

Attila G. Császár

Laboratory of Molecular Structure and Dynamics & MTA-ELTE Research Group on Complex Chemical Systems & COST Action CM1405, MOLIM: Molecules in Motion ELTE, Budapest, Hungary

DOPI

COST Training School on the Analysis of Combustion Systems Budapest, July 4-7, 2016

DEWE

a joint reaction kinetics, spectroscopy, and thermochemistry information system

http://respecth.hu

Reaction kinetics

- Respecth Kinetics Data Format
- Database of combustion experiments
- Collection of Chemkin-format mechanisms
- Programs for the analysis of reaction mechanisms

Spectroscopy

Experimental databases

The experimentally measured, assigned transitions validated by MARVEL: nine major water isotopologues, H_3^+ , H_2D^+ , D_2H^+ , NH_3 , ketene, C_2

MARVEL databases

MARVEL energy levels with uncertainties

First-principles databases

BT2 line list of $H_2^{16}O$, VTT line list of HD¹⁶O, own $D_2^{16}O$ energy levels, own energy levels of H_3^+ , H_2D^+ , and D_2H^+

Thermochemistry

NEAT database

NEAT, standing for a "<u>n</u>etwork of computed reaction <u>e</u>nthalpies leading to <u>a</u>tombased <u>t</u>hermochemistry", is a simple and fast, weighted, linear least-squares refinement protocol and code for inverting the information contained in a network of quantum chemically computed 0 K reaction enthalpies.

Burcat's thermochemical data

A mirror of Burcat's thermodynamic data collection

Rovibronic (high-resolution) molecular spectroscopy:

the traditional experimental paradigm for accuracy and precision

First-principles variational molecular spectroscopy: a new computational paradigm for accuracy

Experiment vs. *Theory*

Experiment		<u>Theory</u>
	Accuracy	
in Spec: (10 ⁻⁴ -10 ⁻⁶ cm ⁻¹)	>>	10 ⁻¹ -10 ⁻³ cm ⁻¹
in Th: 1 kJ mol ⁻¹	~	1 kJ mol ⁻¹
	Completeness	
in Spec: ~1-10%	<<	~100%
in Th: ~100%	~	~100%
	Results	
Implicit		Explicit
	<u>Experiment</u> In Spec: (10 ⁻⁴ -10 ⁻⁶ cm ⁻¹) In Th: 1 kJ mol ⁻¹ In Spec: ~1-10% In Th: ~100%	Experiment Accuracy In Spec: (10 ⁻⁴ -10 ⁻⁶ cm ⁻¹) >> In Th: 1 kJ mol ⁻¹ ~ In Th: 1 kJ mol ⁻¹ ~ In Spec: ~1-10% <<

Conclusion: use experiment and theory together and connect them with 'inversion tools'

Inverse problems Measured quantities refinement procedure (inversion tools)

parameters of the physical model(s)

Why measure bound molecular states (spectra) of molecules?

- Modeling in many scientific and engineering applications (*e.g.*, star formation models, atmospheric modeling, including the greenhouse effect, and combustion) need detailed, precise, *T*dependent, line-by-line information, usually deposited in old-fashioned databases
- Most detailed information about the structure and dynamics of molecules
- Resonances (quasibound states) and tunneling are also of great potential interest, partly for advanced reaction dynamics but also for scientific and engineering applications

Why compute bound molecular states (spectra) of molecules?

- Test theoretical methods against wealth of experimental results (including testing of potential energy (PES) and dipole moment (DMS) hypersurfaces)
- Combine theory and experiment to obtain the maximum information in order to determine complete spectra
- Unravel complicated spectra, basis for new assignments
- Predict experimentally not easily accessible or even unaccessible spectral regions or features
- Bridge (overtone) spectroscopy (anharmonicity and resonances) and dynamics (*e.g.*, IVR, vibrational adiabaticity, quantum ergodicity)

IUPAC

Number: 2004-035-1-100

Title: A database of water transitions from experiment and theory

Task Group
Chairman: J. Tennyson (U.K.),
Members: P. Bernath (Canada), A. Campargue (France),
M. R. Carleer (Belgium), A. G. Császár (Hungary),
R. Gamache (Belgium), J. Hodges (U.S.A.),
A. Jenouvrier (France), O. Naumenko (Russia),
O. L. Polyansky (Germany), L. Rothman (U.S.A.),
R. A. Toth (U.S.A.), A. C. VanDaele (Belgium),
and N. F. Zobov (Russia)

http://www.iupac.org/projects/2003/2004-035-1-100.html

Question: would experiment or theory provide more useful data for scientific and engineering applications? Question: would experiment or theory provide more useful data for the scientific and engineering applications?

Answer: basically neither, the best approach involves both and takes advantage of the strengths of the two complementary approaches while minimizing their weaknesses. This is true for highresolution spectroscopy and thermochemistry, as well. Spectroscopic networks (SN): large, finite, weighted, undirected, and rooted graphs

- energy levels: vertices (nodes, with given, theoretical or experimental, uncertainties)
- allowed transitions: edges (links)
- transition intensities: weights

A. G. Császár, T. Furtenbacher, J. Mol. Spectrosc. 2011, 266, 99-103
T. Furtenbacher, A. G. Császár, J. Mol. Struct. 2012, 1009, 123

NATURE

[*Feb.* 7, 1878

CHEMISTRY AND ALGEBRA

I T may not be wholly without interest to some of the readers of NATURE to be made acquainted with an analogy that has recently forcibly impressed me between branches of human knowledge apparently so dissimilar as modern chemistry and modern algebra. I have found it of great utility in explaining to non-mathematicians the nature of the investigations which algebraists are at present busily at work upon to make out the so-called Grundformen or irreducible forms appurtenant to binary quantics taken singly or in systems, and I have also found that it may be used as an instrument of investigation in purely algebraical inquiries. So much is this the case that I hardly ever take up Dr. Frankland's exceedingly valuable "Notes for Chemical Students," which are drawn up exclusively on the basis of Kekulé's exquisite conception of valence, without deriving suggestions for new researches in the theory of algebraical forms. I will confine myself to a statement of the grounds

Baltimore, January I J. J. SYLVESTER

NATURE

[Feb. 7, 1878

The weight of an invariant is identical with the number of the bonds in the chemicograph of the analogous chemical substance, and the weight of the leading term (or basic differentiant) of a co-variant is the same as the number of bonds in the chemicograph of the analogous compound radical. Every invariant and covariant thus becomes expressible by a graph precisely identical with a Kekuléan diagram or chemicograph. But not every chemicograph is an algebraical one. I show that by an application of the algebraical law of reciprocity every algebraical graph of a given invariant will represent the constitution in terms of the roots of a quantic of a type reciprocal to that of the given invariant of an invariant belonging to that reciprocal type. I give a rule for the geometrical multiplication of graphs, *i.e.* for constructing a graph to the product of in- or co-variants whose separate graphs are given. I have also ventured upon a hypothesis

Pure absorption rotational spectrum of the ground vibrational state of H₂¹⁶O

Pure absorption spectroscopic network of the ground vibrational state of H₂¹⁶O

Spectroscopic databases

ASA –	High-resolut
Atmos.	Tran smission
Spectr.	Molecular
Appl.	Absorption
	Database
	(Harvard-
	Smithonian)

gh-resolution AtmosphericInsmissionRadiationolecularAnalysissorption(GEISA)

Quantitative Infrared Database (NIST) Cologne Database for Molecular Spectroscopy (CDMS)

IUPAC database of water isotopologues: JQSRT 110 (2009) 573, 111 (2010) 2160, 117 (2013) 29, and 142 (2014) 93. IUPAC energy levels

- H₂¹⁶O: 18 486
- H₂¹⁷O: 2723
- H₂¹⁸O: 5131
- HD¹⁶O: 8 818
- HD¹⁷O: 162
- HD¹⁸O: 1864
- D₂¹⁶O: 12 288
- D₂¹⁷O: 338
- D₂¹⁸O: 3 345

Н

• H₂¹⁶O: 184 667

IUPAC

 \neg transitions

- H₂¹⁷O: 9169
- H₂¹⁸O: 32 325
- HD¹⁶O: 54 740
- HD¹⁷O: 485
- HD¹⁸O: 8729
- D₂¹⁶O: 53 532
- D₂¹⁷O: 600
- D₂¹⁸O: 12 167

v3: Antisymmetric Stretch

MARVEL: An inverse, Hamiltonian-free approach to highly accurate rovibrational energy levels

Measured Active Rotational-Vibrational Energy Levels

T. Furtenbacher, A. G. Császár, J. Tennyson, J. Mol. Spectrosc. 245, 115 (2007)T. Furtenbacher, A. G. Császár, J. Quant. Spectr. Rad. Transfer 113, 929 (2012)

Database of observed transition wavenumbers v_{ij} with assignments and uncertainties

The v_{ij} are determined by term values E_{ij} , E_{jj} ,

Solve for E (in a least-squares sense, taking into account the experimental uncertainties of the v_{ij}) to obtain experimentally derived term values E_i , E_j ,

Building of the spectroscopic network

Several graph-theoretical algorithms:

- Floyd–Warshall
- Dijkstra
- DFS (depth-first search)
- BFS (breadth-first search)

MARVEL: Measured Active Rotational Vibrational Energy Levels Database: v_{ij} w_{ij} and unique labels for upper and lower energy levels Basic equation (Ritz): $v_{ij} = E_i - E_j$ $\begin{bmatrix} v_1 \\ \vdots \\ v_{ij} \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} \cdots & 0 & +1 & \cdots & -1 & 0 & \cdots \\ \vdots & & & \\ E_j & \vdots \\ E \end{bmatrix}$ E_m

MARVEL: Measured Active RotationalVibrational Energy LevelsDatabase: v_{ij} w_{ij} and unique labels for upper
and lower energy levels

Least-squares solution:

$$\begin{pmatrix} \sum_{k} w_{1k} & -w_{12} & -w_{13} & \dots & -w_{1n_{T}} \\ -w_{12} & \sum_{k} w_{2k} & -w_{23} & \dots & -w_{2n_{T}} \\ \dots & \dots & \dots & \dots \\ -w_{1n_{T}} & -w_{2n_{T}} & \dots & \sum_{k} w_{n_{T}k} \end{pmatrix} \begin{pmatrix} E_{1} \\ E_{2} \\ \vdots \\ E_{n} \end{pmatrix} = \begin{pmatrix} \sum_{k} w_{1k} v_{1k} \\ \sum_{k} w_{2k} v_{2k} \\ \vdots \\ \sum_{k} w_{n_{T}k} v_{n_{T}k} \end{pmatrix}$$

Obtaining the energy levels and the associated uncertainties is not a simple inversion process

We employ an iterative method to adjust the uncertainties to get a self-consistent database Method: Robust reweighting

$$w_{ij} = \frac{1}{\delta_{ij}^2 + \alpha \Delta_{ij}^2} \quad \text{where } \Delta_{ij} = v_{ij} - (E_i - E_j)$$

while
$$\sum_{i} \frac{g_i \Delta_{ij}^2}{N_t - N_\ell} - 1 < \varepsilon$$

Solving the system of linear equations A) Exact uncertainties:

$$arepsilon_{j}=\sqrt{A_{jj}^{-1}}$$

Sparse-adaptive **LDL**[⊤] decomposition (Cholesky)

B) Approximate uncertainties:

$$A_{jj}^{-1} = \frac{1}{A_{ii}} + \frac{1}{A_{\rm sum}}$$

conjugate gradient method

Experimental information systems

Species	Ref.	Measured	transitions	Energy	No. of
		Identified	Validated	levels	sources
¹² C ₂	55	23 343	22 949	5 699	39
H_3^+	52	1 610	1 410	652	26
H_2D^+	53	195	185	109	13
D_2H^+	53	154	136	104	9
H ₂ ¹⁶ O	42	184 667	182 156	18 486	93
H ₂ ¹⁸ O	40	32 325	31 705	5131	48
H ₂ ¹⁷ O	40	9169	9028	2723	33
HD ¹⁶ O	41	54 740	53 291	8818	74
HD ¹⁸ O	41	8729	8634	1864	18
HD ¹⁷ O	41	485	478	162	3
D ₂ ¹⁶ O	43	63 050	62 372	12 301	74
D ₂ ¹⁸ O	43	12 163	12 018	3351	18
D ₂ ¹⁷ O	43	600	583	338	3
¹⁴ NH ₃	54	29 450	28 530	4 961	56
H ₂ ¹² C ¹² C ¹⁶ O	51	3 982	3 194	1 722	12

IUPAC water database II. HD¹⁶O, HD¹⁷O and HD¹⁸O

	HD ¹⁶ O	HD ¹⁷ O	HD ¹⁸ O
No. of transitions collected	54 740	485	8 729
Maximum J	30	11	18
Highest VBO (cm ⁻¹)	22 625	1 399	9 930
No. of energy levels	8 818	162	1 864
No. of sources	74	3	18

J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, S. Fally, A. Z. Fazliev, T. Furtenbacher, I. F. Gordon, S.-M. Hu, S. N. Mikhailenko, and B. Voronin, IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HD¹⁶O, HD¹⁷O, and HD¹⁸O, *J. Quant. Spectr. Rad. Transfer* **2010**, *111*, 2160-2184.

IUPAC water database. III. H₂¹⁶O

	$H_2^{16}O$
No. of transitions collected	184 667
Maximum J	42
Highest VBO (cm ⁻¹)	41 121
No. of energy levels	18 486
No. of sources	93

J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele, N. F. Zobov, A. R. Al Derzi, C. Fábri, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, L. Lodi, and I. I. Mizus, IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part III. Energy Levels and Transition Wavenumbers for H₂¹⁶O, J. Quant. Spectrosc. Rad. Transfer 117 (2013) 29-58.

Summary of MARVEL analyses

property	H ₃ +	H ₂ D ⁺	HD ₂ ⁺
no. of sources	26	13	9
range (cm ⁻¹)	7 – 16 506	5 – 7 105	23 – 6 581
no. of transitions (A/V)	1610 / 1410	194 / 185	154 / 136
energy levels – ortho	259	63	52
— para	393	46	52
– floating	105	14	27
no. of VBOs	13	7	6

T. Furtenbacher, T. Szidarovszky, C. Fábri, A. G. Császár, Phys. Chem. Chem. Phys. 15, 10181 (2013). T. Furtenbacher, T. Szidarovszky, E. Mátyus, C. Fábri, A.G. Császár, J. Chem. Theory Comput. 9, 5471 (2013).

MARVEL vibrational band origins of D_2H^+

$\nu_1\nu_2\nu_3$	VBO	Unc.	RL
0 0 0	0.0000^{b}	0	17
010	1968.1620	100	20
001	2078.4300	100	18
100			22
020	—		4
0 0 2	4042.7722	90	6
011	4060.7884	140	5
120			1
102	_		6
111	6616.0270	50	1

0 4000 8000 12000 16000 20000 Wavenumber (cm⁻¹)

he open-access journal for physics

New Journal of Physics 12 (2010) 103006 (10pp)

Frequency metrology in the near-infrared spectrum of H₂¹⁷O and H₂¹⁸O molecules: testing a new inversion method for retrieval of energy levels

> A Gambetta¹, E Fasci², A Castrillo², M Marangoni¹, G Galzerano³, G Casa², P Laporta³ and L Gianfrani^{2,4}

vibrational state. The measurement of the sub-Doppler line-center frequencies, also extended to the $H_2^{17}O$ spectrum, has been performed with an overall uncertainty of $\sim 30 \text{ kHz}$, i.e. about three orders of magnitude lower than the HITRAN data set. The retrieved energy separations agree, by less than 80 kHz, with recent findings provided by the so-called MARVEL procedure for spectral data inversion, thus yielding a very stringent test of its accuracy.

New calibration standards: $H_2^{16}O$, $H_2^{18}O$, $D_2^{16}O$ (15-170 cm⁻¹)

- only para-water transitions
- measured with internal precision better than 33 kHz
- underlying energy levels are involved in at least three measured transitions

$H_2^{16}O$	$H_2^{18}O$	D ₂ ¹⁶ O
752,033.104(13)	203,407.502(30)	643,247.288(37)
916,171.405(13)	322,465.170(30)	692,243.579(36)
987,926.743(16)	517,181.960(30)	714,087.313(36)
1,207,638.714(13)	745,320.142(36)	743,563.526(36)

T. Furtenbacher, A. G. Császár, J. Quant. Spectr. Rad. Transfer 109, 1234 (2008)

Recalibration of measurements

Source	Range (cm ⁻¹)	Calib. factor
78KaKaKy [70]	33-714	0.999 996 07(7)
95PaHo [105]	177-520	1.0
05HoAnAlPi [138]	212-595	1.0
96PoBuGuZh [107]	407-921	0.999 999 66(2)
82KaJoHo [79]	501-714	0.999 998 84(2)
83Guelachv [81]	1066-2583	0.999 999 77(4)
73CaFlGuAm [62]	2933-4251	0.999 999 93(2)
94Tothb [103]	5750-7988	1.0
80CaFlMa [74]	5934-6400	0.999 999 80(3)
05ToTe [141]	7423-9595	1.0
88MaChFlCa [91]	8057-9482	$0.999 \ 999 \ 86(4)$
75FlCaNaCh [66]	8060-9367	1.0
05ToNaZoSh [142]	9250-25 224	1.0
08ToTe [155]	9502-14 495	0.999 999 89(3)
89ChMaFlCa [92]	9603-11 481	0.999 999 83(3)
02BrToDu [126]	9676-11383	0.999 999 90(2)
99CaJeVaBe [116]	13 185-21 389	0.999 999 96(1)
98PoZoViTe [115]	13 239–15 995	1.0

H₃⁺ measurements

Table 5. Selected high-quality measured transitions for H₃⁺ from 13HoPeJeSi,¹⁰⁴ 13WuLiLiLi,¹⁰⁵ and 16JuKoScAs,¹⁰⁶ showing considerable disagreement between the former two measurements

Transition	13HoPeJeSi ¹⁰⁴	13WuLiLiLi ¹⁰⁵	Diff / 10^{-5} cm ⁻¹	16JuKoScAs ¹⁰⁶
$R(1,1)^{l}$	2691.44239(2)	2691.44305(33)	66	2691.442718(5)
$R(1,1)^{u}$	2726.21965(1)	2726.22025(66)	60	2726.220011(7)
$R(2,1)^{u}$	2826.11628(1)	2826.11683(33)	55	

H₃⁺ rovibrational measurements

C₂ rovibronic measurements

Summary

- Spectroscopic networks (SN) are weighted, undirected graphs, whereby energy levels are the nodes, allowed transitions are the links, and weights are provided by intensities.
- SNs provide highly useful concepts for highresolution molecular spectroscopy and for database management.
- MARVEL, based on SNs, allows to turn scattered information into focused knowledge.
- A large number of spectroscopic-quality energy levels can be determined via MARVEL.