
Manual for Optima++
Version 2.1.0

Máté Papp, Tamás Varga, Ágota Busai, István Gyula Zsély,
Tibor Nagy, Tamás Turányi

2021.05.03.

Authors
The following people have contributed to the development of Optima++

• Máté Papp
• Tamás Varga
• Ágota Busai
• Viktor Samu
• Carsten Olm
• István Gy. Zsély
• Tibor Nagy
• Tamás Turányi

Optima++ is being developed at the ELTE Reaction Kinetics Laboratory, and development
is active and ongoing as of this release.

Operating systems
Optima++ is currently developed under Ubuntu. It is tested under Windows 7 and Win-
dows 10. The code is expected to run on unix-type systems (including OS X) but no
extensive testing was carried out. Any reports of issues or successful usage on different
systems is welcome.

External libraries
Optima++ uses the tinyxml2 library (by Lee Thomason - www.grinninglizard.com) for
XML processing which is freely available under the zlib licence.
Optima++ uses the Eigen library (eigen.tuxfamily.org) for matrix-vector operations,
which is freely available licensed primarily under MPL2 with certain components licensed
under LGPL3+.
Optima++ uses the fmt library (https://github.com/fmtlib/fmt) for text formatting
which is distributed under the MIT license.
Optima++ uses the range-v3 library (by Eric Niebler - https://github.com/
ericniebler/range-v3) which are under the are under the Boost Software License.
Optima++ uses the yaml-cpp library (https://github.com/jbeder/yaml-cpp) for pro-
cessing input files of Zero-rk which is licensed under MIT license.
Optima++ uses the boost C++ libraries (https://www.boost.org/, version 1.75.0)
which is freely available under the Boost Software License.
The external libraries were added as submodules to the Optima++ git repository and they
are located in the thirdparty directory.
The licenses of the external libraries can be found in their respective directories of the
Optima++ source code distribution.

1

www.grinninglizard.com
eigen.tuxfamily.org
https://github.com/fmtlib/fmt
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/jbeder/yaml-cpp
https://www.boost.org/

The graphical interface of Optima++ uses the open source version of the Qt Framework
(https://www.qt.io/) which uses the GNU Lesser General Public License v.3 (with
some parts provided under GPL license).
The graphical interface of Optima++ uses the qcustomplot library which is freely available
under the GPL license.

2

https://www.qt.io/

Contents
Introduction 6

Installation 7
Installation using the online installer . 7

Step 1 . 7
Step 2 . 7
Step 3 . 7

Building from source . 7

Usage 9
1. RKD Format XML files . 9
2. Chemical mechanism files . 9
3. Optima++ input file . 9
4. Integrator settings . 10

Input blocks 12
TXT_TO_XML . 12

Usage . 12
List of TXT_TO_XML keywords . 12
Format of the input file . 13
Summary of valid units . 19

CHECK_XML . 20
Usage . 20

List of CHECK_XML keywords . 20
XML_TO_TXT . 21

Usage . 21
List of XML_TO_TXT keywords . 22

XML_TO_CKII . 23
Usage . 23

XML_TO_FM . 24
Usage . 24

XML_TO_OS . 25
Usage . 25

EXP_INFO . 26
Usage . 26
List of EXP_INFO keywords . 26

MECHMOD . 27
Usage . 27
List of MECHMOD keywords . 28

MECHTEST . 34
Usage . 34
List of MECHTEST keywords . 34

3

Output . 36
SENSITIVITY . 38

Usage . 38
List of SENSITIVITY keywords . 38
Output . 40

OPTIMIZATION . 41
The objective function . 41
Estimation of the covariance matrix . 41
Focusing during parameter sampling . 41
Usage . 42
Keywords in OPTIMIZATION block . 42
Reaction blocks . 44

Keywords in REACTION blocks . 44
Uncertainty and sampling of rate parameters 47

Characterizing uncertainties of rate coefficients 47
Application of uncertainty ranges during optimization 48
Random sampling of rate parameters 49

Output . 49
optimizationMonitor . 49
optimalParameters . 49
parameterSets . 50
errorFunctionValues . 50

FLAME_DATABASE . 51
Usage . 51
List of FLAME_DATABASE keywords . 51

XMLMOD . 53
List of XMLMOD keywords . 53
Descripton of the possible xml selectors/commands 55

ATOMFLOW . 56
List of ATOMFLOW keywords . 56

Calling Optima++ from command line 58
TXT_TO_XML . 59

Usage . 59
CHECK_XML . 60

Usage . 60
XML_TO_TXT . 61

Usage . 61
XML_TO_CKII . 62

Usage . 62
XML_TO_FM . 63

Usage . 63
XML_TO_OS . 64

Usage . 64

4

EXP_INFO . 65
Usage . 65

MECHMOD-type keywords . 66
Usage . 66
COMPILE_CKII . 66
COMPILE_FM . 66
COMPILE_OS . 67
PRINT_CKII_MECH with REMOVE_SPECIES 67
PRINT_CKII_MECH with REMOVE_REACTION 68
PRINT_CKII_MECH with KEEP_SUBMECH 68
PRINT_CKII_MECH with SWITCH_A_UNIT 69
PRINT_CKII_MECH with SWITCH_E_UNIT 69
PRINT_FM_MECH with REMOVE_SPECIES 69
PRINT_FM_MECH with REMOVE_REACTION 70
PRINT_FM_MECH with KEEP_SUBMECH . 70

Appendices 73
Copyright notices . 73
TXT_TO_XML for ReSpecTh version 1.0 files . 75

Format of the input file . 75
Summary of valid units . 80

5

Introduction
Optima++ is a general framework for manipulating experimental data related to combus-
tion chemistry, carrying out simulations of such experiments, performing model optimiza-
tion and analysis, and providing auxiliary features for the above tasks. While the main
focus is on combustion chemistry, most features should be applicable in any field of gas
phase kinetics.
It is written in C++, and utilizes FlameMaster (http://www.itv.
rwth-aachen.de/en/downloads/flamemaster/), OpenSmoke++ (http://
creckmodeling.chem.polimi.it/111-category-most-recent-publications/
354-most-recent-publications-cuoci-cpc2015) or Zero-rk (https://github.
com/LLNL/zero-rk) for simulations.
The code is developed and used primarily on unix-type systems, but is generally compat-
ible with Windows systems too.

6

http://www.itv.rwth-aachen.de/en/downloads/flamemaster/
http://www.itv.rwth-aachen.de/en/downloads/flamemaster/
http://creckmodeling.chem.polimi.it/111-category-most-recent-publications/354-most-recent-publications-cuoci-cpc2015
http://creckmodeling.chem.polimi.it/111-category-most-recent-publications/354-most-recent-publications-cuoci-cpc2015
http://creckmodeling.chem.polimi.it/111-category-most-recent-publications/354-most-recent-publications-cuoci-cpc2015
https://github.com/LLNL/zero-rk
https://github.com/LLNL/zero-rk

Installation
Installation using the online installer

Step 1 Download the installer suitable for your operating system from http://
respecth.hu/.

Step 2 Run the installer and follow the installer’s instructions.

Step 3 After the installation process finishes, you can start the graphical user interface
of Optima++ by running Optima++.exe executable located in the GUI\bin\ folder of your
Optima++ installation.

Building from source

For compiling Optima++ on unix-type systems (including OS X) a compiler which sup-
ports the c++17 standard is required. We suggest using gcc-10 (g++) or newer. The
compilation of Optima++ was also tested with clang-9 on Ubuntu. On Windows MinGW
is recommended which is a port of gcc and is most conveniently used together with
Code::Blocks (On windows the gcc-8 filesystem library seems to be broken, use gcc-7
or gcc-9 instead). Building the code can be performed using ccmake in a command line
(or with the cmake-gui on windows).
The libraries used in Optima++ are included in the distribution package and their path rel-
ative to the project directory is currently hardcoded in the CMakelists.txt, so changing
them is not recommended.
After compilation the executable file should be found in bin/Release directory. (If
you build Optima++ in a separate folder, copy the bin/Release/OptimaPP to the source
directory.)
To use FlameMaster with Optima++, you first must download it from http://www.itv.
rwth-aachen.de/en/downloads/flamemaster/, and compile it following the instruc-
tions in the FlameMaster package. To download FlameMaster you need to request a
password from Prof. Heinz Pitsch. The request form is available on the FlameMaster
download page.

NOTE: Optima++ will only function correctly with FlameMaster V4.0 BETA or newer.
Also, compilation must be carried out using the -DOPTIMAPP=ON option with cmake.

IMPORTANT NOTICE: The ScanMan executable of FlameMaster seems to behave
incorrectly if compiled with “Release” build settings. If problems occur during compila-
tion of mechanisms, try compiling ScanMan with “Debug” build settings.

After compilation, place the FlameMan, ScanMan and CreateBinFile executables into
the executables/ directory of the Optima++ package. On Windows systems the exe-
cutable names should have the .exe extension, and in case CygWin was used to com-
pile FlameMaster, the cygwin1.dll, cygstdc++-6.dll and cyggcc_s-seh-1.dll files

7

http://respecth.hu/
http://respecth.hu/
http://www.itv.rwth- aachen.de/en/downloads/flamemaster/
http://www.itv.rwth- aachen.de/en/downloads/flamemaster/

should also be copied from the /bin subdirectory of cygwin to the executables directory,
or added to the PATH system variable.
Compilation of FlameMaster mechanisms also required perl to be installed.
To use OpenSmoke++ with Optima++, you must request the OpenSMOKE++ 0.12.0
version from prof. Alberto Cuoci (alberto.cuoci@polimi.it). Copy the content
of OpenSMOKE++ Suite bin folder to the executables/opensmoke directory. On
linux the LD_LIBRARY_PATH of OpenSmoke++ is hardcoded in optima, the content of
OpenSMOKE++ Suite lib folder should be copied to the executables/opensmoke/lib
directory.
To use Zero-rkwith Optima++, download the source code from https://github.com/
LLNL/zero-rk, compile and install it according the Installation Notes section on their
GitHub page.
After installation, set the path in the 5th line of

executables/zero-rk_steady.py
executables/zero-rk_unsteady.py

files to point to the python library folder of Zero-rk.

8

alberto.cuoci@polimi.it
https://github.com/LLNL/zero-rk
https://github.com/LLNL/zero-rk

Usage
Depending on the tasks to be performed Optima++ may use four sources of information:

1. RKD Format XML files for the description of experimental conditions.
2. Chemkin-II or FlameMaster format chemical reaction mechanism files.
3. An Optima++ input file describing the tasks to carry out.
4. Input file of the integrator settings.

1. RKD Format XML files
Optima++ accepts all valid RKD Format XMLs up to version 2.3. The conformity of the
file to the appropriate ReSpecTh Kinetics Data Format Specification is strictly checked
when the files are read (to be more precise, only the structure of the XML will be
verified). Only error free files are accepted. The current specification can be downloaded
from this link: http://respecth.chem.elte.hu/respecth/reac/ReSpecTh_Kinetic_
Data_Format_Specification_v2.2.pdf.
Thousands of RKDF XML files can be downloaded from the ReSpecTh repository:
www.respecth.hu.

2. Chemical mechanism files
Chemkin-II or FlameMaster format chemical mechanism files are needed as the source
of the chemical reaction, thermodynamic and transport information. For its specification
please refer to the documentation of the appropriate solver package.

3. Optima++ input file
To carry out any task with Optima++ either input files are required or there is a possibility
to call Optima++ from command line for limited tasks (see section Calling Optima++ from
command line).
To run Optima++ with the input file “INPUT_FILE” navigate to the package directory and
give the following command on unix-type systems

bin/Release/OptimaPP INPUT_FILE

or on Windows

bin\Release\OptimaPP.exe INPUT_FILE

The executable should be run from the root directory of the package, as certain files are
needed from the res/ and settings/ directories included in the release package, and the
paths are currently hardcoded.
Input files are built from input blocks which are started with an appropriate keyword
and terminated with an END keyword, with the exception of certain single-line blocks.

9

http://respecth.chem.elte.hu/respecth/reac/ReSpecTh_Kinetic_Data_Format_Specification_v2.2.pdf
http://respecth.chem.elte.hu/respecth/reac/ReSpecTh_Kinetic_Data_Format_Specification_v2.2.pdf
www.respecth.hu

Each block has individual syntax, but they typically contain lines defining settings for
the block and lines defining tasks to be carried out by Optima++.

NOTE: When referring to files in inputs of Optima++ all paths should be relative to the
directory from where Optima++ is being run, which is not necessarily the directory where
the executable is.

A typical layout of an input block is as follows:
BLOCK_KEYWORD

SETTINGS_LINE_1 on
SETTINGS_LINE_2 45

DO_THIS ON_THIS
DO_THIS ON_THIS_TOO

END

Any number of input blocks can be present in a single input file. Blocks are executed in
strict order, meaning that every task will be completely executed in a block before moving
onto tasks defined by the next block in the input file. This is so, that it is possible to
have blocks depend on previous ones, without having to call Optima++ multiple times.
Such a strict ordering is not enforced for tasks within blocks, but is usually adhered to.
The individual input blocks are described in the following sections, with respect to their
syntax and functionality.

4. Integrator settings
Many functions of Optima++ involve simulations of combustion experiments. The solver
packages that can be used for the simulations generally have several settings such as
numerical tolerances for the integration that is performed during the simulations or pa-
rameters of the diffusion model used for 1D flame simulations.
Optima++ is capable of reading, interpreting and utilizing integrator settings. At startup
Optima++ attempts to read the res/SettingsList file (path relative to the running
directory), which should contain the list of integrator settings files that are to be read
and interpreted, and potentially used in tasks. Such a SettingsList file is provided with
the Optima++ package, along with the settings files it refers to, that covers most typical
cases and provides reasonable settings.
Each line of the SettingsList file should contain four string tokens, which are the path
and name of a settings file, the settings tag associated with the file, the abbreviation of
the respective solver package and the type of measurement for which the settings should
be used.

Examples
! FM settings
settings/FM_0D_settings default FM ignition

10

settings/FM_0D_settings default FM conc_prof
! OS settings
settings/OS_0D_settings default OS ignition
settings/OS_0D_settings default OS outlet_conc
! CKII settings
settings/CKII_0D_settings default CKII ignition
settings/CKII_0D_settings default CKII outlet_conc

The files that are referred to on each line must contain all integrator settings for the
appropriate model type according to the syntax of the respective solver package. The
example files provided in the settings directory of the Optima++ release package show all
settings that are required.

NOTE: A single file can be used for multiple purposes, as in the above example.

The currently handled solvers are FM (FlameMaster), OS (OpenSmoke++) and CKII
(Chemkin-II). The valid experiment type strings are the following:
ignition 0D ignition delay simulation
ignition_VTIM 0D ignition delay simulation with volume-time history (usually

RCM)
conc_prof 0D concentration-time profile simulation
outlet_conc 0D outlet concentration simulation
psr perfectly stirred reactor simulation
burning_velocity 1D laminar flame simulation

All functions of Optima++ that require chemical kinetic simulations or printing of input
files will, by default, try to use the settings with the “default” tag that is for the
appropriate solver and simulation type. This can be overridden with the SETTINGS_TAG
keyword in any of the appropriate blocks, followed by the string tag that should be
used. If no settings were read with the requested tag for the required solver package
and/or simulation type then Optima++ will attempt to use the “default” tag and if even
those are not available, the “inbuilt_default” tag will be used, which refers to a set of
hardcoded integrator settings (see class IntegratorSettingsHandler in the source code
for the inbuilt defaults).

11

Input blocks
In this section the individual input blocks of the Optima++ input files are described. You
can read information on the usage, the syntax, possible keywords, find examples and
sometimes the description of their output.

TXT_TO_XML

Create XML datafiles according to the ReSpecTh Kinetics Data Format Specification
version 2.3 from simple and easy to edit plaintext files.

Usage

In a TXT_TO_XML block each line should contain two strings. The first should be the full
path of the input plaintext file and the second the full path of the desired output file. If
there are further strings within a line, the line will be ignored.
Each source file will be read individually, and if the source file defines a valid and complete
RKD file then a new RKD file will be created with the given output path and name.
The path to the output files must exist, as no directories will be created based on this
input block. The paths given in the block are relative to the directory from where the
program is called.
Single files can also be processed using the alternate syntax that can be seen below.

Processing a single file
TXT_TO_XML path_to_input/text_file_1 path_to_output/xml_file_1

Processing multiple files
TXT_TO_XML
SHOWWARNING

path_to_input/text_file_1 path_to_output/xml_file_1
path_to_input/text_file_2 path_to_output/xml_file_2
path_to_input/text_file_3 path_to_output/xml_file_3

END

List of TXT_TO_XML keywords

SHOWWARNING

By default Optima++ only reports the error messages of a TXT_TO_XML job, but in
certain cases it could be useful to have all the warnings as well. The SHOWWARNING
keyword enables the reporting of warnings.
In the single-line case it is not possible to use this keyword.

12

Format of the input file

The input text files to be converted into XML files must follow the format described in
this section. Example forms are provided in the release for all experiment types that are
defined in the RKDFS v2.3.
The text files are processed line-by-line, and any text following a “!” or “%” character
will be considered a comment and not interpreted.
The keywords and their usage is described in the table below. The arguments following
the keywords are given in italics. Spaces in strings will be kept in the XML files. In case
of species names, spaces can cause incorrect handling of species during the interpretation
of XML files. Both decimal and scientific notations are accepted number formats.

File author: string

The string following the keyword will be used to identify the author of the XML file (which
does not imply that the experimental data were obtained by this author).

File DOI: string

The string following the keyword will be used to specify a unique digital object identifier (DOI)
that belongs to the dataset.

Specification version: string

The number following the keyword will be used to specify the ReSpecTh Kinetics Data Format
Specification version the created file adheres to. The latest released specification version is 2.3.
Two integers separated by a dot will be understood as major_version.minor_version and will
be inserted into the XML file accordingly.

File version: string

The number following the keyword can be used to track the version history of a certain
file. It should be set to 1.0 by default. A higher number should be chosen whenever a
file was edited at a later stage. Two integers separated by a dot will be understood as
major_version.minor_version and will be inserted into the XML file accordingly.

Reference description: string

The unformatted string following the keyword will be stored as the bibliographic reference of
the measurements stored in the XML file. This may contain the name of the authors of the
corresponding publication, journal name, page numbers, etc.

Reference DOI: string

The string following the keyword will be stored as the DOI of the corresponding publication.
Providing this information is optional, and will not influence the interpretation of the XML
files.

Reference location: string

13

The string following the keyword may help the users of XML files to locate the data in the
corresponding publication (e.g. “Main article” or “Supplementary Material”). Providing this
information is optional, and will not influence the interpretation of the XML files.

Reference table: string

The string following the keyword may help the users of XML files to locate the data in the
corresponding publication (e.g. “Table 1, high-pressure series”). Providing this information is
optional, and will not influence the interpretation of the the XML files.

Reference figure: string

The string following the keyword may help the users of XML files to locate the data in the
corresponding publication (e.g. “Figure 2, blue circle”). Providing this information is optional,
and will not influence the interpretation of the XML files.

Experiment type: string

The string following the keyword is used to define the experiment type.
The allowed types are:

• ignition delay measurement
• laminar burning velocity measurement
• outlet concentration measurement
• concentration time profile measurement
• jet stirred reactor measurement
• burner stabilized flame speciation measurement
• rate coefficient determination

Apparatus: string

The string following the keyword is used to provide the apparatus type in which the experiment
was carried out (e.g. shock tube). Providing this information is optional, and will not influence
the interpretation of the XML files.

Operation mode: string

The string following the keyword is used to provide the operating mode of the experimen-
tal apparatus in which the experiment was carried out (e.g. reflected shock). Providing this
information is optional, and will not influence the interpretation of the XML files.

Method: string

The string following the keyword is used to describe the experimental method that was used in
a direct measurement (e.g. “laser photolysis, laser-induced fluorescence”) or the method used
in a theoretical determination study (e.g. “VTST”). Providing this information is optional, and
will not influence the interpretation of the XML files.

Common experimental conditions: varied

The keyword can be followed by multiple lines, each specifying an experimental condition that
is common across all individual experiments that are described within the file.
The lines should follow the following format (the order of the sub-keywords is arbitrary):

14

Name:string Label:string Source_type:string Species:string
Value:number Unit:string Chemical_name:string CAS:string InChI:string

SMILES:string Reference:string Kind:string Bound:string

The string after “Name:” defines what type of physical property is given (e.g. temperature,
pressure).

The string after “Label:” is the short notation of the physical property (e.g. for a temperature
property, the label is usually T).

The string after “Source_type:” defines the source type of the given physical property
(reported, digitized, estimated or calculated).

The string after “Species:” defines which species a composition or concentration type of
property refers to. For other types of properties it should not be used.

The number after “Value:” provides the numeric value of the property, and the string after
“Unit:” provides the corresponding unit.
Valid property types and corresponding units are summarized in the table at the end of this
section.

If the property is concentration or composition type then the string after “CAS:”, “InChI:”
and “SMILES:” can be used to identify species. The string after “Chemical_name:” denotes the
chemical name of a certain species.

If the property name type is “uncertainty”, the string after “Reference:” contains the name
of the property to which the specified uncertainty refers, the string after “Kind:” describes the
kind of uncertainty (absolute or relative), and the string after “Bound:” specifies the type
of uncertainty bound(s) (plus, minus or plusminus).

The string after “Kind:” defines the nature of a physical property (e.g. if a pressure rise is
relative).

Varied experimental conditions and measured results: varied

The keyword can be followed by multiple lines, each specifying an experimental condition that
was varied between the individual experiments, or an experimental result.
The lines should follow the following format (the order of the sub-keywords is arbitrary):
Name:string Source_type:string Species:string Unit:string ID:string

Chemical_name:string CAS:string InChI:string SMILES:string
Reference:string Kind:string Bound:string Label:string

The string after “Name:” defines what type of physical property is given (e.g. temperature,
pressure).

The string after “Source_type:” defines the source type of the given physical property
(reported, digitized, estimated or calculated).

The string after “Species:” defines which species a composition or concentration type of
property refers to. For other types of properties it should not be used.

The string after “Unit:” defines the unit for the numeric values that will be given later in the
file.

15

The string after “ID:” provides an identifier for the property which will be used to identify
which values correspond to which property.

The string after “Label:” defines a label for the species which is the suggested plot label for
the given property. As no plotting is carried out by Optima++ providing a label is not necessary
and the given label is not used (only stored in the XML files).

If the property is concentration or composition type then the string after “CAS:”, “InChI:”
and “SMILES:” can be used to identify species. The string after “Chemical_name:” denotes the
chemical name of a certain species.

If the property name type is “uncertainty”, the string after “Reference:” contains the name
of the property to which the specified uncertainty refers, the string after “Kind:” describes the
kind of uncertainty (absolute or relative), and the string after “Bound:” specifies the type
of uncertainty bound(s) (plus, minus or plusminus).

The string after “Kind:” defines the nature of a physical property (e.g. if a pressure rise is
relative).

Varied values:

A header line must follow the keyword, which must contain the IDs that were defined for the
varied properties. The order of the ID strings defines the order in which the numerical values
are provided for the varied properties. Common ID names are e.g. “x1, x2,. . . ”, but any name
can be chosen.
The header line must be followed by lines with as many numerical values as many IDs were
provided in the header, and in the corresponding order. Each line defines an experimental data
point.
An example is provided below:
Varied values:
x1 x2
25.64 0.0466
37.34 0.0529
45.11 0.0591
49.89 0.0653
51.28 0.0713
50.00 0.0773
42.45 0.0832
33.30 0.0891
22.77 0.0948

Ignition definition:

The definition of the ignition delay can be specified with this keyword.
The keyword must be followed by a line with the following format (the order of the sub-keywords
is arbitrary):
MeasuredQuantity:string Type:string Amount:number Unit:string

16

The string following “MeasuredQuantity:” defines what physical property was used to define
the ignition delay. This can be pressure, temperature or the concentration of a species. These
are to be denoted by “p”, “T”, and the name of the species (e.g. “OH”), respectively. Alternative
names of excited species are accepted according the following lists:

Excited CH: CH* CHEX CHV CH(E) CH(A)

Excited OH: OH* OHEX OHV OH(E) OH(A)

Excited CO2: CO2* CO2EX CO2V CO2(E) CO2(A)

In case there is no alternatively named species in the mechanism the non-excited species is used
in the calculation of the ignition delay time (this fallback results a warning message only).

The string following type “Type:” defines which feature of the measured physical property is
considered for the ignition delay. Valid values are summarized below:

• max
• d/dt max
• baseline max intercept from d/dt
• baseline min intercept from d/dt
• concentration
• relative concentration

See the RKD Format Specification for a detailed description of the types.

The number following “Amount:” defines the absolute or relative concentration value the target
species has to reach for an ignition to occur. This attribute can only be used when the value of
type is “concentration” or “relative concentration”. The string following “Unit:” defines
the corresponding unit.

Time shift definition:

The time shifting procedure can be specified with this keyword for a concentration time profile
measurement.

The keyword must be followed by a line with the following format (the order of the sub-keywords
is arbitrary):
MeasuredQuantity:string Type:string Amount:number

The string following “MeasuredQuantity:” defines what physical property was used to define
the time shift. This must be the name of a single measured species.

The string following type “Type:” defines which part of the specified species profile is matched
with the experiments. The valid types are summarized below:

• half
• inflexion
• relative

See the RKDFS manual for a detailed description of the types.

The number following “Amount:” defines the absolute or relative concentration value the target
species has to reach for ignition to occur. This attribute can only be used when the value of
type is “concentration” or “relative concentration”.

Volume-time profile:

17

A volume-time history can be defined with this keyword for an ignition delay experiment (usually
an RCM experiment).

The keyword must be followed by lines defining a time and a volume property, in an identical
way to property lines after “Varied experimental conditions and measured results:”.

These lines must be followed by “Profile:”, after which a header line must appear with the
IDs defined here. This must be followed by the numeric values for the time–volume pairs.
An example can be seen below:
Volume-time profile:
dataGroupID: dg1 dataGroupLabel: V-t history dataPointLink: 1
Type: time Unit: s ID: x4
Type: volume Unit: cm3 ID: x5
Profile:
x4 x5
0.000000e+000 1.000000e+000
1.000000e-006 9.998782e-001
7.564500e-004 9.886456e-001
1.004150e-003 9.831007e-001

Reaction:

For direct rate coefficient determinations this keyword must be used to specify the reaction of
which the rate coefficient is described.

The keyword must be followed by a line with the following format (the order of the sub-keywords
is arbitrary):
Reaction string:string Order:integer Bulkgas:string

The string following “Reaction string:” is the reaction string. The names of species on the
same side of the reaction must be separated by “+” characters, and the reactant and product
sides must be separated by an “=” sign, which can be bordered by “>” or “<” characters.
The reaction string must contain “LP” or “HP” before the first species separated by a space, if
the rate coefficients measured are at the low pressure or high pressure limit respectively, for
pressure dependent reaction rate coefficients (e.g. “LP H+O2+M=HO2+M”).

The integer following “Order:” defines the order of the reaction. This should match with the
reaction string, including high/low pressure limit specification. For fall-off reactions use the
lower order (i.e. that which corresponds to the high-pressure limit).

The string following “Bulkgas:” specifies the major diluent gas for the experiment/theoretical
determination. This only has significance for pressure-dependent rate coefficients and low-
pressure limit rate coefficients. When calculating the rate coefficient the bulkgas will be taken
into account through third-body collision efficiency effects, as if the whole gas composition was
made up by the bulkgas.

NOTE: It is also possible to define a detailed composition through the common or varied
conditions, and in this case the bulkgas will be completely ignored.

18

Summary of valid units

When printing XML files from text files, Optima++ does not check explicitly is the spec-
ified units are valid within the RKDFS. As of version 2.1.0, the given units are printed
into the XML files and if incorrect or unhandled units are given, then any solver input
files printed from XML will not be correct or complete (a warning will be printed in such
a case). Therefore it is important to use only those units that are handled within the
RKDFS.
In the following table a summary of the unit strings that are currently handled within
the RKDFS is given. Here all strings are given in the exact way as it should appear in the
file. This means that exponents are not typed as superscript, and the micro (µ) prefix
should be typed as “u” to guarantee that these can be typed in plain text files.

Property type Valid units

temperature K

pressure Pa, kPa, MPa, Torr, torr, bar, mbar, atm

volume m3, dm3, cm3, mm3, L

time s, ms, us, ns, min

residence time s, ms, us, ns, min

distance m, dm, cm, mm

ignition delay s, ms, us, ns, min

length m, dm, cm, mm

density g m-3, g dm-3, g cm-3, g mm-3,
kg m-3, kg dm-3, kg cm-3, kg mm-3

flow rate g m-2 s-1, g dm-2 s-1, g cm-2 s-1, g mm-2 s-1,
kg m-2 s-1, kg dm-2 s-1, kg cm-2 s-1, kg mm-2 s-1

flame speed m/s, dm/s, cm/s, mm/s, m s-1, dm s-1, cm s-1, mm s-1

composition mole fraction, percent, ppm, ppb

concentration mol/m3, mol/dm3, mol/cm3, mol m-3, mol dm-3, mol cm-3,
molecule/m3, molecule/dm3, molecule/cm3, molecule m-3,
molecule dm-3, molecule cm-3

rate coefficient s-1,
m3 mol-1 s-1, dm3 mol-1 s-1, cm3 mol-1 s-1,
m3 molecule-1 s-1, dm3 molecule-1 s-1, cm3 molecule-1 s-1,
m6 mol-3 s-1, dm6 mol-2 s-1, cm6 mol-2 s-1,
m6 molecule-2 s-1, dm6 molecule-2 s-1, cm6 molecule-2 s-1

pressure rise ms-1, s-1

all relative properties unitless

19

CHECK_XML

Check the conformity of the XML datafiles to the appropriate ReSpecTh Kinetics Data
Format Specification.

Usage
There are two legal styles for a CHECK_XML job. The first is a single-line command, where
one argument follows the keyword. The other one is a CHECK_XML block, where each line
should contain one string: the full path of the input XML file.
In both cases if there are further strings within a line (after the removal of potential
comments), the line will be ignored.
Optima++ checks species appearing in the input XML files and their identifiers based on
the speciesDatabase.xml file. The program warns if a given species is missing from the
database or if there are conflicting identifiers.

Processing a single file
CHECK_XML path_to_input/xml_file_1

Processing multiple files
CHECK_XML
SHOWWARNING

path_to_input/xml_file_1
path_to_input/xml_file_2
path_to_input/xml_file_3

END

List of CHECK_XML keywords

SHOWWARNING

By default Optima++ only reports the error messages of a CHECK_XML job, but in certain
cases it could be useful to have all the warnings as well. The SHOWWARNING keyword
enables the reporting of warnings.
In the single-line case it is not possible to use this keyword.

20

XML_TO_TXT

Create plain text files from ReSpecTh format files that can be used by TXT_TO_XML. The
general purpose of this is to avoid directly editing XML files when data is to be modified,
and rather edit more easily readable text files or convert the data in a non-tagged format
which can be useful for people who are not familar with XML files. The conformity of the
file to the appropriate ReSpecTh Kinetics Data Format Specification is strictly checked
during the conversion (to be more precise, only the structure of the XML will be verified).

Usage

In an XML_TO_TXT block each line should contain two strings. The first should be the
full path of the input XML file and the second the full path of the desired output file. If
there are further strings within a line, the line will be ignored.
Each source file will be read individually. If the input file is a valid RKD file, then a
plaintext file will be created with the requested output path. The file will contain the
same information as the RKD input file and can be converted back using the TXT_TO_XML
function of Optima++.

NOTE: When converting an RKD file using XML_TO_TXT and back with TXT_TO_XML the
files might not be exactly identical, but semantically they will be the same. If chemName,
CAS, InChI or SMILES for a species is missing Optima++ automatically adds this informa-
tion based on the species’ preferredKey if it can be found in the speciesDatabase.xml.

The path to the output files must exist, as no directories will be created based on this
input block. The paths given in the block are relative to the directory from where the
program is called.
Single files can also be processed using the alternate syntax that can be seen below.

Processing a single file
XML_TO_TXT path_to_input/xml_file_1 path_to_output/txt_file_1

Processing multiple files
XML_TO_TXT
SHOWWARNING

path_to_input/xml_file_1 path_to_output/txt_file_1
path_to_input/xml_file_2 path_to_output/txt_file_2
path_to_input/xml_file_3 path_to_output/txt_file_3

END

The file speciesDatabase.xml is used by Optima++ to complement missing unambiguous
identifiers for species. The speciesDatabase.xml file is located in the Optima++ main
directory and can be extended by the users using any ASCII text editor.

21

Its format must follow this example:
<database>
<species preferredKey="C3H6">

<chemName>propylene</chemName>
<CAS>115-07-1</CAS>
<InChI>1S/C3H6/c1-3-2/h3H,1H2,2H3</InChI>
<SMILES>CC=C</SMILES>

</species>
<species preferredKey="C3H8">

<chemName>propane</chemName>
<CAS>74-98-6</CAS>
<InChI>1S/C3H8/c1-3-2/h3H2,1-2H3</InChI>
<SMILES>CCC</SMILES>

</species>
</database>

List of XML_TO_TXT keywords

SHOWWARNING

By default Optima++ only reports the error messages of an XML_TO_TXT job, but in
certain cases it could be useful to have all the warnings as well. The SHOWWARNING
keyword enables the reporting of warnings.
In the single-line case it is not possible to use this keyword.

22

XML_TO_CKII

Create Chemkin-II input files from ReSpecTh format files. Inputs can be created for
SENKIN (ignition delay, outlet concentration and concentration-time profile measure-
ments), JSR and PREMIX (only burning velocity measurements currently).
The conformity of the file to the appropriate ReSpecTh Kinetics Data Format Specifica-
tion is strictly checked during the conversion.

NOTE: Direct rate coefficient determination type XMLs cannot be used to create
Chemkin-II input files, as evaluating rate coefficients does not require a solver.

Usage

In an XML_TO_CKII block each line should contain two strings. The first should be the
full path of the input plaintext file and the second the path of the directory where the
output files should be printed. The path to the output files must exist, as no directories
will be created based on this input block.

NOTE: Unlike TXT_TO_XML and XML_TO_TXT, here the path of the output directory must
be specified and the name of the output file not. This is due to the fact that most RKD
files contain the definition more than one experiment, therefore usually more than one
output file will be produced.

The names of the output files will be assembled from the name of the input RKD file
(without extension) and a _p tag followed by the index of the experiment in the file
and .inp as an extension. E.g. myExperiment_p3.inp for the third experiment from
myExperiment.xml.

Processing a single file
XML_TO_CKII path_to_input/xml_file_1 path_to_output/output_directory

Processing multiple files
XML_TO_CKII

path_to_input/xml_file_1 path_to_output/output_directory
path_to_input/xml_file_2 path_to_output/output_directory
path_to_input/xml_file_3 somewhere/else

END

23

XML_TO_FM

Create FlameMaster input files from ReSpecTh format files. Inputs can be created for
0D, PSR and freely propagating flame configurations.

NOTE: Direct rate coefficient determination type XMLs cannot be used to create
FlameMaster input files, as evaluating rate coefficients does not require a solver.

Usage

In an XML_TO_FM block each line should contain two strings. The first should be the full
path of the input plaintext file and the second the path of the directory where the output
files should be printed. The path to the output files must exist, as no directories will be
created based on this input block.

NOTE: Unlike TXT_TO_XML and XML_TO_TXT, here the path of the output directory must
be specified and the name of the output file not. This is due to the fact that most RKD
files contain the definition more than one experiment, therefore usually more than one
output file will be produced.

The names of the output files will be assembled from the name of the input RKD file
(without extension) and a _p tag followed by the index of the experiment in the file
and .inp as an extension. E.g. myExperiment_p3.inp for the third experiment from
myExperiment.xml.

Processing a single file
XML_TO_FM path_to_input/xml_file_1 path_to_output

Processing multiple files
XML_TO_FM

path_to_input/xml_file_1 path_to_output
path_to_input/xml_file_2 path_to_output
path_to_input/xml_file_3 path_to_output

END

24

XML_TO_OS

Create OpenSmoke++ input files from ReSpecTh format files. Inputs can be created for
0D, PSR and freely propagating flame configurations.

NOTE: Direct rate coefficient determination type XMLs cannot be used to create
OpenSmoke++ input files, as evaluating rate coefficients does not require a solver.

Usage

In an XML_TO_OS block each line should contain two strings. The first should be the full
path of the input plaintext file and the second the path of the directory where the output
files should be printed. The path to the output files must exist, as no directories will be
created based on this input block.

NOTE: Unlike TXT_TO_XML and XML_TO_TXT, here the path of the output directory must
be specified and the name of the output file not. This is due to the fact that most RKD
files contain the definition more than one experiment, therefore usually more than one
output file will be produced.

The names of the output files will be assembled from the name of the input RKD file
(without extension) and a _p tag followed by the index of the experiment in the file
and .inp as an extension. E.g. myExperiment_p3.inp for the third experiment from
myExperiment.xml.

Processing a single file
XML_TO_OS path_to_input/xml_file_1 path_to_output

Processing multiple files
XML_TO_OS

path_to_input/xml_file_1 path_to_output
path_to_input/xml_file_2 path_to_output
path_to_input/xml_file_3 path_to_output

END

25

EXP_INFO

Print the experimental conditions of measurements from ReSpecTh Kinetics Data Format
Specification XML files.

Usage

When using EXP_INFO, two output files (using INFO_OUTPUT and RAW_OUTPUT keywords)
and a list of input XML files must be defined. The XML files must be given with their
full paths.

List of EXP_INFO keywords

INFO_OUTPUT

The file followed INFO_OUTPUT keyword will contain a summary of the experimantal
condition ranges, one line per XML file.

RAW_OUTPUT

The file followed RAW_OUTPUT keyword will containd detailed print of conditions, one
line per experimental point.

26

MECHMOD

Read and manipulate complex chemical kinetic mechanisms. The mechanism modifi-
cation capabilities of the MECHMOD block are similar to those of the MECHMOD program
written by Tamás Turányi (downloadable from www.respecth.hu) but not all features
are available yet. A full coverage is planned for future releases of Optima++.
Apart from manipulation of mechanisms the MECHMOD block must be used to read and
interpret mechanisms before they can be utilized by Optima++ for simulations.

Usage

When using MECHMOD, a new mechanism must be defined with the USE_NAME keyword
followed by the name to be used for the mechanism. All operations within a MECHMOD
block will be performed on this mechanism, and it can be referred to in subsequent blocks
by the name assigned with USE_NAME.
After defining a mechanism, contents must be read into the mechanism using MECH_FILE
followed by the path to a Chemkin-II format mechanism file. The file will be read and
checked for errors. If no errors are found, then the interpreted mechanism will contain
all species and reaction information and further operations will be possible on it.

Therefore, all MECHMOD blocks should follow the following basic layout:
MECHMOD

USE_NAME myMechanism
MECH_FILE path/myMechanismFile.inp
!
! Do things with the mechanism here
!

END

NOTE: Some mechanism contanins negative A parameter. This is not allowed in
Optima++ because this parameter is stored internally in logarithmic (lnA) form. By
default, Optima++ terminates if a negative A parameter is found. You can change this
behavior by passing the -forceM or –forceMechRead keyword as a commandline argu-
ment:

bin/Release/OptimaPP path/to/inputfile --forceMechRead

This is recommended only if you use precompiled mechanism, otherwise the negative A
parameter will be passed to the solver as NaN.

27

www.respecth.hu

List of MECHMOD keywords

USE_NAME

Specify name for the mechanism to be used. This name can be used to refer to the
mechanism in all subsequent blocks. USE_NAME must be used to carry out any task
with MECHMOD.

MECH_FILE

Read and interpret a Chemkin-II format mechanism file. Currently this is the only
way to read contents into a mechanism defined with USE_NAME and must be used before
any further operations can be carried out.

NOTE: The mechanism file must contain the thermodynamic data for all defined
species. This does not adhere exactly to the Chemkin-II format, where it is possible
to provide thermodynamic data in separate files.

NOTE: Thermodynamic data is read only for species that are actually defined within
the mechanism (in the SPECIES block). Further NASA polynomials will be ignored
and not interpreted.

NOTE: Most, but not all features of the Chemkin-II format are supported. Apart
from basic reaction definitions the following keywords of the Chemkin-II format are
interpreted by Optima++: DUPLICATE (or DUP); REVERSE (or REV); LOW; TROE; SRI; PLOG.
Special reactants M and hv are interpreted as generic third bodies and photons respec-
tively. Photons in photochemical reactions are preserved as reactants or products, but
otherwise photochemical reactions are not handled by Optima++.

Example
MECH_FILE path/mechanismFile

TRAN_FILE

Read and interpret a Chemkin-II format transport file. A mechanism must already
be correctly read through MECH_FILE for this keyword to do anything, as the transport
properties are assigned to species defined in the previously read mechanism file.

Example
TRAN_FILE path/transportFile

PRINT_CKII_MECH

Write the mechanism into a file in Chemkin-II format, including all thermody-
namic properties. In case no modifications were made to the mechanism read using
MECH_FILE (and potentially TRAN_FILE), then the contents of the mechanisms should
be identical, except that thermodynamic properties for non-defined species will not be
written and the formatting of the files can differ slightly.

28

Example
PRINT_CKII_MECH path/targetMechanismFile

PRINT_CKII_THERMO

Write the thermodynamic properties of all species into a Chemkin-II format file. The
thermodynamic properties of species will be given in NASA polynomial format, and
order in the same way as they were in the mechanism. Also, NASA polynomials will
be printed only for those species that were actually defined in the SPECIES block of
the mechanism.

Example
PRINT_CKII_THERMO path/targetThermoFile

PRINT_CKII_TRAN

Write the transport properties of all species into a Chemkin-II format file. The trans-
port properties of species will be ordered in the same way as they were in the mech-
anism. Also, transport data will be printed only for those species that were actually
defined in the SPECIES block of the mechanism.

Example
PRINT_CKII_TRAN path/targetTransportFile

PRINT_FM_MECH

Write the mechanism into a file in FlameMaster format. Note that the FlameMaster
mechanism file contains only the kinetic information, but no thermodynamic or trans-
port data.

Example
PRINT_FM_MECH path/targetMechanismFile

COMPILE_CKII

Compile the mechanism into a Chemkin-II format binary file. This does not include
the transport properties, as Chemkin-II uses a separate binary file for transport prop-
erties.

NOTE: This functionality uses ckinterp to carry out the compilation, which is part
of the Chemkin-II package. As Chemkin-II is not freely distributable, ckinterp is
not provided in the Optima++ package. To be able to use Chemkin-II, please place
the ckinterp (or ckinterp.exe on Windows) into the Optima++ package root.

WARNING: Currently it is not explicitly checked if the mechanism compilation was
successful.

Example
COMPILE_CKII path/targetChemkinBinary

29

FORCE_USE_CKII_BIN

Use precompiled Chemkin-II mechanism binary file from input.

Example
FORCE_USE_CKII_BIN path/inputChemkinBinary

COMPILE_CKII_TRANBIN

Create the Chemkin-II format binary output file containing transport properties.

Example
COMPILE_CKII_TRANBIN path/targetChemkinTransportBinary

FORCE_USE_CKII_TRANBIN

Use precompiled Chemkin-II transport binary file from input.

Example
FORCE_USE_CKII_TRANBIN path/inputChemkinTransportBinary

COMPILE_FM

Compile the mechanism into a FlameMaster format binary file. This includes transport
properties if they were provided using TRAN_FILE. It should be noted that the transport
properties are not necessary for compiling a FlameMaster mechanism, but if they are
not provided, the mechanism will only be usable for 0D simulations.

WARNING: Currently it is not explicitly checked if the mechanism compilation was
successful.

Example
COMPILE_FM path/targetFlameMasterBinary

COMPILE_FM_FROM_CKII

Compile a FlameMaster binary mechanism from Chemkin-II format mechanism file.

Example
COMPILE_FM_FROM_CKII path/targetFlameMasterBinary

FORCE_USE_FM_BIN

Use precompiled FlameMaster binary mechanism file from input.

Example
FORCE_USE_FM_BIN path/inputFlameMasterBinary

COMPILE_OS

Compile the mechanism into a OpenSmoke++ format xml file. This includes transport
properties if they were provided using TRAN_FILE. It should be noted that the transport
properties are not necessary for compiling a OpenSmoke++ mechanism, but if they are
not provided, the mechanism will only be usable for 0D simulations.

30

WARNING: Currently it is not explicitly checked if the mechanism compilation was
successful.

Example
COMPILE_OS path/targetOpenSmokeKineticsFolder

FORCE_USE_PRECOMPILED_OS_MECH

Use precompiled OpenSmoke++ mechanism folder from input. (The folder should con-
tain the following two files: kinetics.xml and reaction_names.xml.)

Example
FORCE_USE_PRECOMPILED_OS_MECH path/inputOpenSmokeKineticsFolder

SWITCH_A_UNIT

Change the unit of the A Arrhenius parameters in the mechanism, and convert
all parameter values appropriately. The valid units are those that are available in
Chemkin-II. In all cases the volume units are cm3 and the time units are seconds.

NOTE: The exact units of the A Arrhenius parameters always depend on the order
of the respective reaction.

Valid units are: MOLES (cm3 mol s); MOLECULES (cm3 molecule s).

Example
SWITCH_A_UNIT MOLECULES

WARNING: This keyword will only be usable with PRINT_CKII_MECH for writing
Chemkin-II format mechanism files.

SWITCH_E_UNIT

Change the unit of the E Arrhenius parameters in the mechanism, and convert all
parameter values appropriately.
Valid units are: KELVINS; CAL/MOLE; KCAL/MOLE; JOULES/MOLE; KJOULES/MOLE.

Example
SWITCH_E_UNIT KJOULES/MOLE

WARNING: This keyword will only be usable with PRINT_CKII_MECH for writing
Chemkin-II format mechanism files.

LUMPED_MECH

Store reactions containing nonintegral stoichiometric coefficients. (This feature is on
by default from version 2.1.0.)

NO_LUMPED_MECH

Remove each reaction containing nonintegral stoichiometric coefficients from the mech-
anism.

31

REMOVE_SPECIES

Remove one or more species from the mechanism, including all thermodynamic and
transport properties and all reactions in which it is a reactant or product.
Species to be removed must be named on the same line as the REMOVE_SPECIES keyword
and be separated by whitespace characters (except newline).

Example
REMOVE_SPECIES C3H8 C3H7 C3H6

REMOVE_REACTION

Remove one or more reactions from the mechanism.
Reactions to be removed must be named on the same line as the REMOVE_REACTION
keyword and be separated by whitespace characters (except newline). The reaction
string must not contain whitespace characters, and each species name must be written
out separated by “+” signs (i.e. “H+H” should be used instead of “2H”). The reactants
and products must be separated by “=”, “=>” or “<=>”. The different separators be-
tween reactants and products are treated as identical (i.e. “H+O2=>OH+O” is equivalent
to “H+O2=OH+O”).
The reactants and products can be given in an arbitrary order, and parantheses will
be ignored. In case of duplicate reactions all instances will be removed.

Example
REMOVE_REACTION H+H+M=H2+M HO2+OH=H2O+O2

KEEP_SUBMECH

Specify one or more species to keep in the mechanism. All reactions will be removed
from the mechanism that contain none of the specified species. Therefore, it is generally
expected that some reactions will remain in the mechanism that have not been specified
after KEEP_SUBMECH.
Species to be kept must be named on the same line as the KEEP_SUBMECH keyword and
be separated by whitespace characters (except newline).

Example
KEEP_SUBMECH H O OH

RENAME_SPECIES

Renames a species in the thermodynamic and transport properties and all reactions
in which it is a reactant or product. This can be useful e.g. to match species names
used in XML files.
The RENAME_SPECIES keyword is followed by the old and the new name of the species,
respectively. All three strings have to be separated by whitespace characters (except
newline).

32

NOTE: Avoid using characters C, H and O in species names if they’re not describing
the elemental composition. This would affect the equivalence ratio calculated by the
code, which is relevant for stepping in between conditions during the creation of a
FLAME_DATABASE.

Example
RENAME_SPECIES CH3HCO CH3CHO

33

MECHTEST

MECHTEST can be used to perform simulations at the conditions of experiments using a
detailed chemical mechanism.
The following experiment types can be used:

• Ignition delay measurement
• Laminar flame speed measurement
• Outlet concentration measurement
• Concentration time profile measurement
• Jet stirred reactor measurement
• Direct rate coefficient determination

Burner stabilized flame speciation measurement are not handled in the present release,
but are planned for future releases.

Usage

To use MECHTEST several things need to be defined, including the mechanism and inte-
grator settings to be used. The mechanism to be used can be defined with MECHANISM
followed by a mechanism name defined in MECHMOD block (see USE_NAME).

List of MECHTEST keywords

MECHANISM

Specify the mechanism to be used for the simulation of the experiments. The name
must match with one defined in a MECHMOD block with USE_NAME. All modifications
carried out on the mechanism are kept for the simulations.
To use a mechanism for simulations it must also have been compiled with an appro-
priate COMPILE keyword in the MECHMOD block.

SOLVER

Specify solver package to be used. By default FlameMaster is used.
Accepted values are FM, OS and CKII, however CKII requires a modified version of the
Chemkin-II package which is not distributed.

NOTE: The evaluation of direct rate coefficient determinations is independent of the
selected solver package.

SETTINGS_TAG

Specify the settings tag to be used. See section 4. Integrator settings for details about
configuration of solver settings. By default the “default” tag is used, and if such
settings are not available the inbuilt defaults of Optima++ are used.

34

THREAD_LIMIT

Specify the number of parallel threads to be used by Optima++ for the simulations.
Default value is 1.

GROUP_BY_POINTS

The content of the mechtestResults file will be ordered as the datapoints occurs in the
xml file (or in the order of the point numbers if specified after the POINTS keyword).

GROUP_BY_SPECIES

The content of the mechtestResults file will be groupped by species. (This is the
default behaviour.)

NOCLEANUP

Optima++ can produce enourmously large number of temporary files in the JOBS and
FMLOGS directories. By default these files are cleaned up after finishing the correspond-
ing jobs, but in certain cases it could be useful to keep them for further investigation.
This case use the NOCLEANUP keyword.

TIME_LIMIT

Specify the maximum time in seconds allowed to the solvers. If the TIME_LIMIT is
exceeded, the solver process is killed and the job is markes as FAILED.
NOTE: This option is enabled only if Optima++ was compiled with -DUSE_TIMELIMIT.
It works only on linux and with OS solver.

NODISK

By default, the input and output files used by the solver packages are saved to the
INPUTS, JOBS and LOGS directories. With this option these files will be saved to a
temporary filesystem in the memory without any physical disk usage.
NOTE: This option is limited to FM and OS solvers and works only on linux operating
systems.

FORCE(_NO)_RCM_SUB

During the postprocessing step of the RCM simulation’s results the time point be-
longing to the minimum of the volume history is substracted from the final ignition
delay only if the minimum point is not in the last 5% of the volume-time history.
Whith the FORCE_RCM_SUB keyword this time shifting is always performed. Use the
FORCE_NO_RCM_SUB keyword to disable the time shifting.

LOAD_DATABASE

Laminar flame speed measurements require pre-existing solutions from a flame
database. Use LOAD_DATABASE keyword to specify the name of the flame solution
database to be used for the flame simulations. See FLAME_DATABASE for details on
creating and utilizing flame databases.

35

NAME

Mark experiments defined in an RKD datafile for simulation. The specified file must
be a valid RKD Format file. The name of the file must be followed by the POINTS
keywords and the numbers of the experimental datapoints (according to their order
in the respective file) separated by non-newline whitespace characters. The “all” (or
“ALL”) keyword can also be provided to use all datapoints from a file. The experimental
datapoints can be selected by ranges (for example the “1-10 15-20” expression selects
the first 10 datapoints and form the 15th point to the 20th point, respectively). The
POINTS keyword optionally can be followed by EXCLUDE keyword and the numbers (or
ranges) of the datapoints to be excluded from the calculations.

NOTE: Concentration-time profile measurements contain a single experiment and
datapoints refer to different times at which concentrations were measured. This means
that no matter how many points are selected, the same amount of simulation time is
required, unlike other types of dataset where a single datapoint is a single experiment,
and has to be simulated individually.

NOTE: The range expression should not contain any whitespaces between the range
delimiter numbers and the “-” sign.

Examples
NAME myDatafiles/experiment_1.xml POINTS 3 4 6 7
NAME myDatafiles/experiment_2.xml POINTS 1 2 3
NAME myDatafiles/experiment_3.xml POINTS 1-5
NAME myDatafiles/experiment_4.xml POINTS all
NAME myDatafiles/experiment_5.xml POINTS all EXCLUDE 2-5

Output

A file called mechTestResults is created in the directory from where Optima++ is called.
If a file with the same name and path already exists then the new content will be appended
to it.
First a header is printed describing the mechanism, integrator settings tag and solver
package used for the simulations. Then the experimental and simulation results are
printed line by line. On each line the name of the experiment file, the number of the
current datapoint, the measured species (if applicable), and the measured and simulated
values are given.

36

The units of the printed results (both measured and simulated) depend on the experiment
type:

Experiment type Unit of results
Ignition delay measurement s
Laminar flame speed measurement cm/s
Outlet concentration measurement Depending on whether mole fractions or

absolute concentrations are given in the
respective RKD datafile:
mole fraction OR mol/m3

Concentration time profile
measurement
Jet stirred reactor measurement

Direct rate coefficient
determination

Depending on the order of the respective
reaction:
s−1 OR cm3mol−1s−1 OR cm6mol−2s−1

Example
Mechanism used: sandiego
Integrator settings collection used: default
Solver package used: FM
res/x00000066.xml 1 - 2.89000e-005 5.87242e-005
res/x00000066.xml 2 - 2.03500e-004 3.47538e-004
res/x00000066.xml 3 - 3.93500e-004 5.30334e-004

37

SENSITIVITY

Carry out local sensitivity analysis of a given model at the conditions of selected experi-
ments. The sensitivity analysis is carried out on the simulations of the measured values
(i.e. the burning velocities if that was measured in a selected experiment) with respect
to all A Arrhenius parameters in the selected model including low pressure limit Arrhe-
nius parameters for falloff reactions. The calculations are performed using a brute-force
method and the normalized sensitivity coefficients are provided.
The normalized sensitivity coefficients are calculated according to the following formula:

Snij = Aj
Yi

Y ′i − Yi
A′j − Aj

,

where Yi is the i-th simulation result on which the sensitivity analysis is carried out, and
Aj is the j-th A Arrhenius parameter that is investigated.

Usage

The MECHANISM, LOAD_DATABASE, SOLVER, NODISK, SETTINGS_TAG, THREAD_LIMIT key-
words are to be used in the same way as in a MECHTEST block. The NAME keyword is also
used in an identical way but here it marks experiments for sensitivity analysis. The RE-
ACTION block can be used in many new ways compared to that of described in Reaction
blocks of Optimization.

List of SENSITIVITY keywords

Keywords with identical functions as in MECHTEST are not listed here.
SPLIT

In simulation tasks where a single experiment must be simulated using several different
parameter sets Optima++ uses a single thread by default. This means that simulations
using different parameter sets are carried out one after another for a single experiment.
In certain cases it can be beneficial to split the task so that simulation of a single
experiment are also multithreaded.
SPLIT can be used to specify how many sub-sets to create from the complete param-
eter set. For example using SPLIT 4 in a case where 200 parameter sets are to be
simulated, results in 4 separate simulation tasks (that Optima++ can run parallel) with
50 parameter sets each.
Using SPLIT only has an effect on how Optima++ manages the simulations internally.
All results, both numerically and format-wise, are independent of it.
By default no splitting of tasks is done (which is equivalent to SPLIT 1).

PERTURBATION

Specifes the perturbation factor used in the brute-force method local sensitivity
analysis. For example, PERTURBATION 0.10 represents a perturbation by 10%.

38

PERTURBATION is 0.05 by default (i.e. a perturbation by 5%) and the code also back to
this value if nothing or a negative value is specified.
The perturbation factor used is printed to the output of the job. Note that “(de-
fault)” is added in brackets to mark that the code fell back to the default value. If
PERTURBATION was specified correctly, only the used value is printed.

REACTION

Specifies the reaction(s) and parameter(s) for which the sensitivity analysis will be
performed. Without any REACTION block each preexponential factor in the reaction
mechanism (including the low pressure ones) is perturbed.
The REACTION block should be constructed in the same way as described in
Reaction blocks of Optimization, but with the following differences:
– REACSTRING and PARAMETERS keywords are compulsary, REACNUM and

RANGE are optional.
– REACSTRING may contain a POSIX type regular expression. Note,

that matching of REACNUM and REACSTRING is checked after
interpreting the POSIX type regular expression (if used).

– RANGE keyword can be used to specify a reaction number range.
– All specified parameters MUST exist in each selected reaction.

Possible types of REACSTRING:
– normal reaction string (e.g. H+O2=OH+O)
– species selector independetly if it is a reactant or product (e.g.

${species C2H4})
– species selector among the reactants (e.g. ${reactant C2H4})
– species selector among the products (e.g. ${product C2H4})
– a POSIX type regular expression ${REGEXP} (e.g. ${.*C[0-9]+.*}

fits to reactions in which any number follows character ’C’)
– to select all reactions use *

Example
! Selects all reactions which contain C2H4 as reactant
! and calculates sensitivity for parameters A and E
REACTION
REACSTRING ${reactant C2H4}
PARAMETERS A E
END

Example
! Selects all reactions in the reaction number range 1 to 10 (inclusive)
! and calculates sensitivity for parameter E
REACTION
RANGE 1 10

39

REACSTRING *
PARAMETERS E
END

NOCLEANUP

Optima++ can produce enourmously large number of temporary files in the JOBS and
FMLOGS directories. By default these files are cleaned up after finishing the correspond-
ing jobs, but in certain cases it could be useful to keep them for further investigation.
This case use the NOCLEANUP keyword.

Output

A file called sensitivityResults is created in the directory from where Optima++ is
called. If a file with the same name and path already exists then the new content will be
appended to it.
Similarly to the output of a MECHTEST block first a header is printed. It describes the
mechanism, integrator settings tag, solver package used for the simulations and the per-
turbation factor used for the sensitivity calculations.
In the following lines the basic information about the experiment, and the normalized
sensitivity coefficients are printed. The output lines contain the name of the used RKD
file, the number of the datapoint of the present experiment in the used RKD file, the name
of the measured species if applicable, the measured result, the simulated result obtained
with the unperturbed parameters and finally the normalized sensitivity coefficients.
The normalized sensitivity coefficients with respect to the A-factors are printed in the
same order as the respective reactions occur in the used mechanism. These are followed
by the low-pressure limit A-factors, again in the same order in which the respective falloff
reactions occur (non-falloff reactions do not have a low-pressure limit A-factor).
The units of the experimental and simulated results are the same as in the output of a
MECHTEST block. See the description of the MECHTEST block for details.

40

OPTIMIZATION

The objective function

Carry out the optimization of certain parameters of a model against selected data. The
optimization algorithm used by Optima++ is described in [1]. The algorithm involves the
minimization of the least-squares type error function:

E(p) =
N∑
i=1

1
Ni

Ni∑
j=1

(
Y mod
ij (p) − Y exp

ij

σ(Y exp
ij)

)2

,

where Y mod/exp
ij =

y
mod/exp
ij if σ(yexp

ij) ≈ constant for all j
ln ymod/exp

ij if σ(ln yexp
ij) ≈ constant for all j

i = 1, . . . , N.

Here p is the vector of the parameters selected for optimizations, N is the number of
datasets and Ni is the number of data points in the i-th dataset. The values yexp

ij and
σ(yexp

ij) are the j-th measured (experimental) data point and its standard deviation,
respectively, in the i-th dataset. For the indirect measurement data, the simulated (mod-
eled) value is ymod

ij , and is obtained from a simulation using the detailed mechanism
investigated. For the direct measurements, the corresponding modeled value ymod

ij is cal-
culated at a given temperature, pressure, and bath gas composition. In the formula of
E(p), values Y mod

ij and Y exp
ij were compared, which were derived from ymod

ij and yexp
ij values

depending on the nature of error distribution characteristic for the type of experiment in
which data set i was determined.
Optimization targets can be both indirect measurements either direct rate coefficient
determinations (experimental or theoretical). The targets and the associated standard
deviations must be defined using the NAME keyword, and each line with NAME defines one
dataset. For details see the keyword descriptions.
During optimization a random sample of the selected rate parameters is created, and
the E error function is evaluated at each parameter set. This is done by performing
the simulations of each optimization target with each parameter set. The parameter
set which provided the lowest E value is selected as the currently best value, and the
following round of sampling will use it as the mean value.

Estimation of the covariance matrix

The estimation of the covariance matrix of the currently best parameters after each round
of sampling and evaluation can be requested. If this is done, the new covariance matrix is
used for the following round of sampling. The method for the calculation of the covariance
matrix of parameters is described in [1] and the modifications introduced regarding the
usage of systematic errors in [2] are also used in Optima++.

Focusing during parameter sampling

The optimization algorithm also includes an additional scaling of the covariance matrix
for sampling purposes, which is colloquially referred to in the code and keywords as

41

“focusing”. Before each random sampling of the parameters the standard deviations of
each parameter is scaled with the following factor:

log fσ = − 2Nfocus

Nparameters
logNsample or fσ = N

−2Nfocus/Nparameters
sample ,

where fσ is the scaling factor with which the standard deviations of the sampled parame-
ters are multiplied, Nsample is number of parameter sets generated within a sample, Nfocus
is the current “focus level”, and Nparameters is the number of parameters that are being
sampled. After each iteration if none of the randomly generated parameter sets provided
a smaller E error function value than in the previous iteration, then the focus level is
increased, thus decreasing the range of the following random sampling. Conversely if the
error function could be decreased, the focus level is decreased.
The keywords FOCUSLEVEL, FOCUS_MIN, FOCUS_MAX, FOCUS_BACKSTEP and
FOCUS_FORWARDSTEP can be used to control the initial value of the focus level and
the later changes. See the description of the keywords for details.

Usage

The MECHANISM, LOAD_DATABASE, SOLVER, SETTINGS_TAG, NODISK, TIME_LIMIT,
THREAD_LIMIT and SPLIT keywords are to be used in the same way as in a MECHTEST or
SENSITIVITY block. The NAME keyword is used in a similar way, but in an OPTIMIZATION
block information on the uncertainties of the data must also be provided.
Keywords with identical functions as in MECHTEST and SENSITIVITY are not listed here.

Keywords in OPTIMIZATION block

SAMPLE_SIZE

Specify the number of random samples to generate and use for simulations during a
single optimization cycle.

SEED

Specify the seed value for the initialization of the pseudo-random number generator.
If it is 0 or not provided, the number of seconds since 00:00 hours, Jan 1, 1970 UTC
will be used as seed value.

ITERATION

Specify how many optimization cycles are to be carried out at maximum.

FOCUSLEVEL

Specify the level of focusing at which to start the sampling. For details see the Focusing
subsection of OPTIMIZATION.

42

FOCUS_MIN

Specify the lowest focus level that can occur during the optimization process. For
details see the Focusing subsection of OPTIMIZATION.

FOCUS_MAX

Specify the highest focus level that can occur during the optimization process. For
details see the Focusing subsection of OPTIMIZATION.

FOCUS_BACKSTEP

Specify the degree of reducing the focus level after an optimization cycle in which the
value of the error function could be decreased compared to the previous cycle.

FOCUS_FORWARDSTEP

Specify the degree of increasing the focus level after an optimization cycle in which
the value of the error function could not be decreased compared to the previous cycle.

CALCCOV

Request the calculation of a posterior covariance matrix of the parameters after each
optimization cycle. The covariance matrix is calculated based on the currently best
parameter set.

NOCLEANUP

Optima++ can produce enourmously large number of temporary files in the JOBS and
FMLOGS directories. By default these files are cleaned up after finishing the correspond-
ing jobs, but in certain cases it could be useful to keep them for further investigation.
This case use the NOCLEANUP keyword.

NAME

Mark experiments defined in an RKD datafile to be used as optimization targets. The
specification of the uncertainties and point selection within the file must be done on the
same line on which NAME occurs. The points selected using a NAME keyword constitute
one dataset, which has importance during the weighting of the error function.
Uncertainties must be assigned using the SIGM keyword followed by the numerical
value of the assigned standard deviation of the experiment. If there are multiple
measurements associated with a single experiment (e.g. H2, O2 and H2O concentrations
were measured in a single experiment) then the same number of standard deviation
values must be given.
The scale of the standard deviations must be defined using the SIGMSCALE keyword,
followed by “abs” for absolute scale errors, or “absln” for absolute errors on a natural
logarithmic scale. If absolute errors are used the units of the standard deviations must
also be defined using the SIGMUNIT keyword followed by the appropriate unit string
(for valid unit strings, see Summary of valid units subsection of TXT_TO_XML block

43

description). SIGMUNIT must not be used together with “absln” as in this case the
assigned errors are unitless.
The points to be used from the specified file must be selected using the POINTS keyword
followed by the listing of the numbers of the points to be used or “all” (or “ALL”).
Point ranges and the EXCLUDE keyword can be used as described in the MECHTEST block.

Examples
! Typical setup for ignition measurement
NAME experiment_1.xml SIGM 0.15 SIGMSCALE absln POINTS 3 4 6 7
! Typical setup for concentration measurement with two measurements in one datapoint
NAME experiment_2.xml SIGM 1E-4 4E-5 SIGMSCALE abs SIGMUNIT mole fraction POINTS 1 2 3
! Typical setup for burning velocity measurements
NAME experiment_3.xml SIGM 2.50 SIGMSCALE abs SIGMUNIT cm s-1 POINTS all
NAME experiment_4.xml SIGM 2.50 SIGMSCALE abs SIGMUNIT cm s-1 POINTS all EXCLUDE 1 2

NOTE: The SIGM, SIGMSCALE and SIGMUNIT keywords can also be used inside the
MECHTEST block and the error function values will be calculated for each datasets and
will be written into the “errfValues“ file in the output folder. The pointwise error
function values will be saved to “errfValues_by_points“ file.

REACTION

Parameters can be selected for optimization using REACTION sub-blocks within an
OPTIMIZATION block. Similarly to other input blocks in Optima++ it must begin with
the keyword itself (i.e. REACTION) and terminated with an END keyword. Several fea-
tures must be defined within a REACTION block, using keywords exclusive to it. See
Reaction blocks subsection for details.

Reaction blocks

Reaction blocks must be used to select parameters for optimization. Apart from selecting
the parameters, initial values and uncertainty ranges must also be defined.

NOTE: Currently only parameters of reactions can be optimized, but optimization of
thermodynamic and transport parameters is also planned for future releases.

Keywords in REACTION blocks

REACNUM

Specify the number of the reaction in the mechanism that is defined in the present
reaction block. The specified reaction from the mechanism that is being optimized
will be checked if it has an equivalent reaction string as defined by the REACSTRING
keyword within the reaction block.

Example
REACNUM 43 ! This is reaction 43 - CH4+OH=H2O+CH3

44

REACSTRING

Specify the reaction string of the reaction that is defined in the present reaction block.
The string will be checked if it matches with the reaction specified by REACNUM in
the mechanism. The string does not need to match exactly with what appears in
the mechanism, but must have the same meaning. E.g. “OH+OH=HO2+H” is considered
equivalent to “2OH=H+HO2”, but not to “OH+OH=H2O2”.

NOTE: Spaces are allowed in the reaction string. All non-comment strings on the line
starting with the REACSTRING keyword will be considered to be part of the reaction
string.

Example
REACSTRING CH4+OH=H2O+CH3 ! This is reaction 43 - CH4+OH=H2O+CH3

PARAMETERS

Specify the parameters of the reaction that are to be optimized. The PARAMETERS
keyword must be followed by the space separated list of the names of the selected
parameters. The following strings are valid:

• A
• lnA
• n
• E
• LPA
• LPlnA
• LPn
• LPE
• m thirdBodyName

The A, n and E strings refer to the respective Arrhenius parameters. Parameters with
an LP prefix refer to the low-pressure limit parameters.

NOTE: The low-pressure limit parameters can only be used for fall-off reactions, i.e.
a reaction where both a high- and low-pressure limit rate coefficient is defined. If a
reaction is defined with “+M” as a reactant but no fall-off behavior then the simple A,
n and E parameters instead of LPA, LPn or LPE.

For A Arrhenius parameters, either A or lnA can be defined. The numerical values will
have to be provided on the appropriate scale (linear or logarithmic, respectively), but
otherwise the two types of definition are identical in function.
The m string refers to a third body collision efficiency parameter. It must be followed
by the name of respective collider species as it appears in the used mechanism and
separated with a space (in place of the “thirdBodyName” on the list above).

NOTE: The third body collision efficiency must already be defined in the mechanism
for the respective species for the selected reaction, even if with unity efficiency.

45

Examples
PARAMETERS A n E ! All Arrhenius parameters of a reaction
PARAMETERS A E LPA LPE! High- and low-pressure A and E
PARAMETERS LPlnA LPn LPE m AR ! LP params and a third body efficiency

UNC_MEAN

Define the mean of the uncertainty range within which the optimization of the param-
eters will be carried out.
UNC_MEAN must be followed by as many numerical values as many parameters were
defined in the reaction block, on the same line. As the number of parameters must be
known, the PARAMETERS keyword must precede UNC_MEAN.
Example
UNC_MEAN 1.60E+07 1.8 1400.0

UNC_COVMAT

Define the covariance matrix of the parameters that represents the uncertainty range
around the mean value of the parameter values defined with UNC_MEAN. Starting with
the line after UNC_COVMAT, an n-by-n matrix must be given, where n is the number
of parameters defined in the reaction block. As the number of parameters must be
known, the PARAMETERS keyword must precede UNC_MEAN.
Example
UNC_COVMAT

24.7803636544931 -3.09077749533357 3784.78679570716
-3.09077749533357 0.385646993305109 -473.059491605493
3784.78679570716 -473.059491605493 584938.139905027

INIT

Define the initial values of the parameters that will serve as the starting point of the
optimization, i.e. the mean values for the first random sampling.
NOTE: While the meaning of INIT is different from UNC_MEAN, the numeric values
can identical.
Example
INIT 1.60E+07 1.8 1400.0

INIT_COVMAT

Define the covariance matrix according to which the first round of random sampling
will be carried out during the optimization.
Example
INIT_COVMAT

24.7803636544931 -3.09077749533357 3784.78679570716
-3.09077749533357 0.385646993305109 -473.059491605493
3784.78679570716 -473.059491605493 584938.139905027

46

TEMPRANGE

Define the temperature range in which the uncertainty range of the rate coefficients
(defined with UNC_MEAN and UNC_COVMAT) must be enforced during the random sam-
pling.
The keyword TEMPRANGE must be followed on the same line by two numeric values
which must be the lower and upper temperature limits respectively, given in K.

Example
TEMPRANGE 800 2500 ! 800-2500 K range

SIGMARANGE

Define the cutoff range in terms of standard deviations for the sampled parameters.

NOTE: Using a SIGMARANGE of less than 2 is generally not recommended as it will
become very difficult to obtain valid samples.

Example
SIGMARANGE 3

UNIFORM

If the keyword UNIFORM appears in a reaction block, then the parameters will be sam-
pled according to a uniform distribution. Otherwise, the sampling is done according
to a normal distribution.

Uncertainty and sampling of rate parameters

Optimization of detailed kinetic models typically involves the optimization of Arrhenius
parameters of important reaction steps.
Such an optimization requires bounds on the investigated parameter space, however it
is important to consider that the Arrhenius parameters themselves are not physically
meaningful, only the rate coefficients defined by them. Optima++ uses the characterization
of the uncertainty parameters as described by Nagy and Turányi [3]. The uncertainty
of rate coefficients is considered to be generally temperature dependent, but it can be
characterized by the covariance matrix of its Arrhenius parameters which is temperature
independent.

Characterizing uncertainties of rate coefficients
Rate coefficients are expressed via the extended Arrhenius expression:

k = A · T n · exp
(

− E

RT

)
.

It is practical to linearize the equation, by taking the logarithm of it:

ln k = lnA+ n lnT − E

RT
.

47

Since the above equation is linear (at a given temperature), there must be a linear rela-
tionship between the variance of ln k and the variances and covariances of the parameters
of the equation, i.e. lnA, n and E. For convenience E/R can be used as a parameter in-
stead of E to avoid dependence on the choice of energy units, and the following notations
can be introduced:

κ := ln k, α := lnA, ε := E

R
.

Using the above notations, the covariance of the Arrhenius parameters can be written in
the following form:

Σp =

 σ2
α rαnσασn rαεσασε

rαnσασn σ2
n rnεσnσε

rαεσασε rnεσnσε σ2
ε

 .
Where r-s denote the correlations between the respective parameters. The following
vector can be introduced for convenience:

Θ =
[
1 lnT −T−1

]ᵀ
.

The following relation exists between the covariance matrix of the Arrhenius parameters
and the variance of the rate coefficient at a given T temperature:

σ2(ln k) = ΘᵀΣpΘ.

The matrix-vector multiplications can be expanded, giving the following form for the
above equation:
σ(ln k)2 = σ2

α + σ2
n ln2 T + σ2

εT
−2 + 2rαnσασn lnT − 2rαεσασεT−1 − 2rnεσnσεT−1 lnT.

Based on the above equations the variance and standard deviation of a rate coefficient can
be calculated from the covariance matrix of its Arrhenius parameters. The same equation
can be used if not all Arrhenius parameters are used for a particular rate coefficient (e.g.
only A and n are non-zero), but in this case the variance of the non-used parameters can
be considered to be zero and a truncated from of the respective equations can be used.

Application of uncertainty ranges during optimization
In Optima++ the uncertainty in which an optimization of Arrhenius parameter can be
carried out is defined via a mean value of the parameters and a covariance matrix, by
using the UNC_MEAN and UNC_COVMAT keywords. These can be used to calculate the
standard deviation of the respective lnk value at all temperatures. Additionally, a cutoff
in terms of standard deviations has to be defined and a temperature range where the
uncertainty range is considered valid. These can be defined with the SIGMARANGE and
TEMPRANGE keywords, respectively.
Each parameter set that is generated by Optima++ during the random sampling phase
of an optimization is checked, if they provide rate coefficients that fall outside the un-
certainty limits, then the respective element of the sample is discarded and a new one is
generated, until all rate coefficients are within their respective uncertainty bounds at all
temperatures within the specified temperature range.

48

Random sampling of rate parameters

There are two sampling methods available for rate parameters in Optima++.
The first is sampling according to a normal distribution defined by the mean values of the
parameters and their covariance matrix. After generating a normal sample the Arrhenius
parameters belonging to the same reaction are grouped together and are used to calculate
the corresponding rate coefficient in the temperature range of the uncertainty limits (see
TEMPRANGE).
The second option is uniform sampling of the Arrhenius parameters. In this case the
sampling is carried out, by creating uniform samples of rate coefficients at as many
temperatures as many Arrhenius parameters are used for the respective rate coefficient.
In case of three parameters the temperature values are the two extreme values of the tem-
perature range and the middle of it on the inverse temperature scale. For two parameters
only the extreme values are used. If only the A Arrhenius parameter is sampled, the rate
coefficient and its uncertainty is temperature independent and the chosen temperature is
arbitrary.
The uniform rate coefficient samples are made into groups of 3 or 2 depending on the
number of parameters, which define a set of Arrhenius parameters which provide a sam-
ple for the given reaction. It has been shown in [4] that the distribution of Arrhenius
parameters generated this way is also uniform.

Output

An output folder is created in the outputs/ directory, with the same name as the input
file. The different output contents are discussed in the following sections.

optimizationMonitor

A file called optimizationMonitor is created in the output folder. After each iteration a
line is printed into this file, with the number of the iteration, the current focus level, the
lowest error function value that was achieved in the iteration and the relative improvement
in percent. A similar line is also printed for the initial parameter set.

Example
n_It n_Focus Errf_value Improvement
init 10 3.344485e+002 0.00000%

1 8 1.773861e+002 -46.96159%

optimalParameters

A directory called optimalParameters/ is created in the output folder, and files
with the name optResults_iterationNumber are created during each iteration (with
iterationNumber replaced by the appropriate number). These files contain the optimal

49

parameter set after an iteration and the corresponding covariance matrix that was used
for sampling in that iteration (not the newly calculated one if it exists).
The order of the parameters is the same as they were provided in the REACTION blocks.

NOTE: If CALCCOV is not used, then the covariance matrix will be the same as provided
with the INIT_COVMAT-s of the REACTION blocks.

Example
Optimal parameters
3.694889967458e+001 -5.533827744981e-001 8.393545487220e+003
Previous covariance matrix
2.780392398426e+001 -3.462492639425e+000 4.194526761001e+003
-3.462492639425e+000 4.313436605710e-001 -5.234283631604e+002
4.194526761001e+003 -5.234283631604e+002 6.404338925486e+005

If CALCCOV is used, then the covariance matrices are printed into the
optResults_iterationNumber file during each iteration (with iterationNumber
replaced by the appropriate number).
In addition to the covariance matrix calculated during the iteration, the contributions
from the statistic errors and the systematic errors are also printed to this file.

parameterSets

A directory called parameterSets/ is created in the output folder, and files with the name
errfValues_iterationNumber are created during each iteration (with iterationNumber
replaced by the appropriate number).
The files contain the parameter values of the sample, with one set on each line. The
columns are in the same order as they are given in REACTION blocks.

errorFunctionValues

A directory called errorFunctionValues/ is created in the output folder, and files
with the name errfValues_iterationNumber are created during each iteration (with
iterationNumber replaced by the appropriate number).
In the first line the total error function values are printed for each parameter. The order
of the values for the parameter sets is the same as in the parameterSets/parameters_X
files. In the following lines the contributions to the total error function value from the
individual datasets are printed.

Example
ErrfValue 1.676209e+002 5.025798e+002 1.605620e+002
x10000008 3.829500e+000 8.314917e+000 5.834598e-001
x10000025 1.355385e+001 2.481779e+001 8.122800e+000

50

FLAME_DATABASE

FLAME_DATABASE can be used to build up a database of flame simulation solutions. In
this version FLAME_DATABASE can be used for FlameMaster and OpenSmoke++ simulations
only.
For Chemkin-II simulations the user has to build up the collection of restart files outside
of Optima++. The restart files have to place in the directory PREMIX_RESTARTS and their
naming must follow this convention: rest.bin_m_USENAME_f_EXPID.
USENAME: the name of the mechanism defined with USE_NAME
EXPID: the identifier of the experimental point including the name of the XML and

the number of experimental point. E.g. use EXPID x23003038_p4 for the 4th
point of x23003038.xml.

Usage

The MECHANISM, SOLVER, SETTINGS_TAG, THREAD_LIMIT keywords are to be used in the
same way as in a MECHTEST block. The NAME keyword is also used in an identical way but
here it marks experiments for flame simulations to be included in the solution database.
The first solution file has to be copied by the user to the database since FlameMaster
can perform flame simulations only using an existing solution file. With OpenSmoke++,
the calculation can be performed with empty database.

List of FLAME_DATABASE keywords

Keywords with identical functions as in MECHTEST are not listed here.
CREATE_DATABASE

As a first step of flame simulations with FlameMaster the appropriate directory struc-
ture of a new database has to be created and at least one solution file have to be
provided. Using CREATE_DATABASE Optima++ performs these tasks with the name
given after the keyword. One sample solution file for a hydrogen flame coming with
Optima++ is copied to the new database, but the user can replace it with more ap-
propriate one(s) before using the database (modify file solutions and copy the new
solution files in directory solutionFiles). Please, do not specify any simulations if
you use CREATE_DATABASE keyword, they won’t be performed.

FORCE_RECALCULATE

By default if a solution file correspond to the conditions of a given experiment is
found in the database Optima++ doesn’t carry out a simulation, but takes the stored
burning velocity from the database. Using FORCE_RECALCULATE Optima++ takes the
most similar solution from the database as a guess, but performs the simulation.

LOAD_DATABASE

Laminar flame speed measurements require pre-existing solutions from a flame

51

database. Use LOAD_DATABASE keyword in the FLAME_DATABASE block to utilized a
flame database for the forthcoming MECHTEST, SENSITIVITY or OPTIMIZATION blocks.
You have to specify the name of the flame solution database after this keyword.

NUMBER_OF_RECALCULATIONS

For properly converged flame simulations FlameMaster sometimes needs to run the
simulations more than once. Use NUMBER_OF_RECALCULATIONS keyword to force
Optima++ for multiple calculations with FlameMaster for one condition. The default
value is 1.

NOCLEANUP

Optima++ can produce enourmously large number of temporary files in the JOBS and
FMLOGS directories. By default these files are cleaned up after finishing the correspond-
ing jobs, but in certain cases it could be useful to keep them for further investigation.
This case use the NOCLEANUP keyword.

STORE_ONLY

If specified, the solutions will be saved to the database, but the calculations are per-
formed without using the database. By default Optima++ takes the most similar solu-
tion from the database as a guess. If the conditions in the solution files of the database
are far from the conditions defined in the given experiment(s), the OpenSmoke++ cal-
culation can be slower than without the guess solution. In this case, the STORE_ONLY
keyword can be used.

CONVERT_TO_FM

If specified, after loading the database, all entries will be converted to FlameMaster
style flame database elements. It must be used together with SOLVER OS keywords.

Example
CONVERT_TO_FM name_of_the_new_database

52

XMLMOD

XMLMOD can be used to format, modify or update ReSpecTh Kinetics Data Format Spec-
ification xml files.
Example
XMLMOD

[[additional keywords]]
path_to_input/xml_file_1 path_to_output/xml_file_1
path_to_input/xml_file_2 path_to_output/xml_file_2
path_to_input/xml_file_3 path_to_output/xml_file_3
path_to_input2/.*xml path_to_output_folder2/

END

Without any additional keyword, XMLMOD rearranges the xml files to a more easily readable
format.

List of XMLMOD keywords

COMPACT

Formats the xml files with the minimum naumber of white spaces.

UPDATE_BIBLIOGRAPHY_DETAILS

Updates or creates the <details> element in <bibliographyLink> block from a
BibTeX file. The BibTeX entry is identified by the DOI number defined inside the
<referenceDOI> text element. If the DOI occurs multiple times in the BibTeX file, a
warning message is shown and the last occurence is used in the updating process.
Example

UPDATE_BIBLIOGRAPHY_DETAILS path/to/bibtex_file.bib

UPGRADE_TO_V2.2

The UPGRADE_TO_V2.2 command performs some automatic upgrade from ReSpecTh
Kinetics Data Format Specification version 1.0 to version 2.2.
– In the old version preferredKey attribute was used instead of description

element in <bibliographyLink> block. The description tag is inserted auto-
matically.

– The CAS, InChI, SMILES and chemName attributes are added to speciesLink ele-
ments.

DEFAULT_VALUES

Sets the content or attribute of an xml entity to a specified text if the entity is not
present in the xml file. The parameters can be provided by key-value pairs, separated
with ’:’. The key can be any txt form element (see TXT_TO_XML block for details)
or an xml selector (see the xml selectors section).

53

Example
DEFAULT_VALUES

! set the file author to ELTE, Budapest, Hungary
File author: ELTE, Budapest, Hungary
! set the file version to 2.0
File version: 2.0
Specification version: 2.2
Source_type: TODO
! set the file DOI to ’10.24388/’ followed by the name of the xml file
File DOI: 10.24388/${xmlName}
! add a comment with the current date
Comment: Updated on ${exec date}

END

OVERRIDE

Overwrites content or attribute of an xml entity with a specified text. The possible
parameters are identical to the parameters descibed in DEFAULT_VALUES block.

Example
OVERRIDE

! change the label attribute of each temperature property to ’T’
${?property[name=temperature]}Label: T
! replace the preferredKey attribute AR with Ar in each
! speciesLink element
${?speciesLink[preferredKey=AR]}Name\: composition Species: Ar

END

DATA_FILE

The update information can be provided in a csv file. The first column contains the
the name of the xml file and from the second, each column contains the text to be
inserted into the file. The first line contains the updateable property. It can be any
txt form element or an xml selector.

Example
xml ; Reference DOI: ; ${?property[id=x1]}Source_type:
x10004001 ; 10.1016/s0010-2180(70)80008-6 ; reported
x10004002 ; 10.1016/s0010-2180(70)80008-6 ; digitized
x10004003 ; 10.1016/s0010-2180(70)80008-6 ; reported
x10004017 ; 10.1007/s001930100108 ; calculated

54

Descripton of the possible xml selectors/commands

Each command should be surrounded by "${" and "}". It is evaluated for each xml and
the $ expression is substituted with the evaluation result.
Query selector (${?expr})

If the expression is true, then the substitution is applied.

${?dataGroup>property[id=x1]}Source_type

For example, the expression above is applied only for the Source_type elements which
are inside a property tag with id="x1" attribute wich has a dataGroup parent element.

Text selector (${&expr})

Inserts the content of the selected xml element. The parent (">") and attribute ("[]")
selectors can also be used.

Example
${&fileAuthor} ! insert the text inside <fileAuthor> tag.

${xmlName}

Returns the name of the current xml file without extension.

${exec command}

Executes command as a shell command and returns the result. This is available only
on linux.

Example
${exec date} ! insert the current date

55

ATOMFLOW

Fluxes of elements from species to species are calculated and written into file using the
input format of the FluxViewer visualisation tool.
The flux of element A from species j to species k through reaction step i is defined by

Aijk = nA,jnA,kri
NA,i

(1)

where nA,j and nA,k are the number of A atoms in species j and k, respectively, NA,i is
the number of A atoms on either side of reaction step i and ri is the rate of reaction step
i. The overall fluxes between two species at a given time or distance are the sum of the
element fluxes calculated in each reaction step:

Ajk(t) =
∑
i

Aijk(t) (2)

Example
ATOMFLOW

MECHANISM mech
THREAD_LIMIT 4

ELEMENTS H C O

NAME path_to_input/xml_file_1 POINTS ALL
NAME path_to_input/xml_file_2 POINTS 1 2 3
NAME path_to_input/xml_file_3 POINTS ALL EXCLUDE 3 4

END

The FluxViewer input file is saved to the xml_p_n_fluxviewer.txt file in the output
folder, where xml is the name of the RKD xml file and n is the corresponding datapoint
in the xml file.

List of ATOMFLOW keywords

The MECHANISM, SETTINGS_TAG, NODISK, TIME_LIMIT and THREAD_LIMIT keywords are
to be used in the same way as in a MECHTEST or SENSITIVITY block.
ELEMENTS

Defines the list of elements for which the element fluxes are calculated.
Format Whitespace separated list of strings
Default value None
Type Compulsory

Example
ELEMENTS C H O
Elements C, H and O are selected.

56

T_INC

Define the temperature increment of the ATOMFLOW output.
Format Real number
Default value 0.0 (Each point is printed)
Unit K
Type Optional

Example
T_INC 30
The output is printed with 30 K temperature step.

THRESHOLD

Define the minimum value of element flux that will be printed.
Format Real number
Default value 1e-30
Unit mole/(cm3 sec)
Type Optional

Example
THRESHOLD 1e-20
Only Ajk(t) > 10−20 will be printed.

57

Calling Optima++ from command line
In this section the keywords of the Optima++ command line inputs are described. You
can read information on the usage, the syntax, and find examples.
The path for the output files will be a subdirectory of the outputs/commandLineJobs/
directory.
To call Optima++ from the command line with the command “COMMAND” navigate to the
package directory and give the following command on unix-type systems

bin/Release/OptimaPP COMMAND

or on Windows

bin\Release\OptimaPP.exe COMMAND

The executable should be run from the root directory of the package, as certain files are
needed from the res/ and settings/ directories included in the release package, and the
paths are currently hardcoded.
The command “COMMAND” should include at least one Optima++ keyword and at least one
input file.
There are different legal styles for “COMMAND”, depending on the task.
The first is:

COMMAND = [optimapp_keyword] [input_file(s)] {-o [output folder]}
optimapp_keyword = TXT_TO_XML | CHECK_XML | XML_TO_TXT

| XML_TO_CKII | XML_TO_FM | XML_TO_OS | EXP_INFO

NOTE: The “{-o [output folder]}” part is optional and it cannot be used for the
CHECK_XML keyword because it does not create output file.

The second is:

COMMAND = [optimapp_keyword] [targetMechanismFile]
optimapp_keyword = COMPILE_CKII | COMPILE_FM | COMPILE_OS

The last one is:

COMMAND = [PRINT_CKII_MECH | PRINT_FM_MECH] [targetMechanismFile] \
[expression_ckii_mech | expression_fm_mech]

expression_ckii_mech = REMOVE_SPECIES [species]
| REMOVE_REACTION [reactions]
| KEEP_SUBMECH [species]
| SWITCH_A_UNIT [unit]
| SWITCH_E_UNIT [unit]

expression_fm_mech = REMOVE_SPECIES [species]
| REMOVE_REACTION [reactions]
| KEEP_SUBMECH [species]

58

TXT_TO_XML

Create XML datafiles according to the ReSpecTh Kinetics Data Format Specification
version 2.3 from simple and easy-to-edit plaintext files.

Usage

In a TXT_TO_XML command the input line should contain two or more strings. The first
should be the TXT_TO_XML keyword and the further are the full paths of the input plaintext
files.
Each source file will be read individually, and if the source file defines a valid and complete
RKD file then a new RKD file will be created in the directory specified after the -o option,
if it is not specified the default outputs/commandLineJobs/TxtToXml output directory
will be used. The file will contain the same information as the RKD input file and can
be converted back using the XML_TO_TXT function of Optima++.
The name of the output files will be almost the same as the appropriate input files, only
the file extension will be .xml.

Processing a single file on unix-type systems
bin/Release/OptimaPP TXT_TO_XML path_to_input/text_file \

-o path_to_output_folder

Processing multiple files on unix-type systems
bin/Release/OptimaPP TXT_TO_XML path_to_input/text_file1 \
path_to_input/text_file2 path_to_input/text_file3 \
-o path_to_output_folder

The input text files to be converted into XML files must follow the format described in
section Format of the input file.

59

CHECK_XML

Check the conformity of the XML datafiles to the appropriate ReSpecTh Kinetics Data
Format Specification.

Usage

In a CHECK_XML command the input line should contain the keyword followed by one or
more strings which should contain the full path of the input XML files.
Optima++ checks species appearing in the input XML files and their identifiers based on
the speciesDatabase.xml file. The program warns if a given species is missing from the
database or if there are conflicting identifiers.

Processing a single file on unix-type systems
bin/Release/OptimaPP CHECK_XML path_to_input/xml_file_1

Processing multiple files on unix-type systems
bin/Release/OptimaPP CHECK_XML path_to_input/xml_file_1 \
path_to_input/xml_file_2 path_to_input/xml_file_3

60

XML_TO_TXT

Create plain text files from ReSpecTh format files that can be used by TXT_TO_XML. The
general purpose of this is to avoid directly editing XML files when data is to be modified,
and rather edit more easily readable text files or convert the data in a non-tagged format
which can be useful for people who are not familar with XML files. The conformity of the
file to the appropriate ReSpecTh Kinetics Data Format Specification is strictly checked
during the conversion (to be more precise, only the structure of the XML will be verified).

Usage

In an XML_TO_TXT command the input line should contain the keyword followed by one
or more strings which should contain the full path of the input XML files.
Each source file will be read individually. If the input file is a valid RKD file, then a
plaintext file will be created in the directory specified after the -o option, if it is not
specified the default outputs/commandLineJobs/XmlToTxt output path will be used.
The file will contain the same information as the RKD input file and can be converted
back using the TXT_TO_XML function of Optima++.

NOTE: When converting an RKD file using XML_TO_TXT and back with TXT_TO_XML the
files might not be exactly identical, but semantically they will be the same. If chemName,
CAS, InChI or SMILES for a species is missing Optima++ automatically adds this informa-
tion based on the species’ preferredKey if it can be found in the speciesDatabase.xml.

Processing a single file on unix-type systems
bin/Release/OptimaPP XML_TO_TXT path_to_input/xml_file_1 \
-o output_folder

Processing multiple files on unix-type systems
bin/Release/OptimaPP XML_TO_TXT path_to_input/xml_file_1 \
path_to_input/xml_file_2 path_to_input/xml_file_3 \
-o output_folder

61

XML_TO_CKII

Create Chemkin-II input files from ReSpecTh format files. Inputs can be created for
SENKIN (ignition delay, outlet concentration and concentration-time profile measure-
ments), JSR and PREMIX (only burning velocity measurements currently).
The conformity of the file to the appropriate ReSpecTh Kinetics Data Format Specifica-
tion is strictly checked during the conversion (to be more precise, only the structure of
the XML will be verified).

NOTE: Direct rate coefficient determination type XMLs cannot be used to create
Chemkin-II input files, as evaluating rate coefficients does not require a solver.

Usage

In an XML_TO_CKII command the input line should contain at least one string after the
keyword, which should be the full path of the input plaintext file(s). The path of the
directory where the output files will be printed is the directory specified after the -o
option, if it is not specified the default outputs/commandLineJobs/TxtToCKII output
directory will be used.
The names of the output files will be assembled from the name of the input RKD file
(without extension) and a _p tag followed by the index of the experiment in the file
and .inp as an extension. E.g. myExperiment_p3.inp for the third experiment from
myExperiment.xml.

Processing a single file on unix-type systems
bin/Release/OptimaPP XML_TO_CKII path_to_input/xml_file_1 \
-o output_folder

Processing multiple files on unix-type systems
bin/Release/OptimaPP XML_TO_CKII path_to_input/xml_file_1 \
path_to_input/xml_file_2 path_to_input/xml_file_3 \
-o output_folder

62

XML_TO_FM

Create FlameMaster input files from ReSpecTh format files. Inputs can be created for
0D, PSR and freely propagating flame configurations.

NOTE: Direct rate coefficient determination type XMLs cannot be used to create
FlameMaster input files, as evaluating rate coefficients does not require a solver.

Usage

In an XML_TO_FM command the input line should contain at least one string after the key-
word, which should be the full path of the input plaintext file(s). The path of the directory
where the output files will be printed is the directory specified after the -o option, if it
is not specified the default outputs/commandLineJobs/TxtToFM output directory will be
used.
The names of the output files will be assembled from the name of the input RKD file
(without extension) and a _p tag followed by the index of the experiment in the file
and .inp as an extension. E.g. myExperiment_p3.inp for the third experiment from
myExperiment.xml.

Processing a single file on unix-type systems
bin/Release/OptimaPP XML_TO_FM path_to_input/xml_file_1 \
-o output_folder

Processing multiple files on unix-type systems
bin/Release/OptimaPP XML_TO_FM path_to_input/xml_file_1 \
path_to_input/xml_file_2 path_to_input/xml_file_3 \
-o output_folder

63

XML_TO_OS

Create OpenSmoke++ input files from ReSpecTh format files. Inputs can be created for
0D, PSR and freely propagating flame configurations.

NOTE: Direct rate coefficient determination type XMLs cannot be used to create
OpenSmoke++ input files, as evaluating rate coefficients does not require a solver.

Usage

In an XML_TO_OS command the input line should contain at least one string after the key-
word, which should be the full path of the input plaintext file(s). The path of the directory
where the output files will be printed is the directory specified after the -o option, if it
is not specified the default outputs/commandLineJobs/TxtToOS output directory will be
used.
The names of the output files will be assembled from the name of the input RKD file
(without extension) and a _p tag followed by the index of the experiment in the file
and .inp as an extension. E.g. myExperiment_p3.inp for the third experiment from
myExperiment.xml.

Processing a single file on unix-type systems
bin/Release/OptimaPP XML_TO_OS path_to_input/xml_file_1 \
-o output_folder

Processing multiple files on unix-type systems
bin/Release/OptimaPP XML_TO_OS path_to_input/xml_file_1 \
path_to_input/xml_file_2 path_to_input/xml_file_3 \
-o output_folder

64

EXP_INFO

Print the experimental conditions of measurements from ReSpecTh Kinetics Data Format
Specification XML files.

Usage

When using EXP_INFO, a list of input XML files must be defined. The XML files must be
given with their full paths. Two output files will be created in in the directory specified
after the -o option, if it is not specified the default outputs/commandLineJobs/ExpInfo
path will be used. The ExpInfo_info file will contain a summary of the experimental
condition ranges, one line per XML file (see INFO_OUTPUT keyword of the EXP_INFO block),
and ExpInfo_raw will containd detailed print of conditions, one line per experimental
point (see RAW_OUTPUT keyword of the EXP_INFO block).

Processing a single file on unix-type systems
bin/Release/OptimaPP EXP_INFO path_to_input/xml_file_1 \
-o output_folder

Processing multiple files on unix-type systems
bin/Release/OptimaPP EXP_INFO path_to_input/xml_file_1 \
path_to_input/xml_file_2 path_to_input/xml_file_3 \
-o output_folder

65

MECHMOD-type keywords
For details see MECHMOD.

Usage

When using MECHMOD-type keywords, a Chemkin-II format mechanism file must be de-
fined as a command line argument preceded by the appropriate keyword. The file will be
read and checked for errors.

COMPILE_CKII

Compile the mechanism into a Chemkin-II format binary file. This does not include the
transport properties, as Chemkin-II uses a separate binary file for transport properties.

NOTE: This functionality uses ckinterp to carry out the compilation, which is part
of the Chemkin-II package. As Chemkin-II is not freely distributable, ckinterp is not
provided in the Optima++ package. To be able to use Chemkin-II, please place the
ckinterp executable (or ckinterp.exe on Windows) into the Optima++ package root.

WARNING: Currently it is not explicitly checked if the mechanism compilation was
successful.

Processing a single file on unix-type systems
bin/Release/OptimaPP COMPILE_CKII path/targetMechanismFile.inp

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/CompileCKII.
The name of the output mechanism file will be assembled from the name of the input file
(without extension) followed by .bin as an extension. E.g. targetMechanismFile.bin
from targetMechanismFile.inp.

COMPILE_FM

Compile the mechanism into a FlameMaster format binary file. This includes transport
properties if they were provided as an input too. It should be noted that the transport
properties are not necessary for compiling a FlameMaster mechanism, but if they are not
provided, the mechanism will only be usable for 0D simulations.

WARNING: Currently it is not explicitly checked if the mechanism compilation was
successful.

Processing a single file on unix-type systems without transport properties
bin/Release/OptimaPP COMPILE_FM path/targetMechanismFile.inp

Processing a single file on unix-type systems with transport properties
bin/Release/OptimaPP COMPILE_FM path/targetMechanismFile.inp \
path/transportFile.tran

66

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/CompileFM.
The name of the output mechanism file will be assembled from the name of the input file
(without extension) followed by .pre as an extension. E.g. targetMechanismFile.pre
from targetMechanismFile.inp.

COMPILE_OS

Compile the mechanism into a OpenSmoke++ format kinetics folder. This includes trans-
port properties if they were provided as an input too. It should be noted that the
transport properties are not necessary for compiling a OpenSmoke++ mechanism, but if
they are not provided, the mechanism will only be usable for 0D simulations.

WARNING: Currently it is not explicitly checked if the mechanism compilation was
successful.

Processing a single file on unix-type systems without transport properties
bin/Release/OptimaPP COMPILE_OS path/targetMechanismFile.inp

Processing a single file on unix-type systems with transport properties
bin/Release/OptimaPP COMPILE_OS path/targetMechanismFile.inp \
path/transportFile.tran

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/CompileOS.
The name of the output mechanism folder will be the name of the input file without
extension.

PRINT_CKII_MECH with REMOVE_SPECIES

Remove one or more species from the mechanism, including all thermodynamic and trans-
port properties and all reactions in which it is a reactant or product, and write the
mechanism into a file in Chemkin-II format, including all thermodynamic properties.
Species to be removed must be preceded by the REMOVE_SPECIES keyword and be sepa-
rated by whitespace characters.

Processing a single file on unix-type systems
bin/Release/OptimaPP PRINT_CKII_MECH path/targetMechanismFile \
REMOVE_SPECIES C3H8 C3H7 C3H6

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/PrintCKIIMech.
The name of the output mechanism file will be assembled from the name of the input
file (without extension) and a tag _reduced_CKII followed by .inp as an extension. E.g.
targetMechanismFile_reduced_CKII.inp.

67

PRINT_CKII_MECH with REMOVE_REACTION

Remove one or more reactions from the mechanism, and write the mechanism into a file
in Chemkin-II format, including all thermodynamic properties.
Reactions to be removed must be preceded by the REMOVE_REACTION keyword and be
separated by whitespace characters. The reaction string must not contain whitespace
characters, and each species name must be written out separated by “+” signs (i.e. “H+H”
should be used instead of “2H”). The reactants and products must be separated by “=”,
“=>” or “<=>”. The different separators between reactants and products are treated as
identical (i.e. “H+O2=>OH+O” is equivalent to “H+O2=OH+O”).
The reactants and products can be given in an arbitrary order, and parantheses will be
ignored. In case of duplicate reactions all instances will be removed.

Processing a single file on unix-type systems
bin/Release/OptimaPP PRINT_CKII_MECH path/targetMechanismFile \
REMOVE_REACTION H+H+M=H2+M HO2+OH=H2O+O2

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/PrintCKIIMech.
The name of the output mechanism file will be assembled from the name of the input
file (without extension) and a tag _reactions_removed_CKII followed by .inp as an
extension. E.g. targetMechanismFile_reactions_removed_CKII.inp.

PRINT_CKII_MECH with KEEP_SUBMECH

Specify one or more species to keep in the mechanism, and write the mechanism into a
file in Chemkin-II format, including all thermodynamic properties.
Species to be kept must be preceded by the KEEP_SUBMECH keyword and be separated by
whitespace characters. All reactions will be removed from the mechanism that contain
none of the specified species.
Therefore, it is generally expected that some reactions will remain in the mechanism that
have not been specified after KEEP_SUBMECH.

Processing a single file on unix-type systems
bin/Release/OptimaPP PRINT_CKII_MECH path/targetMechanismFile \
KEEP_SUBMECH H O OH

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/PrintCKIIMech.
The name of the output mechanism file will be assembled from the name of the input
file (without extension) and a tag _submech_CKII followed by .inp as an extension. E.g.
targetMechanismFile_submech_CKII.inp.

68

PRINT_CKII_MECH with SWITCH_A_UNIT

Change the unit of the A Arrhenius parameters in the mechanism, convert all parameter
values appropriately, and write the mechanism into a file in Chemkin-II format, including
all thermodynamic properties. The valid units are those that are available in Chemkin-II.
In all cases the volume units are cm3 and the time units are seconds.

NOTE: The exact units of the A Arrhenius parameters always depend on the order of
the respective reaction.

The new unit must be preceded by the SWITCH_A_UNIT keyword.
Valid units are: MOLES (cm3 mol s); MOLECULES (cm3 molecule s).

Processing a single file on unix-type systems
bin/Release/OptimaPP PRINT_CKII_MECH path/targetMechanismFile \
SWITCH_A_UNIT MOLECULES

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/PrintCKIIMech.
The name of the output mechanism file will be assembled from the name of the input file
(without extension) and a tag _A_unit_ followed by the new unit and the tag _CKII and
.inp as an extension. E.g. targetMechanismFile_A_unit_MOLECULES_CKII.inp.

PRINT_CKII_MECH with SWITCH_E_UNIT

Change the unit of the E Arrhenius parameters in the mechanism, convert all parameter
values appropriately, and write the mechanism into a file in Chemkin-II format, including
all thermodynamic properties.
The new unit must be preceded by the SWITCH_E_UNIT keyword.
Valid units are: KELVINS; CAL/MOLE; KCAL/MOLE; JOULES/MOLE; KJOULES/MOLE.

Processing a single file on unix-type systems
bin/Release/OptimaPP PRINT_CKII_MECH path/targetMechanismFile \
SWITCH_E_UNIT KJOULES/MOLE

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/PrintCKIIMech.
The name of the output mechanism file will be assembled from the name of the input file
(without extension) and a tag _E_unit_ followed by the new unit and the tag _CKII and
.inp as an extension. E.g. targetMechanismFile_E_unit_KJOULESperMOLE_CKII.inp.

PRINT_FM_MECH with REMOVE_SPECIES

Remove one or more species from the mechanism, including all reactions in which it
is a reactant or product and write the mechanism into a file in FlameMaster format.

69

Note that the FlameMaster mechanism file contains only the kinetic information, but no
thermodynamic or transport data.
Species to be removed must be preceded by the REMOVE_SPECIES keyword and be sepa-
rated by whitespace characters.

Processing a single file on unix-type systems
bin/Release/OptimaPP PRINT_FM_MECH path/targetMechanismFile \
REMOVE_SPECIES C3H8 C3H7 C3H6

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/PrintFMMech.
The name of the output mechanism file will be assembled from the name of the input
file (without extension) and a tag _reduced_FM followed by .inp as an extension. E.g.
targetMechanismFile_reduced_FM.inp.

PRINT_FM_MECH with REMOVE_REACTION

Remove one or more reactions from the mechanism, and write the mechanism into a file
in FlameMaster format. Note that the FlameMaster mechanism file contains only the
kinetic information, but no thermodynamic or transport data.
Reactions to be removed must be preceded by the REMOVE_REACTION keyword and be
separated by whitespace characters. The reaction string must not contain whitespace
characters, and each species name must be written out separated by “+” signs (i.e. “H+H”
should be used instead of “2H”). The reactants and products must be separated by “=”,
“=>” or “<=>”. The different separators between reactants and products are treated as
identical (i.e. “H+O2=>OH+O” is equivalent to “H+O2=OH+O”).
The reactants and products can be given in an arbitrary order, and parantheses will be
ignored. In case of duplicate reactions all instances will be removed.

Processing a single file on unix-type systems
bin/Release/OptimaPP PRINT_FM_MECH path/targetMechanismFile \
REMOVE_REACTION H+H+M=H2+M HO2+OH=H2O+O2

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/PrintFMMech.
The name of the output mechanism file will be assembled from the name of the input file
(without extension) and a tag _reactions_removed_FM followed by .inp as an extension.
E.g. targetMechanismFile_reactions_removed_FM.inp.

PRINT_FM_MECH with KEEP_SUBMECH

Specify one or more species to keep in the mechanism, and write the mechanism into a
file in FlameMaster format. Note that the FlameMaster mechanism file contains only
the kinetic information, but no thermodynamic or transport data.

70

Species to be kept must be preceded by the KEEP_SUBMECH keyword and be separated by
whitespace characters. All reactions will be removed from the mechanism that contain
none of the specified species.
Therefore, it is generally expected that some reactions will remain in the mechanism that
have not been specified after KEEP_SUBMECH.

Processing a single file on unix-type systems
bin/Release/OptimaPP PRINT_FM_MECH path/targetMechanismFile \
KEEP_SUBMECH H O OH

The path of the directory where the compiled mechanism file will be printed is
outputs/commandLineJobs/PrintFMMech.
The name of the output mechanism file will be assembled from the name of the input
file (without extension) and a tag _submech_FM followed by .inp as an extension. E.g.
targetMechanismFile_submech_FM.inp.

71

References
[1] T. Turányi, T. Nagy, I. G. Zsély, M. Cserháti, T. Varga, B. T. Szabó, I. Sedyó, P.

T. Kiss, A. Zempléni, H. J. Curran, Int. J. Chem. Kinet., 44, pp. 284–302 (2012).

[2] T. Varga, C. Olm, T. Nagy, I. G. Zsély, É. Valkó, R. Pálvölgyi, H. J. Curran, T.
Turányi, Int. J. Chem. Kinet. (2016), in press.

[3] T. Nagy, T. Turányi, Int. J. Chem. Kinet., 43, pp. 359–378 (2011).

[4] T. Nagy, É. Valkó, I. Sedyó, I. G. Zsély, M. J. Pilling, T. Turányi, Combust. Flame,
162, pp. 2059–2076 (2015).

72

Appendices

Copyright notices
Optima++ contains third-party software. They are redistributed under their own copy-
right.
Optima++ is distributed under the following FreeBSD licence.
Copyright©2016, Chemical Kinetics Laboratory, Institute of Chemistry, ELTE, Budapest,
Hungary
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

tinyxml2 is governed with the following copyright notice.
Original code by Lee Thomason (www.grinninglizard.com).
This software is provided “as-is”, without any express or implied warranty. In no event
will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you

wrote the original software. If you use this software in a product, an acknowledgment
in the product documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepre-
sented as being the original software.

73

www.grinninglizard.com

3. This notice may not be removed or altered from any source distribution.

dos2unix is governed with the following copyright notice.
The dos2unix package is distributed under FreeBSD style license.
See also http://www.freebsd.org/copyright/freebsd-license.html.
Copyright©2009-2016 Erwin Waterlander
Copyright©1998 Christian Wurll
Copyright©1998 Bernd Johannes Wuebben
Copyright©1994-1995 Benjamin Lin.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice in the doc-

umentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Eigen is primarily MPL2 licensed. See COPYING.MPL2 and these links:
http://www.mozilla.org/MPL/2.0/
http://www.mozilla.org/MPL/2.0/FAQ.html
Some files contain third-party code under BSD or LGPL licenses. For details see the
COPYING.* files in the Eigen release packaged with Optima++.

74

http://www.freebsd.org/copyright/freebsd-license.html
http://www.mozilla.org/MPL/2.0/
http://www.mozilla.org/MPL/2.0/FAQ.html

TXT_TO_XML for ReSpecTh version 1.0 files
Format of the input file

Author: string

The string following the keyword will be used to identify the author of the XML file (which
does not imply that the experimental data were obtained by this author).

Specification version: string

The number following the keyword will be used to specify the ReSpecTh Kinetics Data Format
Specification version the created file adheres to. The latest released specification version is 2.3.
Two integers separated by a dot will be understood as major_version.minor_version and will
be inserted into the XML file accordingly.

Source reference: string

The string following the keyword will be stored as the bibliographic reference of the measure-
ments stored in the XML file.

Experiment type: string

The string following the keyword is used to define the experiment type.
The allowed types are:

• Ignition delay measurement
• Laminar flame speed measurement
• Outlet concentration measurement
• Concentration time profile measurement
• Jet stirred reactor measurement
• Burner stabilized flame speciation measurement
• Direct rate coefficient measurement

Apparatus: string

The string following the keyword is used to provide the apparatus type in which the experiment
was carried out (e.g. shock tube). Providing this information is optional, and will not influence
the interpretation of the XML files.

Operation mode: string

The string following the keyword is used to provide the operating mode of the experimen-
tal apparatus in which the experiment was carried out (e.g. reflected shock). Providing this
information is optional, and will not influence the interpretation of the XML files.

75

Common experimental conditions: varied

The keyword can be followed by multiple lines, each specifying an experimental condition that
is common across all individual experiments that are described within the file.
The lines should follow the following format (the order of the sub-keywords is arbitrary):
Type:string Species:string Value:number Unit:string

The string after “Type:” defines what type of physical property is given (e.g. temperature,
pressure).

The string after “Species:” defines which species a composition or concentration type of
property refers to. For other types of properties it should not be used.

The number after “ Value:” provides the numeric value of the property, and the string after
“Unit:” provides the corresponding unit.
Valid property types and corresponding units are summarized in the table at the end of this
section.

Varied experimental conditions and measured results: varied

The keyword can be followed by multiple lines, each specifying an experimental condition that
was varied between the individual experiments, or an experimental result.
The lines should follow the following format (the order of the sub-keywords is arbitrary):
Type:string Species:string Unit:string ID:string Label:string

The string after “Type:” defines what type of physical property is given (e.g. temperature,
pressure).

The string after “Species:” defines which species a composition or concentration type of
property refers to. For other types of properties it should not be used.

The string after “Unit:” defines the unit for the numeric values that will be given later in the
file.

The string after “ID:” provides an identifier for the property which will be used to identify
which values correspond to which property.

The string after “Label:” defines a label for the species which is the suggested plot label for
the given property. As no plotting is carried out by Optima++ providing a label is not necessary
and the given label is not used (only stored in the XML files).

76

Varied values:

A header line must follow the keyword, which must contain the IDs that were defined for the
varied properties. The order of the ID strings defines the order in which the numerical values
are provided for the varied properties. Common ID names are e.g. “x1, x2,. . . ”, but any name
can be chosen.
The header line must be followed by lines with as many numerical values as many IDs were
provided in the header, and in the corresponding order. Each line defines an experimental data
point.
An example is provided below:
Varied values:
x1 x2
25.64 0.0466
37.34 0.0529
45.11 0.0591
49.89 0.0653
51.28 0.0713
50.00 0.0773
42.45 0.0832
33.30 0.0891
22.77 0.0948

Ignition definition:

The definition of the ignition delay can be specified with this keyword.
The keyword must be followed by a line with the following format (the order of the sub-keywords
is arbitrary):
MeasuredQuantity:string Type:string Value:number Unit:string

The string following “MeasuredQuantity:” defines what physical property was used to define
the ignition delay. This can be pressure, temperature or the concentration of a species. These
are to be denoted by “p”, “T”, and the name of the species (e.g. “OH”), respectively.

The string following type “Type:” defines which feature of the measured physical property is
considered for the ignition delay. Valid values are summarized below:

• max
• d/dt max
• baseline max intercept from d/dt
• baseline min intercept from d/dt
• concentration
• relative concentration

See the RKD Format Specification for a detailed description of the types.

The number following “Value:” defines the absolute or relative concentration value the target
species has to reach for an ignition to occur. This attribute can only be used when the value of
type is “concentration” or “relative concentration”. The string following “Unit:” defines
the corresponding unit.

77

Time shift definition:

The time shifting procedure can be specified with this keyword for a concentration time profile
measurement.

The keyword must be followed by a line with the following format (the order of the sub-keywords
is arbitrary):
MeasuredQuantity:string Type:string Value:number

The string following “MeasuredQuantity:” defines what physical property was used to define
the time shift. This must be the name of a single measured species.

The string following type “Type:” defines which part of the specified species profile is matched
with the experiments. The valid types are summarized below

• half
• inflexion
• relative

See the RKDFS manual for a detailed description of the types.

The number following “Value:” defines the absolute or relative concentration value the target
species has to reach for ignition to occur. This attribute can only be used when the value of
type is “concentration” or “relative concentration”. The string following “Unit:” defines
the corresponding unit.

Volume-time profile:

A volume-time history can be defined with this keyword for an ignition delay experiment (usually
an RCM experiment).

The keyword must be followed by lines defining a time and a volume property, in an identical
way to property lines after “Varied experimental conditions and measured results:”.

These lines must be followed by “Profile:”, after which a header line must appear with the
IDs defined here. This must be followed by the numeric values for the time–volume pairs.
An example can be seen below:
Volume-time profile:
Type: time Unit: s ID: x4
Type: volume Unit: cm3 ID: x5
Profile:
x4 x5
0.000000e+000 1.000000e+000
1.000000e-006 9.998782e-001
7.564500e-004 9.886456e-001
1.004150e-003 9.831007e-001

78

Reaction string:

For direct rate coefficient determinations this keyword must be used to specify the reaction of
which the rate coefficient is described.

The keyword must be followed by a line with the following format (the order of the sub-keywords
is arbitrary):
Reaction string:string Order:integer Bulkgas:string

The string following “Reaction string:” is the reaction string. The names of species on the
same side of the reaction must be separated by “+” characters, and the reactant and product
sides must be separated by an “=” sign, which can be bordered by “>” or “<” characters.
The reaction string must contain “LP” or “HP” before the first species separated by a space, if
the rate coefficients measured are at the low pressure or high pressure limit respectively, for
pressure dependent reaction rate coefficients (e.g. “LP H+O2+M=HO2+M”).

The integer following “Order:” defines the order of the reaction. This should match with the
reaction string, including high/low pressure limit specification. For fall-off reactions use the
lower order (i.e. that which corresponds to the high-pressure limit).

The string following “Bulkgas:” specifies the major diluent gas for the experiment/theoretical
determination. This only has significance for pressure-dependent rate coefficients and low-
pressure limit rate coefficients. When calculating the rate coefficient the bulkgas will be taken
into account through third-body collision efficiency effects, as if the whole gas composition was
made up by the bulkgas.

NOTE: It is also possible to define a detailed composition through the common or varied
conditions, and in this case the bulkgas will be completely ignored.

79

Summary of valid units

When printing XML files from text files, Optima++ does not check explicitly is the spec-
ified units are valid within the RKDFS. The given units are printed into the XML files
and if incorrect or unhandled units are given, then any solver input files printed from
XML will not be correct or complete (a warning will be printed in such a case). Therefore
it is important to use only those units that are handled within the RKDFS.
In the following table a summary of the unit strings that are currently handled within
the RKDFS is given. Here all strings are given in the exact way as it should appear in the
file. This means that exponents are not typed as superscript, and the micro (µ) prefix
should be typed as “u” to guarantee that these can be typed in plain text files.

Property type Valid units

temperature K

pressure Pa, kPa, MPa, Torr, torr, bar, mbar, atm

volume m3, dm3, cm3, mm3, L

time s, ms, us, ns, min

residence time s, ms, us, ns, min

distance m, dm, cm, mm

ignition delay s, ms, us, ns, min

length m, dm, cm, mm

density g m-3, g dm-3, g cm-3, g mm-3,
kg m-3, kg dm-3, kg cm-3, kg mm-3

flow rate g m-2 s-1, g dm-2 s-1, g cm-2 s-1, g mm-2 s-1,
kg m-2 s-1, kg dm-2 s-1, kg cm-2 s-1, kg mm-2 s-1

flame speed m/s, dm/s, cm/s, mm/s, m s-1, dm s-1, cm s-1, mm s-1

composition mole fraction, percent, ppm, ppb

concentration mol/m3, mol/dm3, mol/cm3, mol m-3, mol dm-3, mol cm-3,
molecule/m3, molecule/dm3, molecule/cm3, molecule m-3,
molecule dm-3, molecule cm-3

rate coefficient s-1,
m3 mol-1 s-1, dm3 mol-1 s-1, cm3 mol-1 s-1,
m3 molecule-1 s-1, dm3 molecule-1 s-1, cm3 molecule-1 s-1,
m6 mol-3 s-1, dm6 mol-2 s-1, cm6 mol-2 s-1,
m6 molecule-2 s-1, dm6 molecule-2 s-1, cm6 molecule-2 s-1

80

	Introduction
	Installation
	Installation using the online installer
	Step 1
	Step 2
	Step 3

	Building from source

	Usage
	1. RKD Format XML files
	2. Chemical mechanism files
	3. Optima++ input file
	4. Integrator settings

	Input blocks
	TXT_TO_XML
	Usage
	List of TXT_TO_XML keywords
	Format of the input file
	Summary of valid units

	CHECK_XML
	Usage
	List of CHECK_XML keywords

	XML_TO_TXT
	Usage
	List of XML_TO_TXT keywords

	XML_TO_CKII
	Usage

	XML_TO_FM
	Usage

	XML_TO_OS
	Usage

	EXP_INFO
	Usage
	List of EXP_INFO keywords

	MECHMOD
	Usage
	List of MECHMOD keywords

	MECHTEST
	Usage
	List of MECHTEST keywords
	Output

	SENSITIVITY
	Usage
	List of SENSITIVITY keywords
	Output

	OPTIMIZATION
	The objective function
	Estimation of the covariance matrix
	Focusing during parameter sampling
	Usage
	Keywords in OPTIMIZATION block
	Reaction blocks
	Keywords in REACTION blocks

	Uncertainty and sampling of rate parameters
	Characterizing uncertainties of rate coefficients
	Application of uncertainty ranges during optimization
	Random sampling of rate parameters

	Output
	optimizationMonitor
	optimalParameters
	parameterSets
	errorFunctionValues

	FLAME_DATABASE
	Usage
	List of FLAME_DATABASE keywords

	XMLMOD
	List of XMLMOD keywords
	Descripton of the possible xml selectors/commands

	ATOMFLOW
	List of ATOMFLOW keywords

	Calling Optima++ from command line
	TXT_TO_XML
	Usage

	CHECK_XML
	Usage

	XML_TO_TXT
	Usage

	XML_TO_CKII
	Usage

	XML_TO_FM
	Usage

	XML_TO_OS
	Usage

	EXP_INFO
	Usage

	MECHMOD-type keywords
	Usage
	COMPILE_CKII
	COMPILE_FM
	COMPILE_OS
	PRINT_CKII_MECH with REMOVE_SPECIES
	PRINT_CKII_MECH with REMOVE_REACTION
	PRINT_CKII_MECH with KEEP_SUBMECH
	PRINT_CKII_MECH with SWITCH_A_UNIT
	PRINT_CKII_MECH with SWITCH_E_UNIT
	PRINT_FM_MECH with REMOVE_SPECIES
	PRINT_FM_MECH with REMOVE_REACTION
	PRINT_FM_MECH with KEEP_SUBMECH

	Appendices
	Copyright notices
	TXT_TO_XML for ReSpecTh version 1.0 files
	Format of the input file
	Summary of valid units

