
Chapter 2

Reaction Kinetics Basics

Abstract This chapter provides an introduction to the basic concepts of reaction

kinetics simulations. The level corresponds mainly to undergraduate teaching in

chemistry and in process, chemical and mechanical engineering. However, some

topics are discussed in more detail and depth in order to underpin the later chapters.

The section “parameterising rate coefficients” contains several topics that are

usually not present in textbooks. For example, all reaction kinetics textbooks

discuss the pressure dependence of the rate coefficients of unimolecular reactions,

but usually do not cover those of complex-forming bimolecular reactions. The

chapter contains an undergraduate level introduction to basic simplification princi-

ples in reaction kinetics. The corresponding sections also discuss the handling of

conserved properties in chemical kinetic systems and the lumping of reaction steps.

2.1 Stoichiometry and Reaction Rate

2.1.1 Reaction Stoichiometry

In this section, we begin by explaining the formulation of chemical reaction

mechanisms and the process of setting up chemical rate equations from stoichio-

metric information and elementary reaction rates.

First, we assume that a chemical process can be described by a single stoichio-
metric equation. The stoichiometric equation defines the molar ratio of the reacting

species and the reaction products. This equation is also called the overall reaction
equation. Real chemical systems corresponding to such a single chemical reaction,

that is, when the reactants react with each other forming products immediately, are

in fact very rare. In most cases, the reaction of the reactants produces intermediates,

these intermediates react with each other and the reactants, and the final products

are formed at the end of many coupled reaction steps. Each of the individual steps is

called an elementary reaction. Within elementary reactions, there is no macro-

scopically observable intermediate between the reactants and the products. This

point is now illustrated for the case of hydrogen oxidation, but similar examples

could be cited across many different application fields.
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The overall reaction equation of the production of water from hydrogen and

oxygen is very simple:

2H2 þ O2 ¼ 2H2O:

We can see that this overall reaction balances the quantities of the different

elements contained in the reactants and products of the reaction. Reaction stoichio-

metry describes the 2:1:2 ratio of hydrogen, oxygen and water molecules in the

above equation. From a stoichiometric point of view, a chemical equation can be

rearranged, similarly to a mathematical equation. For example, all terms can be

shifted to the right-hand side:

0 ¼ �2H2 � 1O2 þ 2H2O:

Let us denote the formulae of the chemical species by the vector A¼ (A1, A2, A3)

and the corresponding multiplication factors by vector ν¼ (v1, v2, v3). In this case,

A1¼ “H2”, A2¼ “O2”, A3¼ “H2O” and v1¼�2, v2¼�1, v3¼ +2. The

corresponding general stoichiometric equation is

0 ¼
XNS

j¼1

vjAj; ð2:1Þ

where NS is the number of species. The general stoichiometric equation of any

chemical process can be defined in a similar way, where vj is the stoichiometric
coefficient of the jth species and Aj is the formula of the jth species in the overall

reaction equation. The stoichiometric coefficients are negative for the reactants and

positive for the products. The stoichiometric coefficients define the ratios of the

reactants and products. Therefore, these are uncertain according to a scalar multi-

plication factor. This means that by multiplying all stoichiometric coefficients with

the same scalar, the resulting chemical equation refers to the same chemical

process. Thus, chemical equations 0¼ –2H2 – 1O2 + 2H2O and 0¼ –1H2 –½
O2+ 1H2O (or using the traditional notation, 2H2 +O2¼ 2H2O and

H2 +½O2¼H2O, respectively) represent the same chemical process. Also, the

order of the numbering of the species is arbitrary. We show here the stoichiometric

coefficients for an overall reaction step, but the same approach is taken for each of

the elementary steps of a detailed chemical scheme. In general, for elementary

reaction steps within a chemical mechanism, the stoichiometric coefficients are

integers.

There are many chemical processes for which a single overall reaction equation

that describes the stoichiometry of the process cannot be found. For example, the

oxidation of hydrocarbons sourced from exhaust gases in the troposphere cannot be

described by a single overall reaction equation. Many types of hydrocarbons are

emitted to the troposphere, and their ratio changes dependent on the type of
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pollution source. Therefore, no single species can be identified as reactants or

products.

Let us now think about the time-dependent behaviour of a chemical system and

how we might describe it using information from the kinetic reaction system. The

simplest practical case here would be one or more reactants reacting in a well-

mixed vessel to form one or more products over time. In this case, if the molar

concentration Yj of the jth species is measured at several consecutive time points,

then by applying a finite-difference approach, the production rate of the jth species
dYj/dt can be calculated. The rate of a chemical reaction defined by stoichiometric

equation (2.1) is the following:

r ¼ 1

vj

dYj

dt
: ð2:2Þ

Reaction rate r is independent of index j. This means that the same reaction rate is

obtained when the production rate of any of the species is measured. However, the

reaction rate depends on the stoichiometric coefficient, and therefore, the reaction

rate depends on a given form of the stoichiometric equation.

Within a narrow range of concentrations, the reaction rate r can always be

approximated by the following equation:

r ¼ k
YNS

j¼1

Yj
αj ; ð2:3Þ

where the positive scalar k is called the rate coefficient, the exponents αj are positive
real numbers or zero, the operator Π means that the product of all terms behind it

should be calculated and NS is the number of species. In the case of some reactions,

the form of Eq. (2.3) is applicable over a wide range of concentrations. When the

reaction rate is calculated by Eq. (2.3), molar concentrations (i.e. the amount of

matter divided by volume with units such as mol cm�3) should always be used. The

rate coefficient k is independent of the concentrations but may depend on temper-

ature, pressure and the quality and quantity of the nonreactive species present

(e.g. an inert dilution gas or a solvent). This is the reason why the widely used

term rate constant is not preferred and rate coefficient is a more appropriate term.

The exponent αj in Eq. (2.3) is called the reaction order with respect to species Aj.

The sum of these exponents α ¼
XNS

j¼1

αj

 !
is called the overall order of the

reaction. In the case of an overall reaction equation such as 2H2 +O2¼ 2H2O, the

order αj is usually not equal to the stoichiometric coefficient vj because of the

intermediate steps that are involved in the overall reaction. For elementary reac-

tions, the reaction orders of the reactions and the absolute value of the stoichio-

metric coefficients of the reactants are commonly mathematically the same.
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As stated above, intermediates are formed within most reaction systems, and

hence, in order to define the time-dependent dynamics of a system accurately, a

reaction model should include steps where such intermediates are formed from

reactants and then go on to form products. For example, detailed reaction mecha-

nisms for the oxidation of hydrogen [see e.g. Ó Conaire et al. (2004), Konnov

(2008), Hong et al. (2011), Burke et al. (2012), Varga et al. (2015)] contain not only

the reactants (H2 and O2) and the product (H2O) but also several intermediates

(H, O, OH, HO2, H2O2), which are present in the 30–40 reaction steps considered.

Any hydrogen combustion mechanism should contain the following reaction steps:

R1 H2 þ O2 ¼ Hþ HO2 k1
R2 O2 þ H ¼ OHþ O k2
R3 H2 þ OH ¼ Hþ H2O k3
R4 H2 þ O ¼ Hþ OH k4
R5 O2 þ HþM ¼ HO2 þM k5
R6 HO2 þ OH ¼ H2Oþ OH k6

;

where species M represents any species present in the mixture and will be further

discussed in the next section.

The number of elementary reaction steps within a kinetic reaction mechanism

can typically vary from ten to several ten thousands, depending on the chemical

process, the reaction conditions and the required detail and accuracy of the chem-

ical kinetic model. Each elementary reaction step i can be characterised by the

following stoichiometric equation:X
j

vLijAj ¼
X
j

vRijAj; ð2:4Þ

where the stoichiometric coefficients on the left-hand side (vLij) and the right-hand

side (vRij) of an elementary reaction step should be distinguished. The stoichiometric

coefficient belonging to species i in a reaction step can be obtained from the

equation vij¼ vRij � vLij. The left-hand side stoichiometric coefficients vLij should be

positive integers, whilst the right-hand side stoichiometric coefficients vRij are

positive integers for elementary reactions and can be positive or negative, integer

or real numbers for reaction steps that were obtained by the combination

(“lumping”) of several elementary reactions. Therefore, the overall stoichiometric

coefficients vij can also be any numbers (positive or negative figures; integers or real

numbers). Elements vLij, v
R
ij and vij constitute the left-hand side, the right-hand side

and the overall stoichiometric matrix, respectively.
To emphasise the analogy with mathematical equations, so far the equality sign

(¼) was always used for chemical equations. From now on, arrows will be used for

one-way or irreversible chemical reactions (like A!B). Reversible reactions will

be denoted by double arrows (like A⇄B).
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A detailed kinetic reaction mechanism contains the stoichiometric equations of

type (2.4) and the corresponding rate coefficient for each reaction step. These rate

coefficients can be physical constants that are valid for the conditions of the

reactions (e.g. temperature, pressure) or functions that can be used to calculate

the value of the rate coefficient applicable at the actual temperature, pressure, gas

composition, etc. The physical dimension of the rate coefficient depends on the

overall order of the reaction step. When the order of the reaction step is 0, 1, 2 or

3, the dimension of the rate coefficient is concentration� (time)�1, (time)�1,

(concentration)�1� (time)�1 or (concentration)�2� ( time)�1, respectively.

2.1.2 Molecularity of an Elementary Reaction

The reaction steps in the mechanism of a homogeneous gas-phase reaction are

usually elementary reactions, that is, the stoichiometric equation of the reaction

step corresponds to real molecular changes. The molecularity of an elementary

reaction is the number of molecular entities involved in the molecular encounter.

Thus, an elementary reaction can be unimolecular or bimolecular. Some books on

chemical kinetics also discuss termolecular reactions (Raj 2010), but three molec-

ular entities colliding at the same time is highly improbable (Drake 2005). What are

often referred to as termolecular reactions actually involve the formation of an

energetically excited reaction intermediate in a bimolecular reaction which can then

collide with a third molecular entity (e.g. a molecule or radical).

In a unimolecular reaction, only one reaction partner species is changed. Exam-

ples include photochemical reactions (e.g. NO2+ hν!NO+O, where hν repre-

sents a photon) and unimolecular decomposition such as the decomposition of fuel

molecules in combustion or pyrolysis. In such reactions, the fuel molecule decom-

poses as a result of collision with another molecule that does not change chemically

during the molecular event (e.g. C3H8 +N2!CH3 +C2H5 +N2). The

rearrangement of a molecule such as the isomerisation of gas-phase molecules

and the fluctuation of the structure of a protein from one conformation to another

are also results of such so-called nonreactive collisions (Bamford et al. 1969).

Most elementary reactions are bimolecular, when two particles (molecules,

radicals, ions) meet and both particles change chemically. Bimolecular reactions

can be either direct bimolecular reactions (e.g. H2+OH!H+H2O) or complex-

forming bimolecular reactions (e.g. O2+H!HO2* and HO2* +M!HO2+M). In

direct bimolecular reactions, the products are formed in a single step. The product

of a complex-forming bimolecular reaction is a highly energised intermediate

(in this case, a vibrationally excited HO2 radical) that has to lose the excess energy

in another collision with any other particle called a third-body M. This third body

can be a molecule of the bath gas (in most experiments argon or nitrogen) or any

other species of the reaction system. A more detailed description on how the

reaction steps involving third bodies are treated is presented in Sect. 2.2.2.
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In this section, we have discussed elementary reaction steps, but there are many

reaction mechanisms where the reaction steps are not elementary reactions, but

lumped reactions. This is very common, for example, in solution-phase kinetics and

will be discussed in detail later.

The distinction between molecularity and order is an important one. It is

therefore important that the terms unimolecular reaction and first-order reaction,

and bimolecular reaction and second-order reaction are not synonyms. The first

term refers to a type of molecular change whilst the second one to the type of

applicable rate equation governed by the observed dependence of reaction rates on

concentration.

2.1.3 Mass Action Kinetics and Chemical Rate Equations

The rates of elementary reactions can be calculated by assuming the rule of mass
action kinetics. According to the chemical kinetic law of mass action (Waage and

Guldberg 1864)

ri ¼ ki
YNS

j

Yj
ν L
ij ; ð2:5Þ

where ri and ki are the rate and the rate coefficient, respectively, of reaction step

i, and Yj is the molar concentration of species j. Equation (2.5) looks similar to

Eq. (2.3), but here the exponent is not an empirical value (the reaction order), but

the corresponding stoichiometric coefficient. When the law of mass action is valid,

the overall order of reaction step i is equal to
X
j

νL
ij . In many cases, the law of mass

action is assumed to be also applicable for non-elementary reaction steps, but it is

not always the case that a lumped reaction follows the law of mass action. Note that

in textbooks of general chemistry, the term “law of mass action” is used in an

entirely different context. In general chemistry, the law of mass action means that a

chemical equilibrium can be shifted towards the products by adding reactants and

towards the reactants by adding products to the reacting mixture.

The kinetic system of ordinary differential equations (ODEs) defines the

relationship between the production rates of the species and rates of the reaction

steps ri:

dYj

dt
¼
XNR

i

νijri; j ¼ 1, 2, . . . ,NS: ð2:6Þ

Equation (2.6) can also be written in a simpler form using the vector of concen-

trations Y, the stoichiometric matrix ν and the vector of the rates of reaction steps r:
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dY

dt
¼ νr: ð2:7Þ

This means that the number of equations in the kinetic systems of ODEs is equal

to the number of species in the reaction mechanism. These equations are coupled

and therefore can only be solved simultaneously. It is also generally true that in

order to accurately represent the time-dependent behaviour of a chemical system,

the ODEs should be based on the chemical mechanism incorporating intermediate

species and elementary reaction steps rather than the overall reaction equation

which contains only reactants and products. We will see later in Chap. 7 that one

aim of chemical mechanism reduction is to limit the number of required interme-

diates within the mechanism in order to reduce the number of ODEs required to

accurately represent the time-dependent behaviour of key species.

An analogous equation to Eq. (2.6) can be written when other concentration

units are used, e.g. mass fractions or mole fractions [see, e.g. Warnatz et al. (2006)],

but Eq. (2.5) is applicable only when the “amount of matter divided by volume”

concentration units are used. The amount of matter can be defined, e.g., in moles or

molecules, whilst volume is usually defined in dm3 or cm3 units.

In adiabatic systems or in systems with a known heat loss rate, usually temper-

ature is added as the (NS + 1)th variable of the kinetic system of ODEs. The

differential equation for the rate of change of temperature in a closed spatially

homogeneous reaction vessel is given as

Cp

dT

dt
¼
XNR

i¼1

ΔrH
⦵
i ri � χS

V
T � T0ð Þ; ð2:8Þ

where T is the actual temperature of the system, T0 is the ambient temperature

(e.g. the temperature of the lab), Cp is the constant pressure heat capacity of the

mixture, ΔrH
⦵
i is the standard molar reaction enthalpy of reaction step i, S and V are

the surface and the volume of the system, respectively, and χ is the heat transfer

coefficient between the system and its surroundings. The change in temperature can

be calculated together with the change in concentrations as part of the coupled ODE

system. In the examples used throughout the book, the variables of the kinetic

differential equations will be species concentrations only, but in all cases, the ODE

can be easily extended to include the equation for temperature.

The kinetic system of ODEs and its initial values together provide the following

initial value problem:

dY

dt
¼ f Y; kð Þ, Y t0ð Þ ¼ Y0: ð2:9Þ

From a mathematical point of view, the kinetic system of ODEs is first-order and

usually nonlinear, since it contains first-order derivatives with respect to time and

the time derivative is usually a nonlinear function of concentrations. In general,
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each species participates in several reactions; therefore, the production rates of the

species are coupled. The rates of the reaction steps can be very different and may

span many (even 10–25) orders of magnitude. Such differential equations are called

stiff ODEs. The stiffness of the kinetic ODEs and related problems will be

discussed in detail in Sect. 6.7.

In theory, if a laboratory experiment is repeated say one hour later than the first

execution, then the same concentration–time curves should be obtained (ignoring

experimental error for now). Accordingly, the time in the kinetic system of differ-

ential equations is not the wall-clock time, but a relative time from the beginning of

the experiment. Such a differential equation system is called an autonomous system
of ODEs. In other cases, such as in atmospheric chemical or biological circadian

rhythm models, the actual physical time is important, because a part of the param-

eters (the rate coefficients belonging to the photochemical reactions) depend on the

strength of sunshine, which is a function of the absolute time. In this case, the

kinetic system of ODEs is nonautonomous.
Great efforts are needed even in a laboratory to achieve a homogeneous spatial

distribution of the concentrations, temperature and pressure of a system, even in a

small volume (a few mm3 or cm3). Outside the confines of the laboratory, chemical

processes always occur under spatially inhomogeneous conditions, where the

spatial distribution of the concentrations and temperature is not uniform, and

transport processes also have to be taken into account. Therefore, reaction kinetic

simulations frequently include the solution of partial differential equations that

describe the effect of chemical reactions, material diffusion, thermal diffusion,

convection and possibly turbulence. In these partial differential equations, the

term f defined on the right-hand side of Eq. (2.9) is the so-called chemical source

term. In the remainder of the book, we deal mainly with the analysis of this

chemical source term rather than the full system of model equations.

In the following chapters, the Jacobian matrix

J ¼ ∂f Y; kð Þ
∂Y

¼ ∂f i
∂Yj

� �
ð2:10Þ

will be frequently used. It can be of great use in the mechanism reduction process,

forming the basis of local sensitivity analysis of each species in the mechanism, as

discussed in Chap. 5. It will also prove useful in the analysis of timescales present in

the kinetic system which may form a further basis for model reduction (see

Chap. 6). If the reaction mechanism consists of zeroth-order and first-order reaction

steps only, then the elements of the Jacobian are constant real numbers. In all other

cases, the elements of the Jacobian depend on the concentration vector Y. The

normalised form of the Jacobian J
� ¼ Yj

f i

∂f i
∂Yj

n o
is also frequently used.

The elements of matrix F ¼ ∂f Y;kð Þ
∂k ¼ ∂f i

∂kj

n o
contain the derivative of the right-

hand side of the ODE with respect to the parameters. This matrix can also be used in

a normalised form: F
� ¼ kj

f i

∂f i
∂kj

n o
.

12 2 Reaction Kinetics Basics

http://dx.doi.org/10.1007/978-3-662-44562-4_6#Sec7
http://dx.doi.org/10.1007/978-3-662-44562-4_5
http://dx.doi.org/10.1007/978-3-662-44562-4_6


The solution of the initial value problem described by Eq. (2.9) can be visualised

so that the calculated concentrations are plotted as a function of time as shown in

Fig. 2.1a. Another possibility is to explore the solution in the space of concentra-

tions as in Fig. 2.1b. In this case, the axes are the concentrations and the time

dependence is not indicated. The actual concentration set is a point in the space of

concentrations. The movement of this point during the simulation outlines a curve

in the space of concentrations, which is called the trajectory of the solution . This

type of visualisation is often referred to as visualisation in phase space. In a closed

system, the trajectory starts from the point that corresponds to the initial value and

after a long time ends up at the equilibrium point. In an open system where the

reactants are continuously fed into the system and the products are continuously

removed, the trajectory may end up at a stationary point, approach a closed curve

(a limit cycle in an oscillating system) or follow a strange attractor in a chaotic

system. It is not the purpose of this book to discuss dynamical systems analysis of

chemical models in detail, and the reader is referred to the book of Scott for an

excellent treatment of this topic (Scott 1990).

Fig. 2.1 Results of the

simulation of the reaction

system A!B!C (a)
concentration–time curves;

(b) trajectory in the space of
concentrations
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If the mechanism consists of only first-order reaction steps, then the kinetic

system of ODEs always has a solution which can be expressed in the form of

mathematical functions (Rodiguin and Rodiguina 1964). Such a solution is called

analytical in science and engineering and symbolic in the literature of mathematics

and computer science. The analytical solution of small reaction mechanisms,

consisting of mixed first-order and second-order steps, can also be found in the

chapter of Szabó (1969) and the reaction kinetics chapter of Atkins’ Physical

Chemistry textbook (Atkins and de Paula 2009). However, in most practical

cases, for larger coupled kinetic systems, finding analytical solutions is not possible

without seeking simplifications of the chemistry representation. In most cases

therefore, numerical solutions of the kinetic differential equations (2.9) are sought.

Reaction kinetic models can be simulated not only on a deterministic basis by

solving the kinetic system of differential equations but also via the simulation of

stochastic models (Érdi et al. 1973; Bunker et al. 1974; Érdi and Tóth 1976;

Gillespie 1976, 1977; Tóth and Érdi 1978; Kraft and Wagner 2003; Gillespie

2007; Li et al. 2008; Tomlin et al. 1994). If the system contains many molecules,

then the two solutions usually (but not always) provide identical solutions (Kurtz

1972). If the system contains few molecules, which frequently occurs in biological

systems, then the stochastic solution can be qualitatively different from the deter-

ministic one (Arányi and Tóth 1977). Stochastic chemical kinetic modelling is

discussed in detail in a recent monograph (Érdi and Lente 2014) .

2.1.4 Examples

The first example for the creation of the kinetic system of ODEs will be based on a

skeleton hydrogen combustion mechanism. Using the law of mass action, the rates

r1 to r6 of the reaction steps can be calculated from the species concentrations and

rate coefficients

R1 H2 þ O2 ! H þ HO2 k1 r1 ¼ k1 H2½ � O2½ �
R2 O2 þ H ! OH þ O k2 r2 ¼ k2 O2½ � H½ �
R3 H2 þ OH ! H þ H2O k3 r3 ¼ k3 H2½ � OH½ �
R4 H2 þ O ! H þ OH k4 r4 ¼ k4 H2½ � O½ �
R5 O2 þ H þ M ! HO2 þ M k5 r5 ¼ k5 O2½ � H½ � M½ �
R6 HO2 þ OH ! H2O þ OH k6 r6 ¼ k6 HO2½ � OH½ �

:

Here [M] is the sum of the concentrations of all species present. The species that are

jointly denoted by M may have a different effective concentration than their actual

physical concentration based on how effective their collisions are in making

reaction R5 proceed (see Sect. 2.2.2).

The calculation of the production rates is based on Eq. (2.6). For example, the

hydrogen atom H is produced in reaction steps 1, 3 and 4 (v¼ +1), it is consumed in

reaction steps 2 and 5 (v¼�1), and it is not present in reaction step 6 (v¼ 0). The

14 2 Reaction Kinetics Basics



line of the kinetic system of ODEs, corresponding to the production of H is the

following:

d H½ �
dt

¼ þ1r1 � 1r2 þ r3 þ 1r4 � 1r5 þ 0r6;

or

d H½ �
dt

¼ k1 H2½ � O2½ � � k2 O2½ � H½ � þ k3 H2½ � OH½ � þ k4 H2½ � O½ � � k5 O2½ � H½ � M½ �:

In a similar way, the production of water can be described by the following

equations:

d H2O½ �
dt

¼ þ1r3 þ 1r6;

or

d H2O½ �
dt

¼ k3 H2½ � OH½ � þ k6 HO2½ � OH½ �:

Let us now consider a more complex mechanism, where the stoichiometric

coefficients are not only �1, 0 or +1. Whilst the hydrogen oxidation example is

very simple, the next example contains all possible complications. We now illus-

trate the formulation of the kinetic ODEs and their related matrices on an example

based on the well-known Belousov–Zhabotinskii (BZ) reaction. The BZ reaction

has been highly studied as an example of non-equilibrium thermodynamics where a

nonlinear chemical oscillator can easily be established in a simple reaction vessel

and illustrated by a simple colour change. The starting mixture consists of potas-

sium bromate, malonic acid and a cerium (IV) salt in an acidic solution. A

simplified mechanism of the BZ oscillating reaction (Belousov 1959; Zhabotinsky

1964; Belousov 1985) was elaborated by Field et al. (1972). The Oregonator model

(Field and Noyes 1974) was based on this mechanism. A newer version (Turányi

et al. 1993) of the reaction steps within the Oregonator model is the following:

R1 X þ Y ! 2 P k1 r1 ¼ k1xy
R2 Y þ A ! X þ P k2 r2 ¼ k2ya
R3 2 X ! P þ A k3 r3 ¼ k3x

2

R4 X þ A ! 2 X þ 2 Z k4 r4 ¼ k4xa
R5 X þ Z ! 0:5 X þ A k5 r5 ¼ k5xz
R6 Z þ Ma ! Y � Z k6 r6 ¼ k6zm

;

where X, Y, Z, A, P and Ma indicate species HBrO2, Br
�, Ce4+, BrO3

�, HOBr and
malonic acid, respectively. The corresponding small italic letter denotes the molar
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concentration of the species and k1,. . ., k6 the rate coefficients of the reaction steps.

The rates of the reaction steps (r1,. . .,r6) can be calculated using the kinetic law of

mass action [Eq. (2.5)] even though not all reactions in this reduced scheme could

be classified as elementary reaction steps. Note, for example, that reactions 5 and

6 do not contain positive whole integers as stoichiometric coefficients on the right-

hand side. The concentrations of species BrO3
� (A) and malonic acid (Ma) are

much higher than those of the others, and these concentrations are practically

constant (this is termed the pool chemical approximation, and it is detailed in

Sect. 2.3.1). Note that HOBr (P) is considered as a nonreactive product.

In the models of formal reaction kinetics, a species is called an internal species if
its concentration change is important for the simulation of the reaction system.

These species are denoted by letters from the end of the Latin alphabet (X, Y, Z).

The concentrations of the external species are either constant or change slowly in

time (A and Ma) (pool chemical) or have no effect on the concentrations of the

other species (P).

According to this model, the rates of change of the concentrations of HBrO2 (X),

Br� (Y) and Ce4+ (Z) in a well-mixed closed vessel are described by the following

system of ODEs:

dx

dt
¼ �1r1 þ 1r2 � 2r3 þ 1r4 � 0:5r5;

dy

dt
¼ �1r1 � 1r2 þ 1r6;

dz

dt
¼ þ2r4 � 1r5 � 2r6:

In each equation, on the right-hand side in each term, the rate of the reaction step

is multiplied by the change in the number of moles in the corresponding chemical

equation. For example, one mole of species X is consumed in reaction step

1 (therefore, the change in the number of moles is �1); in reaction step 2, one

mole of X is produced (+1); and in step 3, two moles are consumed (�2). In reaction

step 4, one mole of X is consumed and two moles are produced; therefore, the

change in the number of moles is +1.

Inserting the terms for the reaction rates r1 – r6 into the equations above gives

dx

dt
¼ �k1xyþ k2ya� 2k3x

2 þ k4xa� 0:5k5xz;

dy

dt
¼ �k1xy� k2yaþ k6zm;

dz

dt
¼ 2k4xa� k5xz� 2k6zm:

Some remarks should be made concerning the equations above. Species concen-

tration ci has to be present in all negative terms on the right-hand side of the
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equation dci/dt. A negative term without concentration ci is called a negative cross
effect (Érdi and Tóth 1989). A first-order ordinary system of differential equations

with polynomial right-hand side can be related to a reaction mechanism if and only

if it does not contain a negative cross-effect term. When the reaction step is

obtained by lumping from several elementary reaction steps, then the same species

may appear on both sides of the chemical equations (see reaction steps 4, 5 and 6).

For the calculation of the rates of the reaction steps using the kinetic law of mass

action [see Eq. (2.5)], only the left-hand side stoichiometric coefficients have to be

considered. However, for the construction of the kinetic system of ODEs

[Eq. (2.6)], the difference between the right- and left-hand side stoichiometric

coefficients, that is, the change of the number of moles in the reaction step, has to

be taken into account. The left-hand side stoichiometric coefficients vBj are always

positive integers, whilst the kinetic system of ODEs can still be easily constructed if

the right-hand side stoichiometric coefficients vJj are arbitrary real numbers,

i.e. these can be negative numbers or fractions. Such reaction steps can be obtained

by lumping several elementary reaction steps. The topic of lumping will be

discussed in detail in Sect. 7.7. Furthermore, since the pool chemical approximation

has been invoked for the concentration of species Ma, the rate of reaction 6 becomes

a pseudo-first-order reaction since m is in fact constant.

Let us determine the matrices J and F belonging to the kinetic system of ODEs

above. These two types of matrices will be used several dozen times in the

following chapters. For example, the Jacobian is used within the solution of stiff

differential equations (Sect. 6.7), the calculation of local sensitivities (Sect. 5.2) and

in timescale analysis (Sect. 6.2), whilst matrix F is used for the calculation of local

sensitivities (Sect. 5.2). Carrying out the appropriate derivations, the following

matrices are obtained:

J ¼

∂
dx

dt
∂x

∂
dx

dt
∂y

∂
dx

dt
∂z

∂
dy

dt
∂x

∂
dy

dt
∂y

∂
dy

dt
∂z

∂
dz

dt
∂x

∂
dz

dt
∂y

∂
dz

dt
∂z

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼
�k1y� 4k3xþ k4a� 0:5k5z �k1xþ k2a �0:5k5x

�k1y �k1x� k2a k6m
2k4a� k5z 0 �k5x� 2k6m

8<
:

9=
;;
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F ¼

∂
dx

dt
∂k1

∂
dx

dt
∂k2

∂
dx

dt
∂k3

∂
dy

dt
∂k1

∂
dy

dt
∂k2

∂
dy

dt
∂k3

∂
dz

dt
∂k1

∂
dz

dt
∂k2

∂
dz

dt
∂k3

∂
dx

dt
∂k4

∂
dy

dt
∂k4

∂
dz

dt
∂k4

∂
dx

dt
∂k5

∂
dy

dt
∂k5

∂
dz

dt
∂k5

∂
dx

dt
∂k6

∂
dy

dt
∂k6

∂
dz

dt
∂k6

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼
�xy ya �2x2

�xy �ya 0

0 0 0

xa �0:5xz 0

0 0 zm
2xa �xz �2zm

8<
:

9=
;:

The examples above indicate some further rules. The main diagonal of the

Jacobian contains mainly negative numbers. An element of the main diagonal of

the Jacobian can be positive only if the corresponding reaction is a single-step

autocatalytic reaction, like A+X!B+ 2 X (cf. reaction step R4 above). Matrix

F is in general a sparse matrix, since most of its elements are zero. The elements of

F that are nonzero can be obtained from the expressions for the reaction rates r1,. . .,
r6 in a way that multiplication of the appropriate rate coefficient k is omitted.

2.2 Parameterising Rate Coefficients

2.2.1 Temperature Dependence of Rate Coefficients

An important part of specifying a chemical reaction mechanism is providing

accurate parameterisations of the rate coefficients. In liquid phase and in atmo-

spheric kinetics, the temperature dependence of rate coefficient k is usually

described by the Arrhenius equation:

k ¼ A exp �E=RTð Þ ð2:11Þ

where A is the pre-exponential factor or A-factor, E is the activation energy, R is the

gas constant and T is temperature. The dimension of quantity E/R is temperature,

and therefore, E/R is called the activation temperature. This equation is also

referred to as the “classic” or “original” Arrhenius equation. If the temperature

dependence of the rate coefficient can be described by the original Arrhenius

equation, then plotting ln(k) as a function of 1/T (Arrhenius plot) gives a straight

line. The slope of this line is �E/R, and the intercept is ln(A). Figure 2.2a shows
such an Arrhenius plot.
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In high-temperature gas-phase kinetic systems, such as combustion and pyro-

lytic systems, the temperature dependence of the rate coefficient is usually

described by the modified Arrhenius equation:

k ¼ ATnexp �E=RTð Þ: ð2:12Þ

This equation is also called the extended Arrhenius equation. An alternative

notation is k¼BTn exp(�C/RT), which emphasises that the physical meaning of

parameters B and C is not equal to the pre-exponential factor and activation energy,

respectively. If the temperature dependence of a rate coefficient can only be

described by a modified Arrhenius equation and not in the classic form, then a

curved line is obtained in an Arrhenius plot (see Fig. 2.2b).

If the temperature dependence of the rate coefficient is described by the modified

Arrhenius equation, then the activation energy changes with temperature. The

activation energy at a given temperature can be calculated from the slope of the

curve, i.e. the derivative of the temperature function with respect to 1/T. If the
temperature dependence is defined using the equation k¼BTn exp(�C/RT), then
the temperature dependent activation energy is given by

Ea Tð Þ ¼ �R
d ln kf g
d 1=Tð Þ

� �
¼ �R

d ln Bf g þ nln Tf g � C=RTð Þ
d 1=Tð Þ

� �

¼ �R

d ln Bf g � nln
1

T

� �
� C=RT

� �
d 1=Tð Þ

0
BB@

1
CCA ¼ nRT þ C: ð2:13Þ

For some gas-phase kinetic elementary reactions, the temperature dependence of

the rate coefficient is described by the power function k¼ATn. This can also be

Fig. 2.2 Arrhenius plot of the temperature dependence of the rate coefficient of reaction

CH4 +OH!CH3 +H2O. (a) Temperature range 220 K to 320 K; (b) temperature range 300 K

to 2,200 K
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considered as a truncated form of the extended Arrhenius equation. Another type of

unusual temperature dependence is when there are two different routes from the

reactants to the products; therefore, the temperature dependence of the reaction step

in a wide temperature range is described by the sum of two Arrhenius expressions:

k ¼ A1T
n1exp �E1=RTð Þ þ A2T

n2exp �E2=RTð Þ. An example is the case of reaction

HO2 +OH¼H2O+O2 (Burke et al. 2013).

Reaction CH4 +OH!CH3 +H2O is the major consumption reaction of methane

in the troposphere, where the typical temperature extremes are 220 K (�53 �C) and
320 K (+47 �C). In this 100 K temperature range, the temperature dependence of the

rate coefficient can be described accurately with a 2-parameter Arrhenius equation

as shown in Fig. 2.2a. The same reaction is important in methane flames, where this

reaction is one of the main consuming reactions of the fuel molecules. In a methane

flame, the temperature is changing between 300 K (room temperature or laboratory

temperature) and 2,200 K, which is the typical maximum temperature of a laminar

premixed methane–air flame. When representing the temperature dependence of the

rate coefficient within this wide temperature range in an Arrhenius plot, the

obtained function is clearly curved (see Fig. 2.2b). This example shows that the

temperature dependence of the same rate coefficient can be well described by the

original Arrhenius expression within a narrow(less than 100 K) temperature range,

but only with the extended Arrhenius expression within a wide (several hundred

Kelvin) temperature range. However, the temperature dependence of some rate

coefficients can be characterised by the original Arrhenius equation within a very

wide temperature range. One example is the reaction I +H2!HI +H, where the

experimentally determined rate coefficients could be fitted using the original

Arrhenius equation over the temperature range 230 K to 2,605 K, even though

the rate coefficient changed by about 30 orders of magnitude (Michael et al. 2000).

2.2.2 Pressure Dependence of Rate Coefficients

The rate coefficients of thermal decomposition or isomerisation reactions of several

small organic molecules have been found to be pressure dependent at a given

temperature. A model reaction was the isomerisation of cyclopropane yielding

propene. The rate coefficient of the reaction was found to be first-order and pressure

independent at high pressures whilst second-order and linearly dependent on

pressure at low pressures. These types of observations were interpreted by

Lindemann et al. (1922) and Hinshelwood by assuming that the molecules of

cyclopropane (C) are colliding with any of the other molecules present in the

system (third body, denoted by M) producing rovibrationally excited cyclopropane

molecules (C*). These molecules can then isomerise (transform into another mole-

cule with the same atoms but with a different arrangement) yielding propene (P), or

further collisions may convert the excited cyclopropane molecules back to

non-excited ones: C +M⇄C* +M and C*! P. This model allowed the inter-

pretation of changing order with pressure (Pilling and Seakins 1995). Later research
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confirmed that the basic idea was correct. However, it was shown that the collisions

create excited reactant species having a wide range of rovibrational energies. The

cyclopropane molecules can move up and down on an energy ladder, and the rate

coefficient of isomerisation depends on the energy of the excited reactant.

The isomerisation of cyclopropane has limited practical importance, but the

pressure-dependent decomposition or isomerisation of many molecules and radi-

cals proved to be very important in combustion and atmospheric chemistry. In these

elementary reactions, only a single species undergoes chemical transformation, and

therefore, these are called unimolecular reactions. For example, the decomposition

of H2O2 is a very important reaction for the combustion of hydrogen, syngas and

hydrocarbons. Due to collisions with any species present in the mixture, the

rovibrational energy level of the H2O2 molecule can move up and down on the

energy ladder (see Fig. 2.3a). Molecules having an energy level higher than a

threshold can decompose to the OH radical and the rate of decomposition is energy

dependent.

At intermediate pressures, the reaction rate of unimolecular reactions is neither

second-order nor first-order. The apparent first-order rate coefficient in this pressure

region ( fall-off region) can be calculated using the Lindemann approach (Gilbert

et al. 1983; Pilling and Seakins 1995; Atkins and de Paula 2009). Arrhenius rate

parameters are required for both the low- and high-pressure limiting cases, and the

Lindemann formulation blends them to produce a pressure-dependent rate expres-

sion. The low-pressure rate coefficient is given by the expression:

k0 ¼ A0T
n0exp

�E0

RT

� �
ð2:14Þ

and the high-pressure rate coefficient by the expression:

k1 ¼ A1Tn1exp
�E1
RT

� �
: ð2:15Þ

Fig. 2.3 Schematic energy diagram of two reaction systems: (a) H2O2⇄ 2OH; (b)
CH3 +OH⇄CH3OH and CH3+OH⇄ 1CH2 +H2O
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The apparent first-order rate coefficient at any pressure can be calculated by the

expression:

k ¼ k1
Pr

1þ Pr

� �
F: ð2:16Þ

In the equation above, F¼ 1 in the Lindemann approach and the reduced pressure

Pr is given by

Pr ¼ k0 M½ �
k1

; ð2:17Þ

where M is the third body. When calculating the effective concentration of the third

body, the collision efficiencies myi are also taken into account:

M½ � ¼
X
i

myi Yi½ �: ð2:18Þ

In the case of the example reaction of H2O2 decomposition, the effective concen-

tration of the third body is calculated by Metcalfe et al. (2013) as [M]¼ 5.00[H2O]

+ 5.13[H2O2] + 0.8[O2] + 2.47[H2] + 1.87[CO] +1.07[CO2] + 0.67[Ar] + 0.43[He]+

the sum of the concentrations of all other species. Since N2 is a commonly used

bath gas within experiments, it often makes up the majority of the colliding species

concentrations. N2 is therefore assumed to have unit collision efficiency, and those of

the other species are compared against it. In the reaction H2O2(+M)⇄ 2OH (+M),

species that have similar molecular energy levels to the rovibrationally excited H2O2

molecules (like H2O2 and H2O) have large collision efficiencies, whilst noble gases

have typically small collision efficiencies. The general trend is that larger molecules

with more excitable rovibrational frequencies have larger collision efficiency factors.

There are few measurements that specifically address third-body efficiency factors,

and these values can be quite uncertain (Baulch et al. 2005). The third-body effi-

ciency factors can also be considered as temperature dependent (Baulch et al. 2005),

but even an approximate parameterisation is hindered by the lack of appropriate

experimental data. The effective third-body concentration continuously changes

during the course of a reaction according to the change of the mixture composition.

The Lindeman equation does not describe properly the pressure dependence of

the rate coefficient, and it can be improved by the application of the pressure and

temperature dependent parameter F. In the Troe formulation (Gilbert et al. 1983),

F is represented by a more complex expression:
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logF ¼ logFcent 1þ logPr þ c

n� d logPr þ cð Þ
� �2" #�1

; ð2:19Þ

with c¼� 0.4� 0.67 logFcent, n¼� 0.75� 1.271 logFcent, d¼ 0.14

and

Fcent ¼ 1� αð Þexp � T

T���

� �
þ α exp � T

T�

� �
þ exp � T��

T

� �
ð2:20Þ

so that four extra parameters, α, T***, T* and T**, must be defined in order to

represent the fall-off curve with Troe parameterisation.
In several cases, the pressure dependence in the fall-off region is described by

temperature-independent Fcent, but still keeping the Troe representation. For exam-

ple, for the reaction H+O2(+M)¼HO2 (+M), Ó Conaire et al.(2004) provided the

following Troe parameters: α¼ 0.5, T***¼ 1.0� 10�30, T*¼ 1.0� 10+30 and

T**¼ 1.0� 10+100. At combustion temperatures (T¼ 700� 2,500 K), the exponen-

tial terms are approximately exp (�1033)� 0, exp(�10�27)� exp(0)¼ 1 and exp

(�1097)� 0; therefore, using these Troe parameters in Eq. (2.20) gives a

temperature-independent Fcent¼ 0.5.

Figure 2.4 shows the change of the apparent first-order rate coefficient kuni with
pressure for the reaction H2O2⇄ 2OH at T¼ 1,000 K. Using log–log axes

(Fig. 2.4a), it is clear that when applying both the Lindemann approach (F¼ 1)

and the Troe parameterisation, the calculated apparent rate coefficient converges to

the low-pressure limit and the high-pressure limit rate coefficient at low and high

pressures, respectively. However, closely approaching the high-pressure limit

requires very high pressures of about 105 bar. Figure 2.4b uses non-logarithmic

axes and shows that at pressures characteristic for an internal combustion engine

(1–60 bar), the rate coefficient cannot be approximated well with the low-pressure

limit. In addition, the Lindemann and Troe equations provide very different rate

Fig. 2.4 The change of the apparent first-order rate coefficient kuni with pressure for reaction

H2O2⇄ 2OH at temperature T¼ 1,000 K using bath gas N2. The source of data is the article of

Troe (2011); (a) logarithmic axes and (b) non-logarithmic axes
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coefficients. The rate coefficient kuni corresponding to the low-pressure limit is a

linear function of pressure on both the log–log and non-logarithmic plots.

Not only the rate coefficients of unimolecular reactions may have pressure

dependence. The other category of reactions with pressure-dependent rate coeffi-

cients is those of complex-forming bimolecular reactions. An example of such

a pressure-dependent reaction is the reaction of OH with CH3 radicals, which is

important both in combustion and atmospheric chemistry. The reaction first pro-

duces a rovibrationally excited CH3OH molecule, which may decompose to

many directions (such as product channels CH3O+H, CH2OH+H, HCOH+H2,

HCHO+H2), but the main products are the stabilisation product CH3OH and

decomposition products singlet methylene and water; 1CH2 +H2O (Jasper

et al. 2007). As Fig. 2.3b shows, the excited CH3OH molecule can lose the extra

energy in collisions and stabilise as a thermally equilibrated CH3OH molecule, can

decompose back to radicals OH and CH3 or can decompose forward to species
1CH2 and H2O. The rate coefficients of the decomposition channels depend on the

energy level of the CH3OH molecule, and decomposition is possible only above an

energy threshold. At very high pressures, the collisions with the molecules present

in the gas mixture are frequent. Therefore, almost all excited CH3OH molecules get

stabilised. Consequently, the reaction can be described with stoichiometry

CH3 +OH⇄CH3OH, and it is a second-order reaction. The corresponding rate

coefficient k1 is called the high-pressure limit. At low pressures, the reaction is

third-order and mainly proceeds via CH3 +OH+M⇄ 1CH2 +H2O+M. The

corresponding third-order rate coefficient k0 is called the low-pressure limit. Within

the fall-off region, the apparent second-order rate coefficient of reaction CH3 +OH

(+M)⇄CH3OH (+M) increases with pressure.

The pressure dependence of the apparent second-order rate coefficient can be

calculated by Equations (2.14) to (2.20). Figure 2.5 shows the change of the

apparent second-order rate coefficient kbi with pressure for reaction

CH3 +OH⇄CH3OH at temperature T¼ 1,000 K. Again, the figure with log–log

Fig. 2.5 The change in apparent second-order rate coefficient kbi with pressure for reaction

CH3 +OH⇄CH3OH at temperature T¼ 1,000 K using bath gas He. The source of data is

the article of De Avillez Pereira et al. (1997); (a) logarithmic axes and (b) non-logarithmic axes
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axes (a) shows that the rate coefficient approaches the limits at extremes pressures,

whilst the figure with non-logarithmic axes (b) indicates that in the pressure range

of 0–5 bar, the apparent second-order rate coefficient significantly changes with

pressure using both the Lindemann and Troe formulations.

The apparent third-order rate coefficient of reaction CH3 +OH

(+M)⇄ 1CH2 +H2O (+M) decreases with pressure. Rate coefficient k0 of the

decomposition of the excited species can be calculated in the following way:

k0 ¼ k0
1

1þ Pr

� �
F: ð2:21Þ

Figure 2.6 shows the change of the apparent third-order rate coefficient ktri with
pressure for this reaction channel at temperature T¼ 1,000 K. Again, the figure with

the log–log axes (a) shows the approach of the limiting rate coefficients, whilst the

non-logarithmic plot (b) indicates the significant change in rate coefficient at engine

conditions of about of 1 to 60 bar. It is interesting to note that the ktri corresponding
to the high-pressure limit is a linear function of pressure on the log–log plot, but it is

a curved function on the non-logarithmic plot, which is a characteristic of functions

log(a)� log(x) and a/x , respectively.
The Troe equation and the similar SRI equation (Stewart et al. 1989) can

accurately represent the fall-off region only for single-well potential energy sur-

faces (Venkatech et al. 1997). For more complicated elementary reactions, the

difference between the theoretically calculated rate coefficient and the best Troe

fit can be as high as 40 %. A series of fitting formulae for the parameterisation of the

fall-off curves are discussed in Zhang and Law (2009, 2011). In some mechanisms,

the pressure dependence is given by the so-called log p formalism [see e.g. Zádor

et al. (2011)] :

Fig. 2.6 The change in apparent third-order rate coefficient ktri with pressure for reaction

CH3 +OH⇄ 1CH2 +H2O at temperature T¼ 1,000 K using bath gas He. The source of data is

the article of De Avillez Pereira et al. (1997); (a) logarithmic axes and (b) non-logarithmic axes
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ln fkg ¼ ln fkig þ ln fkiþ1g � ln fkigð Þ ln fpg � ln fpig
ln fpiþ1g � ln fpig

: ð2:22Þ

Here k is the rate coefficient belonging to pressure p, whilst the ( pi, ki) pairs are a
series of tabulated rate coefficients, defined by Arrhenius parameters, belonging to

different pressures. Hence, this is an interpolation method which is linear in log p.
Usually the rate coefficient at a given pressure will follow the extended Arrhenius

formulation, but this need not be the same at different pressures making the log

p formulation more flexible than the Troe formulation. Differences in third-body

efficiencies can also be accounted for each collider separately, but the log p
formalism is not compatible with the effective concentration formalism [see

Eq. (2.18)]. Another possible approach is the application of Chebyshev polynomials

to represent the temperature and pressure dependencies of the apparent rate coef-

ficients (Venkatech et al. 1997). Whilst this may be more accurate in some cases

than using interpolation based on a limited number of pressures, care should be

taken not to extrapolate the use of Chebyshev polynomials outside the range in

which they were fitted. Further discussion of the handling of pressure-dependent

reactions can be found in Pilling and Seakins (1995) and Carstensen and

Dean (2007).

2.2.3 Reversible Reaction Steps

In theory, all thermal elementary reactions are reversible, which means that the

reaction products may react with each other to reform the reactants. Within the

terminology used for reaction kinetics simulations, a reaction step is called irre-

versible, either if the backward reaction is not taken into account in the simulations

or the reversible reaction is represented by a pair of opposing irreversible reaction

steps. These irreversible reactions are denoted by a single arrow “!”. Reversible

reaction steps are denoted by the two-way arrow symbol within the reaction step

expression “⇄”. In such cases, a forward rate expression may be given either in the

Arrhenius or pressure-dependent forms, and the reverse rate is calculated from the

thermodynamic properties of the species through the equilibrium constants. Hence,

if the forward rate coefficient kf i is known, the reverse rate coefficient can be

calculated from

kri ¼
kf i
Kci

; ð2:23Þ

where Kci is the equilibrium constant expressed in molar concentrations. Kci is

obtained from the thermodynamic properties of the species.

In combustion systems, thermodynamic properties are often calculated from

14 fitted polynomial coefficients called the NASA polynomials for each species

(Burcat 1984). Seven are used for the low-temperature range Tlow to Tmid and seven
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for the high-temperature range Tmid to Thigh. Typical values are Tlow¼ 300 K,

Tmid¼ 1,000 K and Thigh¼ 5,000 K. The polynomial coefficients are determined

by fitting to tables of thermochemical or thermodynamic properties, which are

either measured values or calculated using theoretical methods and statistical

thermodynamics (Goos and Lendvay 2013). The polynomial coefficients can then

be used to evaluate various properties at a given temperature (T ), such as standard

molar heat capacity (C⦵
p ), enthalpy (H⦵) and entropy (S⦵) as follows:

C⦵
p

R
¼ a1 þ a2T þ a3T

2 þ a4T
3 þ a5T

4; ð2:24Þ
H⦵

RT
¼ a1 þ a2

2
T þ a3

3
T2 þ a4

4
T3 þ a5

5
T4 þ a6

T
; ð2:25Þ

S⦵

R
¼ a1lnfTg þ a2T þ a3

2
T2 þ a4

3
T3 þ a5

4
T4 þ a7; ð2:26Þ

where the an parameters are the NASA polynomial coefficients, and R is the

universal gas constant. The standard molar reaction enthalpy (ΔrH
⦵
j ) and entropy

(ΔrS
⦵
j ) can be calculated from the following equations:

ΔrS
⦵
j

R
¼
XI
i¼1

vij
S⦵
i

R
; ð2:27Þ

ΔrH
⦵
j

RT
¼
XI
i¼1

vij
H⦵

i

RT
: ð2:28Þ

The equilibrium constant K in terms of normalised pressures p/p⦵ is then obtained

from

ΔrG
⦵ ¼ �RTln K; ð2:29Þ

K ¼ exp
ΔrS

⦵

R
� ΔrH

⦵

RT

� �
: ð2:30Þ

The equilibrium constant in concentration units Kc is related to the equilibrium

constant in normalised pressure units K by the following:

Kc ¼ K
p⦵

RT

� �Δν

; ð2:31Þ

where p⦵ is the standard pressure and Δν ¼
X
i

νi is the sum of stoichiometric

coefficients. Remember that the stoichiometric coefficients of the products and

reactants have positive and negative signs, respectively. In this way, the reverse

rate coefficient for a thermal reaction can be defined by its forward rate coefficient
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and the appropriate NASA polynomials for the component species within the

reaction.

2.3 Basic Simplification Principles in Reaction Kinetics

Simplification of a kinetic mechanism or the kinetic system of ODES is often

required in order to facilitate finding solutions to the resulting equations and can

sometimes be achieved based on kinetic simplification principles. In most cases,

the solutions obtained are not exactly identical to those from the full system of

equations, but it is usually satisfactory for a chemical modeller if the accuracy of the

simulation is better than the accuracy of the measurements. For example, usually

better than 1 % simulation error for the concentrations of the species of interest

when compared to the original model is appropriate. Historically, simplifications

were necessary before the advent of computational methods in order to facilitate the

analytical solution of the ODEs resulting from chemical schemes. We begin here by

discussing these early simplification principles. In later chapters, we will introduce

more complex methods for chemical kinetic model reduction that may perhaps

require the application of computational methods.

The following four kinetic simplification principles may provide a nearly iden-

tical solution compared to the original system of equations if applied appropriately:

(i) the pool chemical approximation, (ii) the pre-equilibrium approximation, (iii)

the rate-determining step and (iv) the quasi-steady-state approximation. An alter-

native approach, where the kinetic system of ODEs can be formulated to have fewer

variables than the number of species, is based on the application of conserved

properties, and this topic is discussed in Sect. 2.3.5. Decreasing the number of

calculated variables based on conserved properties is different from the previous

four principles, because in this case, the number of variables is decreased without

an approximation and without losing any information. The last subsection deals

with the lumping of reaction steps based on previously introduced principles.

2.3.1 The Pool Chemical Approximation

The pool chemical approximation (also called the pool component approximation)
is applicable when the concentration of a reactant species is much higher than

those of the other species, and therefore the concentration change of this species is

considered to be negligible throughout the simulation period. For example, a

second-order reaction step A +B!C can be converted to first-order, if concen-

tration b of reactant B is almost constant during the simulations. In this way, the

product k0 ¼ k b of concentration b and rate coefficient k is practically constant;

therefore, the second-order expression can be converted to a first-order one:

dc/dt¼ k a b¼ k0 a. In this special case, the pool chemical approximation is called
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the pseudo-first-order approximation and k0 is the pseudo-first-order rate

coefficient.

2.3.2 The Pre-equilibrium Approximation

The pre-equilibrium approximation (PEA; also called the partial equilibrium
approximation or fast–equilibrium approximation) is applicable when the species

participating in a pair of fast-equilibrium reactions are consumed by slow reactions.

After the onset of an equilibrium, the rates of the forward and backward reactions
become equal to each other, and therefore the ratios of the concentrations of the

participating species can be calculated from the stoichiometry of the reaction steps

and the equilibrium constant. According to the pre-equilibrium approximation, if

the rates of the equilibrium reactions are much higher than the rates of the other

reactions consuming the species participating in the equilibrium reactions, then the

concentrations of these species are determined, with good approximation, by the

equilibrium reactions only.

As an example, let us consider the equilibrium reaction A⇄B. The

corresponding rate coefficients are k1 and k2, and the equilibrium constant is

denoted by K¼ k1/k2. In the case of an onset of equilibrium, the rates of the

opposing reactions are identical: k1a¼ k2b, and therefore, b¼ k1/k2a¼Ka. Now
consider the reaction system A ⇄ B!C, where species B is consumed by a slow

reaction with a small rate coefficient k3 compared to k1 and k2. In this case, we can

still assume that b¼Ka is a good approximation, and thus, dc/dt¼ k3 b, dc/
dt¼ k3Ka. Therefore, the concentration of B is not required in order to calculate

the rate of production of C as long as the rate coefficients are known.

A common example of such a situation is the enzyme-substrate reaction

involved in biochemical pathways. In this type of reaction, an enzyme E binds to

a substrate S to produce an enzyme-substrate intermediate ES, which then forms the

final product P:

Eþ S ⇄
k1

k�1

ES!k2 Eþ P:

Here the rate of production of the final product (usually an essential biomolecule)

can be derived using the pre-equilibrium approximation to be

d P½ �
dt

¼ k2
k1
k�1

E½ � S½ � ¼ k2K E½ � S½ �;

where the square brackets indicate the molar concentrations of the given species.

Another common situation is when a large organic molecule isomerises in a

fast–equilibrium reaction to a low-concentration, more reactive form, and this more

reactive species is consumed by a slow reaction. Using the equation dc/dt¼ k3Ka
means that the rate equation contains the less reactive organic species that is present

in higher concentration and therefore can be measured more easily.
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2.3.3 Rate-Determining Step

Even in the case of large reaction mechanisms, the production rate of a reactant or

final product of the overall chemical reaction may depend mainly on the rate

coefficient of a single reaction step. This reaction step is called the rate-determining
step. If we have sequential first-order reactions, then the reaction step having the

smallest rate coefficient is the rate-determining one. In this case, the production rate

of the final product is equal to the rate coefficient of the rate-determining step

multiplied by the concentration of the reactant of this reaction step. In this example

if k2	 k1, k3, k4, k5, then dp/dt� k2b.
In the case of an arbitrary mechanism, the rate-determining step is characterised

by the fact that increasing its rate coefficient increases the production rate of the

product significantly. However, in general, this may not be the reaction step having

the smallest rate coefficient. For example, when species P is produced from species

A in parallel pathways, then the rate coefficient of the rate-determining step may be

relatively high. In the example below, rate coefficient k1 belonging to the rate-

determining step is relatively large if k3, k4	 k1	 k2:

In the general case, we have to investigate how a small change of rate coefficient

kj changes the production rate d yi/d t of product Yi. This effect appears in the local

rate sensitivity coefficient ∂(dci/dt)/∂kj (see Sect. 5.2). If this coefficient is much

higher for reaction j than for the other reaction steps, then reaction j is the rate-

determining step of the production of species i (Turányi 1990).

2.3.4 The Quasi-Steady-State Approximation (QSSA)

The quasi-steady-state approximation (QSSA) is also called the Bodenstein prin-

ciple, after one of its first users (Bodenstein 1913). As a first step, species are

selected that will be called quasi-steady-state (or QSS) species. The QSS-species

are usually highly reactive and low-concentration intermediates, like radicals. The

production rates of these species are set to zero in the kinetic system of ODEs. The

corresponding right-hand sides form a system of algebraic equations. These
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algebraic equations can be used to calculate the concentrations of the QSS-species

from the concentrations of the other (non-QSS) species. The system of ODEs for

the non-QSS-species and the system of algebraic equations for the QSS-species

together form a coupled system of differential algebraic equations. For the success-

ful application of the QSSA, the solution of this coupled system of differential

algebraic equations should be very close to those of the original system of kinetic

ODEs. In some cases, the system of algebraic equations can be solved separately,

that is, the concentrations of all QSS-species can be calculated from (explicit)

algebraic equations. The calculated QSS-species concentrations can then be used

in the system of kinetic ODEs for the remaining species. In this case, following the

application of the QSSA, the kinetic system of ODEs is transformed to a smaller

system of ODEs having fewer variables. The background to the QSSA is that in

chemical kinetic models, the timescales involved usually span quite a wide range

(see Sect. 6.2).

As an example, consider the following reaction sequence where B is a

QSS-species linking reactant A to product C:

A ⇄
k1

k�1

B !k2 C:

If the QSSA is applied to B, then we assume:

d B½ �
dt

¼ 0 ð2:32Þ

so that

k1 A½ � � k�1 B½ � � k2 B½ � ¼ 0: ð2:33Þ

Therefore,

B½ � ¼ k1
k�1 þ k2

A½ �: ð2:34Þ

Hence,

d C½ �
dt

¼ k2 B½ � ¼ k1k2 A½ �
k�1 þ k2

¼ k
0
A½ �; ð2:35Þ

where

k
0 ¼ k1k2

k�1 þ k2
: ð2:36Þ

Therefore, the above set of reactions can be replaced by a single reaction of the

form:
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A ! C ð2:37Þ

with the effective rate coefficient k’ defined in Eq. (2.36). The quantitative kinetic

involvement of intermediate B in the overall reaction is encapsulated in k0, but the
species has been removed from the mechanism. Should the concentration of B be

required, it can be calculated from the expression (2.34), but usually the concen-

trations of the QSS-species are not required in practical applications. Therefore, the

method constitutes their complete removal from the scheme, thus reducing the

overall number of variables in the model and also usually its stiffness since the

range of timescales remaining has been reduced .

Whilst it is quite straightforward to comprehend the applicability of the previous

three basic kinetic simplification principles, the QSSA is not so easy to understand.

For example, it may seem strange that the solution of a coupled system of algebraic

differential equations can be very close to the system of ODEs. Another surprising

feature is that the concentrations of QSS-species can vary substantially over time;

for example, the QSSA has found application in oscillating systems (Tomlin

et al. 1992). The key to the success of the QSSA is the proper selection of the

QSS-species based on the error induced by its application. The interpretation of the

QSSA and the error induced by the application of this approximation will be

discussed fully in Sect. 7.8.

2.3.5 Conserved Properties

As noted above, the consideration of conserved properties allows the kinetic system

of ODEs to contain fewer variables than the number of species. However, it is an

exact transformation, and therefore it is usually handled separately from the rules

above which are based on approximations.

In many reaction mechanisms, there are conserved properties. The simplest

conserved property occurs when the sum of the molar concentrations is constant.

This is obtained when the volume is constant and for each reaction step

0 ¼
X
j

ν J
ij � νB

ij , that is, the change of the number of moles is zero for each

reaction step.

In a closed chemical system, the chemical reactions do not change the moles of

elements, and therefore the number of moles of each element is a conserved

property. Other conserved properties include the total enthalpy in an adiabatic

system or the charge in an electrochemical system. Another way of referring to a

conserved property is as a reaction invariant (Gadewar et al. 2001). If an atomic

group remains unchanged during the reaction steps, then its number of moles is also

a conserved property (conserved moiety). Such a conserved moiety may be, for

example, the adenosine group, and the sum of species AMP, ADP and ATP may

remain constant in a closed biochemical system (Vallabhajosyula et al. 2006).
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The presence of conserved elements and conserved moieties cause linear depen-

dence between the rows of the stoichiometric matrix ν and decrease the rank of the

stoichiometric matrix. In most cases, the number of species NS is much less than the

number of reaction steps NR, that is, NS<NR. If the stoichiometric matrix ν has NR

rows and NS columns, and conserved properties are not present, then the rank of the

stoichiometric matrix is usually NS. If NC conserved properties are present, then the

rank of the stoichiometric matrix is N¼NS�NC. In this case, the original system of

ODEs can be replaced by a system of ODEs having N variables, since the other

concentrations can be calculated from the computed concentrations using algebraic

relations related to the conserved properties.

2.3.6 Lumping of Reaction Steps

In some cases, without much mathematical background, common sense rules can be

applied to the simplification of reaction mechanisms by lumping the reaction steps.

For example, reaction steps having common reactants can be lumped together:

A þ B ! C þ D 0:4k
A þ B ! E þ F 0:6k

Such reactions are common in detailed mechanisms. The usual terminology is that

reaction “A +B! products” is a multichannel reaction that has two reaction
channels, one resulting in products C +D and the other products E + F. The overall

rate coefficient of the reaction is therefore k, whilst the channel ratio is 0.4:0.6. A

synonym of the term channel ratio is the branching ratio. Following the rules for

the creation of the kinetic system of differential equations, the two chemical

equations above result in exactly the same terms when starting from the single

chemical equation below:

A þ B ! 0:4 C þ 0:4 D þ 0:6 E þ 0:6 F k

The number of reaction steps in the mechanism is decreased by one, but since

lumping of the reaction steps resulted in exactly the same set of ODEs, there is no

gain in simulation speed. Nevertheless, the lumping of multichannel reactions as

above is common in atmospheric chemical mechanisms, because it may clarify the

main reaction routes for the user.

Reaction steps can also be lumped using the principle of a rate-determining step

(see Sect. 2.3.3). Let us consider the following two reactions:

A þ B ! C þ D r1 ¼ k1ab slow

D þ E ! F r2 ¼ k2de fast
:

The first, slow reaction, is the rate-determining step, and therefore, the rate of the

lumped reaction obtained by merging these two reactions can be calculated by the
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equation r¼ k1ab. If we want to keep the mass action kinetics formalism, then on

the left-hand side of the lumped reaction should be A+B. During the course of

these two reactions, A, B and E are consumed; C and F are produced. Equal

amounts of D are consumed and produced; therefore, D should not be present in

the lumped equation. Species E is consumed, but since it is not part of the rate-

determining step, it should not be present on the left-hand side of the chemical

equation. Therefore, it appears on the right-hand side, with a �1 stoichiometric

coefficient. The lumped reaction is the following:

A þ B ! C þ F� E r ¼ k1ab:

Using the rules of mass action kinetics, (almost) the same equations can be derived

for the production rates of all species but D. The presence of a negative stoichio-

metric coefficient is perhaps surprising at first glance, but there are several lumped

atmospheric chemical mechanisms (Gery et al. 1989) that contain negative stoichio-

metric coefficients on the right-hand side of some chemical equations.

One result of the reaction lumping above is the removal of the highly reactive

species D. This means that a fast timescale was removed from the system, and the

stiffness of the corresponding ODE system was decreased. The calculation of

lifetimes of species is discussed in Sect. 6.2. Reaction lumping based on timescales

may remove species and decrease stiffness, and thus may lead to increases in

simulation speed. For example, its application was successful for the further

reduction of a skeletal scheme describing n-heptane oxidation in Peters

et al. (2002). This will be discussed more fully in connection with the application

of the QSSA in Sect. 7.8.6.
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