed.)
Combustion
chemistry. pp. 197-361. Springer, New York (1984)
Warnatz,
J.: Resolution of gas phase and surface combustion chemistry into
elementary
reactions. Proc. Combust. Inst. 24,
553-579 (1992)
Warnatz,
J., Maas, U., Dibble, R.W.: Combustion. Physical and chemical
fundamentals,
modeling and simulation, experiments, pollutant formation, 4th ed.
Springer,
Berlin Heidelberg (2006)
Warth,
V.,
Battin-Leclerc, F., Fournet, R., Glaude, P.A., Côme, G.M., Scacchi,
G.:
Computer based generation of reaction mechanisms for gas-phase
oxidation.
Comput. Chem. 24, 541-560 (2000)
Watson,
L.A., Shallcross, D.E., Utembe, S.R., Jenkin, M.E.: A Common
Representative
Intermediates (CRI) mechanism for VOC degradation. Part 2: Gas phase
mechanism
reduction. Atmos. Environment 42,
7196-7204 (2008)
Weekman,
V.W., Jr.: Lumps, models, and kinetics in practice. AIChE Monogr.
Ser.
11 75, 3-29 (1979)
Wei, J.,
Kuo, J.C.W.: A lumping analysis in monomolecular reaction systems.
Ind.
Eng.
Chem.Fundam. 8, 114–123 (1969)
Westbrook,
C.K.,
Naik, C.V., Herbinet, O., Pitz, W.J., Mehl, M., Sarathy, S.M.,
Curran,
H.J.: Detailed chemical kinetic reaction mechanisms for soy and
rapeseed
biodiesel fuels. Combust. Flame 158,
742-755 (2011)
Westbrook,
C.K.,
Pitz, W.J., Curran, H.J.: Chemical kinetic modeling study of the
effects
of oxygenated hydrocarbons on soot emissions from diesel engines. J.
Phys.
Chem. A 110, 6912-6922 (2006)
Whitehouse,
L.E.,
Tomlin, A.S., Pilling, M.J.: Systematic reduction of complex
tropospheric
chemical mechanisms using sensitivity and time-scale analyses.
Atmos.
Chem.
Phys. Discuss. 4, 3721-3783 (2004a)
Whitehouse,
L.E.,
Tomlin, A.S., Pilling, M.J.: Systematic reduction of complex
tropospheric
chemical mechanisms, Part I: sensitivity and time-scale analyses.
Atmos. Chem.
Phys. 4, 2025-2056 (2004b)
Whitehouse,
L.E.,
Tomlin, A.S., Pilling, M.J.: Systematic reduction of complex
tropospheric
chemical mechanisms, Part II: Lumping using a time-scale based
approach. Atmos.
Chem. Phys. 4, 2057-2081 (2004c)
Whitten,
G.Z., Hogo, H., Killus, J.P.: The Carbon Bond Mechanism: A condensed
kinetic
mechanism for photochemical smog analysis techniques to a
photochemical
ozone
model. Env. Sci. Technol. 14,
690-700 (1980)
Wiechert,
W.:
Modeling and simulation: tools for metabolic engineering. Journal
of
Biotechnology 94, 37-63 (2002)
Wilkins,
A.K., Barton, P.I., Tidor, B.: The Per2 negative feedback loop sets
the
period
in the mammalian circadian clock mechanism. PLoS Comput. Biol. 3,
2476-2486 (2007)
Wilkinson,
S.J.,
Benson, N., Kell, D.B.: Proximate parameter tuning for
biochemical
networks with uncertain kinetic parameters. Mol. Biosyst. 4,
74-97 (2008)
WINPP/XPP:
In: http://www.math.pitt.edu/~bard/classes/wppdoc/readme.htm.
Wolfram,
S.: Mathematica Language. http://www.wolfram.com/mathematica/.
Accessed
April, 2014
Wu, Z.,
Qiao, X., Huang, Z.: A criterion based on computational singular
perturbation
for the construction of a reduced mechanism for dimethyl ether
oxidation. J.
Serb. Chem. Soc. 78, 1177–1188
(2013)
Wyss,
G.,
Jorgensen, K.: A user’s guide to LHS: Sandia’s Latin hypercube
sampling
software. In. US Department of Energy, Sandia National Laboratories,
(1998)
Xia,
A.G.,
Michelangeli, D.V., Makar, P.A.: Mechanism reduction for the
formation
of
secondary organic aerosol for integration into a 3-dimensional
regional
air
quality model: alpha-pinene oxidation system. Atmos. Chem. Phys. 9, 4341-4362 (2009)
Xia, J.,
Wishart, D.S.: MetPA: a web-based metabolomics tool for pathway
analysis and
visualization. Bioinformatics 26,
2342-2344 (2010)
Xie, N.,
Battaglia, F., Fox, R.O.: Simulations of multiphase reactive flows
in
fluidized
beds using in situ adaptive
tabulation. Combust. Theory Model. 8,
195-209 (2004)
Xu, J.,
Pope, S.B.: PDF calculations of turbulent nonpremixed flames with
local
extinction. Combust. Flame 123,
281-307 (2000)
Xu, M.,
Fan, Y., Yuan, J.: Simplification of the mechanims of NOx
formation
in a CH4/air combustion system. Int. J. Energy
Res. 23, 1267-1276 (1999)
Xuan,
Y.,
Blanquart, G.: A flamelet-based a priori analysis on the chemistry
tabulation
of polycyclic aromatic hydrocarbons in non-premixed flames. Combust
Flame 161, 1516–1525 (2014)
Yang,
B.,
Pope, S.B.: An investigation of the accuracy of manifold methods and
splitting
schemes in the computational implementation of combustion chemistry.
Combust.
Flame 112, 16-32 (1998a)
Yang,
B.,
Pope, S.B.: Treating chemistry in combustion with detailed
mechanisms -In situ adaptive tabulation in principal
directions - premixed combustion. Combust. Flame 112,
85-112 (1998b)
Yang ,
H.,
Ren, Z., Lu, T., Goldin, G.M.: Dynamic adaptive chemistry for
turbulent
flame
simulations. Combust. Theory Modelling 17,
167-183 (2013)
Yannacopoulos,
A.N.,
Tomlin, A.S., Brindley, J., Merkin, J.H., Pilling, M.J.: The use
of
algebraic sets in the approximation of inertial manifolds and
lumping
in
chemical kinetic systems. Physica D 83,
421-449 (1995)
Yannacopoulos,
A.N.,
Tomlin, A.S., Brindley, J., Merkin, J.H., Pilling, M.J.: The
error of the
quasi steady-state approximation in spatially distributed systems.
Chem. Phys.
Lett. 248, 63-70 (1996a)
Yannacopoulos,
A.N.,
Tomlin, A.S., Brindley, J., Merkin, J.H., Pilling, M.J.: Error
propagation in approximations to reaction-diffusion-advection
equations. Phys.
Lett. A 223, 82-90 (1996b)
Yarwood,
G., Rao, S., Yocke, M., Whitten, G.: Updates to the Carbon Bond
chemical
mechanism: CB05. In. Final Report to the US EPA, RT-0400675, (2005)
Yoneda,
Y.:
A computer program for the analysis, creation and estimation of
generalised
reactions: GRACE. Bulletin of the Chemical Society of Japan 52,
8-14 (1979)
Yoo,
C.S.,
Lu, T.F., Chen, J.H., Law, C.K.: Direct numerical simulations of
ignition of a
lean n-heptane/air mixture with
temperature inhomogeneities at constant volume: Parametric study.
Combust.
Flame 158, 1727–1741 (2011)
Yoo,
C.S.,
Luo, Z., Lu, T.F., Kim, H., Chen, J.H.: DNS study of the ignition of
a
lean
iso-octane/air mixture under HCCI and SACI conditions. Proc.
Combust.
Inst. 34, 2985–2993 (2012)
You,
X.Q.,
Packard, A., Frenklach, M.: Process informatics tools for predictive
modeling:
Hydrogen combustion. Int. J. Chem. Kinet. 44,
101-116 (2012)
You,
X.Q.,
Russi, T., Packard, A., Frenklach, M.: Optimization of combustion
kinetic
models on a feasible set. Proc. Combust. Inst. 33,
509-516 (2011)
Yue, H.,
Brown, M., He, F., Jia, J., Kell, D.B.: Sensitivity analysis and
robust
experimental design of a signal transduction pathway system. Int. J.
Chem.
Kinet. 40, 730-741 (2008)
Yuryev,
A.,
Mulyukov, Z., Kotelnikova, E., Maslov, S., Egorov, S., Nikitin, A.,
Daraselia,
N., Mazo, I.: Automatic pathway building in biological association
networks.
BMC Bioinformatics 7, 171 (2006)
Zádor,
J.:
Uncertainty analysis of reaction kinetic models. PhD Thesis.
(2006)
Zádor,
J.,
Taatjes, C.A., Fernandes, R.X.: Kinetics of elementary reactions in
autoignition chemistry. Prog. Energy Combust. Sci. 37,
371 (2011)
Zádor,
J.,
Turányi, T., Wirtz, K., Pilling, M.J.: Uncertainty analysis backed
investigation of chamber radical sources in the European
Photoreactor
(EUPHORE). J. Atmos. Chem. 55,
147-166 (2006a)
Zádor,
J.,
Wagner, V., Wirtz, K., Pilling, M.J.: Quantitative assessment of
uncertainties
for a model of tropospheric ethene oxidation using the European
Photoreactor
(EUPHORE). Atmos. Environ. 39,
2805-2817 (2005a)
Zádor,
J.,
Zsély, I.G., Turányi, T.: Investigation of the correlation of
sensitivity
vectors of hydrogen combustion models. Int. J. Chem. Kinet. 36,
238-252 (2004)
Zádor,
J.,
Zsély, I.G., Turányi, T.: Local and global uncertainty analysis of
complex
chemical kinetic systems. Reliab. Eng. Syst. Saf. 91,
1232-1240 (2006b)
Zádor,
J.,
Zsély, I.G., Turányi, T., Ratto, M., Tarantola, S., Saltelli, A.:
Local
and
global uncertainty analyses of a methane flame model. J. Phys. Chem.
A 109, 9795-9807 (2005b)
Zagaris,
A., Kaper, H.G., Kaper, T.J.: Analysis of the computational singular
perturbation reduction method for chemical kinetics. J. Nonlinear
Sci. 14, 59-91 (2004)
Zak,
D.E.,
Stelling, J., Doyle III, F.J.: Sensitivity analysis of oscillatory
(bio)chemical systems. Comput. Chem. Eng. 29,
663-673 (2005)
Zambon,
A.C., Chelliah, H.K.: Explicit reduced reaction models for ignition,
flame
propagation, and extinction of C2H4/CH4/H2
and air systems. Combust. Flame 150,
71-91 (2007)
Zhabotinsky,
A.M.:
Периодический
процесс
окисления
малоновой
кислоты
растворе
(исследование
кинетики
реакции
Белоусова).
Биофизика
9, 306-311 (1964)
Zhang,
H.X., Dempsey, J., W P , Goutsias, J.: Probabilistic sensitivity
analysis of
biochemical reaction systems. J. Chem. Phys. 131,
094101 (2009)
Zhang,
P.,
Law, C.K.: A fitting formula for the falloff curves of unimolecular
reactions.
Int.J.Chem. Kinet. 41, 727-734
(2009)
Zhang,
P.,
Law, C.K.: A fitting formula for the falloff curves of unimolecular
reactions,
II: Tunneling effects. Int.J.Chem. Kinet. 43,
31-42 (2011)
Zhang,
S.,
Androulakis, I.P., Ierapetritou, M.G.: A hybrid kinetic mechanism
reduction
scheme based on the on-the-fly reduction and quasi-steady-state
approximation.
Chem. Eng. Sci. 93, 150–162 (2013)
Zhang,
S.,
Broadbelt, L.J., Androulakis, I.P., Ierapetritou, M.G.: Reactive
flow
simulation based on the integration of automated mechanism
generation
and
on-the-fly reduction. Energy Fuels 28,
4801-4811 (2014)
Zhang,
Y.,
Bischof, C., Easter, R., Wu, P.: Sensitivity analysis of a
mixed-phase
chemical
mechanism using automatic differentiation. . J. Geophys. Res. 103
953-979. (1998)
Zhao,
S.,
Ovadia, J., Liu, X., Zhang, Y.-T., Nie, Q.: Operator splitting
implicit
integration factor methods for stiff reaction-diffusion-advection
systems. J.
Comput. Phys. 230, 5996–6009 (2011)
Zhao,
W.,
Chen, D., Hu, S.: Differential fraction-based kinetic model for
simulating
hydrodesulfurization process of petroleum fraction. Comput. Chem. 26, 141-148 (2002)
Zheng,
X.L., Lu, T.F., Law, C.K.: Experimental counterflow ignition
temperatures and
reaction mechanisms of 1,3-butadiene. Proc. Combust. Inst. 31,
367–375 (2007)
Zhou,
D.D.Y., Davis, M.J., Skodje, R.T.: Multitarget global sensitivity
analysis of n‑butanol combustion. J. Phys. Chem. A 117,
3569−3584 (2013a)
Zhou,
Z.J.,
Lü, Y., Wang, Z.H., Xu, Y.W., Zhou, J.H., Cen, K.F.: Systematic
method
of
applying ANN for chemical kinetics reduction in turbulent premixed
combustion
modeling. Chin. Sci. Bull. 58,
486-492 (2013b)
Zhu,
J.,
Zhang, Y.-T., Newman, S., Alber, M.: Application of discontinuous
Galerkin
methods for reaction-diffusion systems in developmental
biology. J. Sci.
Comput. 40, 391-418 (2009)
Zi, Z.:
SBML-PET-MPI: a parallel parameter estimation tool for Systems
Biology
Markup
Language based models. Bioinformatics 27,
1028–1029 (2011a)
Zi, Z.:
Sensitivity analysis approaches applied to systems biology models.
IET
Systems
Biology 5, 336-346 (2011b)
Zi, Z.,
Klipp, E.: SBML-PET: a Systems Biology Markup Language-based
parameter
estimation tool. Bioinformatics 22,
2704–2705 (2006)
Zi, Z.,
Zheng, Y., Rundell, A.E., Klipp, E.: SBML-SAT: a systems biology
markup
language (SBML) based sensitivity analysis tool. BMC Bioinf. 9,
342 (2008)
Ziehn,
T.:
Development and application of global sensitivity analysis methods
in
environmental and safety engineering. University of Leeds (2008)
Ziehn,
T.,
Dixon, N.S., Tomlin, A.S.: The effects of parametric uncertainties
in
simulations of a reactive plume using a Lagrangian stochastic model.
Atmos.
Environ. 43, 5978-5988 (2009a)
Ziehn,
T.,
Hughes, K.J., Griffiths, J.F., Porter, R., Tomlin, A.S.: A global
sensitivity
study of cyclohexane oxidation under low temperature fuel-rich
conditions using
HDMR methods. Combust. Theor. Model. 13,
589-605 (2009b)
Ziehn,
T.,
Tomlin, A.S.: Global sensitivity analysis of a 3D street canyon
model -
part I:
the development of high dimensional model representations. Atm.
Environ. 42, 1857-1873 (2008a)
Ziehn,
T.,
Tomlin, A.S.: A global sensitivity study of sulphur chemistry in a
premixed
methane flame model using HDMR. Int. J. Chem. Kinet. 40,
742-753 (2008b)
Ziehn,
T.,
Tomlin, A.S.: GUI-HDMR - A software tool for global sensitivity
analysis of
complex models. Environ. Model. Soft. 24,
775-785 (2009)
Zuniga,
M.M., Kucherenko, S., Shah, N.: Metamodelling with independent and
dependent
inputs. Computer Physics Communications 184(6),
1570-1580 (2013). doi:10.1016/j.cpc.2013.02.005
Zsély,
I.G., Nagy, T., Simmie, J.M., Curran, H.J.: Reduction of a detailed
kinetic
model for the ignition of methane/propane mixtures at gas turbine
conditions
using simulation error minimization methods. Combust. Flame 158,
1469-1479 (2011)
Zsély,
I.G., Turányi, T.: Investigation and reduction of two methane
combustion
mechanisms. Archivum Combustionis 21,
173-177 (2001)
Zsély,
I.G., Turányi, T.: The influence of thermal coupling and diffusion
on
the
importance of reactions: The case study of hydrogen-air combustion.
PCCP 5, 3622-3631 (2003)
Zsély,
I.G., Varga, T., Nagy, T., Cserháti, M., Turányi, T., Peukert, S.,
Braun-Unkhoff, M., Naumann, C., Riedel, U.: Determination of rate
parameters of
cyclohexane and 1-hexene decomposition reactions. Energy 43,
85-93 (2012)
Zsély,
I.G., Zádor, J., Turányi, T.: Similarity of sensitivity functions of
reaction
kinetic models. J. Phys. Chem. A 107,
2216-2238 (2003)
Zsély,
I.G., Zádor, J., Turányi, T.: On the similarity of the sensitivity
functions of
methane combustion models. Combust. Theory Modell. 9,
721-738 (2005a)
Zsély,
I.G., Zádor, J., Turányi, T.: Uncertainty analysis backed
development
of
combustion mechanisms. Proc. Combust. Inst. 30,
1273-1281 (2005b)
Zsély,
I.G., Zádor, J., Turányi, T.: Uncertainty analysis of NO production
during
methane combustion. Int. J. Chem. Kinet. 40,
754-768 (2008)
Typo found:
p.52
original:
Ranzi, E.,
Frassoldati, A., Granata, S., Faravelli, T.: Wide-range kinetic
modeling study
of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes.
Ind. Eng. Chem. Res. 44, 5170-5183 (2004)
corrected:
Ranzi, E.,
Frassoldati, A., Granata, S., Faravelli, T.: Wide-range kinetic
modeling study
of the pyrolysis, partial oxidation, and combustion of heavy n-alkanes.
Ind. Eng. Chem. Res. 44, 5170-5183 (2004)
p. 293
original: Bilger, R.W.: On reduced
mechanisms
corrected: Bilger, R.W., Stårner,
S.H.,
Kee, R.J.: On reduced mechanisms
p. 297
original: Gicquel,
O., Ribert, O., Darabiha, N., Veynante, D.: Tabulation of complex
chemistry based on self-similar behavior of laminar premixed flames.
Combust. Flame 146,
649–664 (2006)
corrected: Ribert, G., Gicquel, O., Darabiha,
N., Veynante, D.: Tabulation of complex chemistry based on
self-similar behavior of laminar premixed flames. Combust. Flame 146, 649–664 (2006)