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Application of the quasi-steady-state approximation (QSSA) in chemical kinetics allows the concentration of 
some species (QSSA species) to be calculated not only via the solution of kinetic differential equations but also 
from the concentration of other species using algebraic equations. The difference in the concentrations of QSSA 
species obtained from the two calculations, at a single time point, is called the instantaneous QSSA error. This 
error represents a continuous perturbation of the calculated trajectory and causes an overall error in the 
concentrations of non-QSSA species as well. Two equations are given for the calculation of the instantaneous 
error. Initial selection of QSSA species can be based on the first equation, which predicts the instantaneous 
error of a single species. The second more involved error equation takes into account the interaction of errors 
of selected species and gives the instantaneous error for a group of QSSA species. Successful application of 
the QSSA requires that the overall error of important species be small. In some cases a small instantaneous 
error in the QSSA species can be magnified and results in large overall error. Such “pathological” cases can 
be detected by the calculation of the initial concentration sensitivity matrix. Those species, which induce large 
overall error, have to be excluded from the group of the QSSA species. The relation of the QSSA to the lifetime 
of species and to the stiffness of ODES is also discussed. The use of the error formulas is illustrated by the 
application of the QSSA for a propane pyrolysis mechanism and briefly for the combustion of H1. 

1. Introduction 

1.1. Definition of the QSSA. The kinetics of a spatially 
homogeneous reaction system can be described by the following 
system of ordinary differential equations (more exactly by an 
initial value problem): 

dc/dt = f(c,k), c(0) = co (1) 
where c is the n-dimensional vector of concentrations of species 
e, and k is the m-dimensional vector of parameters. 

The application of the quasi-steady-state approximation 
(QSSA) involves the replacement of some of the differential 
equations by algebraic equations, by assigning the right-hand 
side of the differential equations to zero. The solution of this 
differential-algebraic system of equations should be real, positive, 
and in good accordance with the solution of the original system 
of ordinary differential equations. 

1.2. Summary of Previous Results Concerning the Application 
of the QSSA. The QSSA was first applied in 1913 to chemical 
kinetic schemes by Bodensteinl and by Chapman and Underhill.2 
Its application spread after the publication of a further article 
by Bodenstein,3 and the QSSA is often referred to as the 
Bodenstein method. In the Russian literature it is also known as 
the BodensteinSemenov method, since Semenov4+ was the first 
to apply it to substantially nonstationary processes and to restrict 
its use to only some of the intermediates rather than to all of 
them. 

The QSSA has been applied for several purposes during the 
history of chemical kinetics: in the precomputer age (1 9 13 to 
=1960) it was used to obtain approximate analytical solutions 
for systems of kinetic differential equations. In the next era 
(-1960 to 1971) the computer was available to chemists, but 
efficient programs did not exist for the solution of the stiff 
differential equations which frequently occur in chemical kinetics. 
The QSSA was therefore used for the conversion of stiff 
differential equations into nonstiff  system^.^.^ Nowadays stiff 
ordinary differential equations can be solved numerically in most 
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practical cases, making this application less important. It has 
been suggested that the QSSA is therefore a redundant technique 
and that its use should be disc~ntinued.~-’~ 

Even if such an argument were valid, an understanding of the 
basis and applicability of the QSSA would still be needed, as has 
been emphasised by C8me:14 “since the QSSA has been used to 
elucidate most reaction mechanisms and to determine [many] 
rate coefficents of elementary processes, a fundamental answer 
to the question of the validity of the approximation seems 
desirable”. 

Further, the QSSA remains a powerful tool for the simplifi- 
cation of reaction structures. Indeed, recent years have witnessed 
the renaissance of the application of the QSSA for kinetic 
simulations. The speed of computers enables the simulation of 
spatially inhomogeneous chemical kinetic systems, which are of 
great practical importance in atmospheric and in combustion 
chemistry. However, these models require a precise yet realistic 
description of chemical processes. In flame modeling for example, 
Peter~I~-~O derived reduced chemical schemes with the extensive 
use of the QSSA, and this method is now widely used21,22 for 
obtaining small chemical kinetic models for fluid dynamic 
calculations. The Peters method, however, does not include a 
general recipe for the selection of QSSA species. 

General conditions for the application of the QSSA have been 
sought for a long time. In several articles, the same kinetic system 
has been simulated with and without the application of QSSA 
and the results have been compared (see refs 11,12, and 23-28). 
Unfortunately these investigations have given information about 
the applicability of the QSSA only for specific reaction systems, 
at the circumstances investigated, and for the QSSA species 
selected. No general rules could be formulated, and in some 
cases the results from the two calculations did not agree but no 
reasons were given. Other researchers have investigated the 
applicability of the QSSA for small reaction ~ystems.2~-3~ Their 
results are general for the system investigated but cannot be 
transferred to other systems. In particular, the application of the 
QSSA to the Michaelis-Menten scheme was the topic of several 
studies (see, e.g., refs 35-40). The most advanced example of 
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this approach considers a scheme in which the steps represent 
general elementary reaction 

The most frequently applied method for the general investi- 
gation of the QSSA is based on singular perturbation 
theory.30J5.4*47 A review of such investigations is given by 
K l o n ~ w s k i . ~ ~  The main result, given by the Tihonov theorem$* 
lists conditions, fulfilled in most chemical kinetic systems, which 
represent necessary conditions for the approximation of the 
solution of the kinetic differential equation by the QSSA solution. 
Time scales are related to variables (species concentrations), and 
the QSSA species are characterized by a short characteristic 
time. However, this mathematical technique seems to be 
ineffective for the calculation of the QSSA error for large systems. 

Principal component analysis of either the concentration or 
rate sensitivity matrices has been employed to investigate the 
parameter combinations that reflect the influence of QSSA species 
through their  reaction^.^^^^^ A geometrical picture of the QSSA 
has been developed by Fraser et a1.,37,51-53 the central idea being 
that the solution of the kinetic differential equations is attracted 
by smooth surfaces, the slow manifolds Jt which can be 
approximated by the QSSA solution. A detailed analysis is given 
for several reversibly connected, rapidly equilibrating networks, 
coupled to an irreversible consuming reaction. 

Discussion in the chemical literature has provided insight into 
the QSSA without rigorous mathematical proof. For example, 
WilliamsS4 concludes that the QSSA is applicable for a species 
if the sums of rates of its consuming and producing reactions are 
both much higher than its net production rate. A common idea 
in the literature however, is that the radicals and the QSSA species 
are the same. This empirical observation is applicable in most 
cases, but there are noticeable breakdowns. For example, (see, 
e.g., ref 7), the QSSA is not applicable at  low conversions for 
radical Br in the H2-Br2 reaction system. The QSSA is not 
always applicable in atmospheric chemical systems for peroxy 
radicals,” which are not very reactive at  ambient temperature. 
It is also not applicable in several combustion  system^^^-^^ for H, 
despite its high reactivity. On the other hand, the belief that it 
can only be applied to radicals, has unnecessarily limited its usage. 
For example, under some circumstances, the QSSA is applicable 
for the molecule diallyl in a propane pyrolysis modelaS8 

1.3. Outline. In this paper we seek general methods for the 
selection of QSSA species via a discussion of the source of errors 
induced by the quasi steadystate approximation. In section 2 
we introduce definitions of QSSA species and their errors. In 
section 3 error formulas are given for the rapid calculation of the 
deviation of the QSSA species concentrations from the full ODE 
solution at a specific time point. This “instantaneous error” can 
be calculated for a single species or for a group of selected QSSA 
species. In section 4 we examine a dynamic picture which serves 
to illustrate the physical interpretation of the QSSA. Section 5 
discusses the propagation of QSSA errors and how “pathological” 
QSSA species, whose errors spread quickly to other species, can 
be identified. In section 6 we summarize an algorithm for 
identifying QSSA species, and in section 7 introduce the 
connections between the QSSA error and the species lifetime. In 
section 8 the effect of the removal of QSSA species on the stiffness 
of a system is discussed, and in section 9 we investigate some 
practical methods for the solution of the resulting set of algebraic 
equations and the application of the QSSA in mechanism 
reduction. In section 10 we illustrate the method with reference 
to a scheme describing low-conversion propane cracking and 
briefly to a scheme describing the oxidation of hydrogen in a flow 
reactor. Here we compare the actual errors, Le. the deviation of 
the concentrations calculated from the differential-algebraic 
scheme and from the full differential scheme, with the estimated 
error calculated from the formulae derived in the previous sections. 
Finally, in section 1 1, we summarize and draw conclusions. 
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2. Errors in the Application of the Q S A  

For simplicity, we restrict our investigations to spatially 
homogeneous systems. The conclusions can be extended to 
spatially inhomogeneous systems. 

According to the QSSA, the group of species corresponding 
to the concentration vector c in eq 1 can be classified into two 
groups: d = where @ ( I )  are the non-QSSA species 
and @(2) are the QSSA species. The concentrations of the species 
calculated from eq 1 are c(I) and c(*), respectively. Hence c = 
(c(l),c(2))Tand the corresponding rates of change of concentration 
are f l l )  and fc2), respectively. Let the matrix J(t) with elements 
dJ/acj denote the Jacobian of eq 1. Submatrices of the Jacobian 
will also be used according to the following partitioning: 

The application of the QSSA converts eq 1 into the following 
system of differential-algebraic equations: 

dC(”/dt = f(”(C,k) (3) 

0 = f(’)(C,k) (4) 

C(0) = co 

The concentrations of the species calculated from eqs 3 and 
4 are defined as the QSSA concentrations C(I) and CQ), 
respectively. It is assumed that eq 4 has a t  least one real positive 
root. The set of algebraic equations need not necessarily be linear; 
quadratic terms arise, for example, if the QSSA species are coupled 
through certain reactions. More than one solution may then be 
possible, and for systems with multiple roots, the nearest root to 
the exact concentration is selected. Equation 4 can be considered 
as an equation for the steady state of a reaction scheme, where 
the non-QSSA species have constant concentration (external 
species). A discussion of conditions for the existence and 
uniqueness of steady-states of chemical reaction systems can be 
found in section 4.4 of ref 59. A trivial requirement is that all 
the QSSA species have to be intermediates. 

If the QSSA species are selected properly, the solution of the 
system of differential equations 3, connected to algebraic equations 
4, does not differ significantly from the solution of system 1 during 
the time interval of application. The key question is the selection 
of the group of QSSA species. This selection depends on the 
tolerated error in concentration from the QSSA solution and 
therefore an assessment of the error of the application of the 
QSSA is required. The unavailability of a method to calculate 
such error estimates, other than via a simulation of the mechan- 
ism with and without the application of the QSSA, has been one 
of the major criticisms of the QSSA.60 

In the majority of chemical kinetic simulations, most of the 
species concentrations are zero a t  the beginning of the simulation. 
One practical observation is that the QSSA can be applied only 
after a time period called the induction period. The difference 
in the QSSA species concentrations at  the starting time of the 
application of the QSSA, calculated from eq 1 and q s  4 and 3, 
is the instantaneous error of the quasi-steadystate approximation. 
If the concentration-time curves of non-QSSA species, obtained 
by the solution of ODE 1 and eqs 3 and 4 were exactly the same, 
Le., C(1) = c(1), the instantaneous error could be obtained at  any 
subsequent time in exactly the same way. 

While the instantaneous error refers only to the QSSA species, 
in practice the concentrations of non-QSSA species are also 
affected by the application of the quasi-steadystate approxi- 
mation. TheoverallQSSA error is thedifference in thecalculated 
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concentrations of all species, with and without the application of 
the QSSA. The error in the QSSA species concentrations implies 
a continuous perturbation of the calculated trajectories. This 
results in a change in the other species concentrations which 
propagates back through eq 4 to the QSSA species so that their 
overall error can be different from their instantaneous error. 
However, if the overall error of non-QSSA species is small, the 
overall error of QSSA species is close to their instantaneous error. 

From a practical point of view, each species of a kinetic 
mechanism can be classified into one of the important, necessary 
and redundant categories.6' The modeller is interested only in 
the concentration of important species but the calculation of the 
concentration of necessary species is also required because of 
their coupling to important species. Redundant species are those 
species which can be removed from the scheme with no significant 
effect on the important species, and can be identified through a 
Jacobian analysis. The reduced mechanism contains only 
important and necessary species. The overall error of important 
species is the central measure of the applicability of quasi-steady- 
state approximation. Usually, the important species are non- 
QSSA species and hence the calculation of the instantaneous 
error is not enough. However, small instantaneous errors usually 
imply small overall errors. 

3. Calculation of the Instantaneous Error 

Frank-KamenetskiP2 was the first to investigate general criteria 
for the applicability of the QSSA which could be applied to any 
mechanism and to any number of intermediate species. The 
starting point of his ideas is reproduced below, using the notation 
and terminology introduced in the previous section. 

Let C = (c(l),C(2)) be the concentration of species calculated 
from eqs 3 and 4, Le., assume that the overall error of non-QSSA 
species is negligible. Let Ad2) denote the instantaneous error of 
QSSA species, Le., Ad2) = d2) - 02), and i and k the indexes of 
the QSSA species. 

A Taylor series approximation of dci/dt around Ci gives eq 5 
(neglecting the second and higher order terms). [Note that in 

a real mechanism the order of an elementary reaction is never 
higher than three, in most cases being only one or two, and thus 
the second derivatives are either equal to zero or contain second- 
order rate coefficients. The third and fourth terms of the Taylor 
series therefore provide only a small contribution to dci/dt if Aci 
is small. Hence, the truncation of the Taylor series after the 
second term is, in most practical cases, a good approximation.] 

The definition of the QSSA in eq 4 implies that V;(c,k)lCmc 
= 0 and eq 5 can be rearranged into the following form: 

I dci I 
A $ = - - - -  J i k A 4  Jii dt  Jii #i 

where J i k  = [af i (c ,k) /acklc=~.  From now on A< will denote an 
approximated error derived from eq 6, and Ac, the real error 
derived from the difference in solutions of eq 1 and eqs 3 and 4. 

Frank-Kamenetskii did not use eq 6 for the calculation of the 
instantaneous error directly, but, based on this equation and using 
several approximations, he concluded that species i is a QSSA 
species, in most practical cases, if maxi Id In c,/dt( is smaller than 
I[af;:/acilC.d, where j denotes the index of any species. 

In this paper the approximation of the instantaneous error 
based on eq 5 is exploited. Using a matrix formalism, eq 5 can 
also be rearranged into the form 

(7) 
Equation 7 represents a set of linear algebraicequations for 
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Figure 1. Schematic plot of the actual and QSSA values off;. against ci 
for a QSSA species, showing that small errors are possible even for large 
actual values of fi provided the slope of f;., given by af;./aci is steep. 

whose solution gives the instantaneous error of the quasi-steady- 
state approximation for each of the group of QSSA species. 

The second term on the right-hand side of eq 6 corresponds to 
the interaction of the instantaneous errors of QSSA species. If 
this interaction is neglected, eq 6 can be simplified and a separate 
equation for the approximate instantaneous error Acf of each 
individual species is obtained: 

dci/dt = JiiAc: 

This equation is equivalent to eq 6 if a single QSSA species 
rather than a group of QSSA species is considered. 

Equation 8 shows that the quasi-steady-state approximation 
does not imply that the net production rate of a QSSA species 
is zero. Clearly f;: is zero when cl is equal to the QSSA 
concentration Ci and Ac; = 0. However, Acf can still be small, 
even iff;: is nonzero, provided laf;:/aci( = lJii( is large (see eq 8); 
indeed, substantial values of 1) can be tolerated provided lJid is 
itself sufficiently large. This point is illustrated schematically in 
Figure 1, which shows a plot off;: vs ci and demonstrates that 
Acq is small for la rge i ,  if the slope ldf;:/dc,l is sufficiently steep. 
The connection with stationary-state calculations are also illus- 
trated through eq 8, since iff;: = 0, eq 4 can always be applied. 

The solution of eqs 7 and 8 gives not only the magnitude of 
the instantaneous error but also its sign, which is most easily 
demonstrated through eq 8 for a single species. The diagonal 
elements of the subJacobian tf2), are invariably negative. It is 
possible to construct a Jacobian having a positive diagonal element 
(e.g., when the mechanism contains an autocatalytic, X + A = 
2X + 33, type reaction), but such reactions are not found in 
mechanisms constructed from elementary reactions. Jii is zero 
only if species ci has no consuming reactions. A QSSA species 
will always have at least one consuming reaction which is first 
or higher order in ci for a mechanism composed of elementary 
reactions. Thus Acf takes a sign opposite to that off;: so that if 
ci is increasing, then the QSSA concentration, Ci, is greater than 
ci. Only iffi is identically zero is ci = Ci. Unfortunately in the 
case of several QSSA species a similarly clear interpretation of 
the sign of the instantaneous error cannot be given. 

Equations 7 and 8 give a means of estimating the absolute 
instantaneous error. The comparison of different species from 
the point-of-view of QSSA behavior requires the calculation of 
the fractional or percentage instantaneous error of quasi-steady- 
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Figure 2. Relaxation to a steady-state, X Y, kf = k b  = 10 s-I: (a) 
A steady-state solution X = Y = 1, (b) XO = 0.5, YO = 1.5, (c) XO = 1.5, 
Yo = 0.5. 

state approximation. The fractional error is given by 

e, = Aci/ci ( 9 )  

4. Instantaneous Error: A Dynamic Approach 
The derivation of the error equations in the previous section 

is based on a static approach. Now a second, dynamic approach 
is also presented, which gives more insight into the physical 
background of the QSSA. 

An important feature of QSSA species is that their concen- 
trations arecompletely determined by the concentration of other 
species through eq 4. If the concentrations of the QSSA species 
calculated by eq 1 are perturbed slightly, this perturbation must 
vanish within a short time. This property of QSSA species has 
been noted previously, by Klonowski for example (ref 38, p 83), 
whostated that 'the fast components 'forget' their initialvalues". 
Thus a perturbation analysis can also be used as a probe of the 
QSSA behavior. 
On the basis of a linear approach, the history of any perturbation 

in a dynamic system can be described by the equation 

Ac(t) = eJ(')'Aco (10) 
where Aco is the perturbation at t = 0, Ac(t) is the deviation at 
time t ,  and J(t) is the Jacobian of the system. 

The corresponding initial value problem 

dAc/dr = JAc, Ac(0) = Aco (1 1) 
can be expanded using the partitioned Jacobian introduced in eq 
2 to give 

If the perturbation is limited to the QSSA species over a very 
short time period, then the concentration of the non-QSSA species 
can be assumed to be unchanged. We also assume in this case 
that no error is induced in the non-QSSA species and so Ac(l) is 
zero, Le. we consider, in effect only the instantaneous error. 

Equation 12 then reduces to a single equation in Adz): 

The rate of relaxation of a perturbation therefore depends on 
the distance of the perturbed solution from the fixed point, and 
on the magnitude of the Jacobian. If the fixed point is stationary 
then the perturbed solution tends exactly to the fixed point. This 
case is illustrated via the reaction X pr: Y with kf = kb = 10 s-I 

(Figure 2), which has a simple steady state forX = Y = 1. Solutions 

0 0  0 2  04 0 6  0 8  1 0  1 2  14 16 

t l S  

Figure 3. Relaxation to a quasi steady-state, X -.'I Y -+'l Z for kl = 
1 s-I and kz = 10 s-I (- - -) and k2 = 20 s-I (-). (a) real solution, XQ 
= 10 (- - -), 20 (-), YO = 1 .O, (b) perturbed solution, XO = 10 (- - -), 
20 (-), YO = 1.5, (c) perturbed solution, XO = 10 (- - -), 20 (-), YO 
= 0.5. The perturbation of a shorter lifetime species relaxes more quickly 
and its trajectory becomes closer to the real solution. 

with initial conditions away from the steady state eventually relax 
to the steady state. 

If we consider a quasi stationary system then the fixed point 
moves with a speed dc(2)ldt. The Jacobian elements for the QSSA 
species will be large as discussed in section 3, and so the initial 
approach will be fast. However, since the fixed point is moving 
in time, the perturbed solution will never exactly reach it but will 
remain at a distance AcQ). The scheme 

ki ki 
x-Y-z 

in Figure 3 illustrates this case. Y can be considered a QSSA 
species whose quasi-steady state concentration decays with time. 
The real concentration therefore never reaches the QSSA 
concentration but remains above it since dy/dt is negative. The 
final distance depends on the size of k2 and hence on the lifetime 
of Y. This distance is the error induced by the application of the 
QSSA and is governed by the speed of the quasi stationary point. 
Since we use the quasi-stationary point as our reference system 
dU2)/dt = 0 and 

Hence 

and we again arrive at eq 7. 
If there is a single QSSA species and the effect of the 

perturbation of its concentration on the concentration of any 
other species can be neglected, the corresponding equations are 

Ac,(t) = AcpeJii' (16) 
dAc. 
I= JiiAcir Ac,(O) = AcY dt 

dc,/dt = JiiAci (18) 
where eq 18 is identical to eq 8. As before, this equation can also 
be considered as a first approximation in the case of several QSSA 
species. 

The induction period can also be interpreted in terms of a 
perturbation analysis. Let us assume that the concentrations of 
QSSA species are zero at t=O and the concentrations of non- 
QSSA species do not change significantly during the induction 
period. The non-QSSA species concentrations determine a quasi- 
stationary poin t for the QSSA species and the real concentrations 
of QSSA species approach this point from zero. So here the 
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perturbation is the difference between the real initial concen- 
trations and those calculated using the QSSA. This is not an 
infinitesimal perturbation but equations IO and 16 can beapplied 
as a rough estimation. For simplicity consider this relaxation for 
each species separately. Let the fractional error of the QSSA 
species be not more than ri a t  the end of the induction period 
rind. ri = Aci(rind)/C since the QSSA concentration is assumed 
not to change with time. The real concentration is zero at  the 
initial time, hence = Acp and ri = ACi(ti,d)/ACy. Substituting 
for Aci(tind) in eq 16, the induction period for a QssA species i 
is given approximately by 

r,AcP zx AcpeJi8tjnd (19) 

t:nd = (In ri ) /Ji i  (20) 

Thus a rough estimate can be given for the length of the 
induction period of QSSA species i which depends only on the 
accuracy limit required and the corresponding diagonal element 
of the Jacobian. If ri = 5 X then tFd = -lO/Jii .  Note that 
tFd depends only logarithmically on ria 

If there are several QSSA species, the quasi-steady-state 
approximation can be applied only after passing the induction 
period for each QSSA species. Therefore 

rind = maxi ,jnd (21) 
where i runs over the indexes of the QSSA species. 

The length of induction period can be determined exactly by 
calculating the instantaneous error at  several times, but eq 20 
provides a guideline. 

5. Propagation of Instantaneous Errors 

Small instantaneous errors of QSSA species forecast but do 
not justify small overall errors of important species. The error 
of QSSA species implies a continuous perturbation of concen- 
tration trajectories and therefore the overall error can be assessed 
by studying the effect of the growth or decay of this perturbation 
in time. For non-QSSA species this overall error L V c  can be 
calculated by the solution of eq 1, giving the Jacobian elements 
along with the following equation: 

dA,,c"'/dt = J(")Aovc(') + J('2)Aovc(2), Aovc(l)(tO) = 0 (22) 

Although this equation indicates how the errors of the QSSA 
and non-QSSA species are coupled it is difficult to calculate 
since we now only the instantaneous errors of the QSSA species 
and not the overall errors. For small &,c(l) however these two 
errors should be similar and we can substitute the instantaneous 
error 

In most cases it is enough to calculate the instantaneous error 
for the QSSA species and to check whether they cause large 
errors in important species, either directly or indirectly through 
another species. These "problematic" QSSA species can be 
detected in both cases by the calculation of the initial concentration 
sensitivities. 

The initial concentration sensitivities can be calculated by the 
following equation: 

for A,-J(~) in eq 22. 

where J is the Jacobian and K is the initial concentration sensitivity 
matrix (see e.g. ref 63), K(t,tl) = (&i(t)/&;(tl)}. 

Let j be the index of an important species, i the index of a 
QSSA species and Aci(tl) the instantaneous error a t  time t l .  A 
deviation of Aci at time t l  causes a deviation Acj of speciesj at  
time 12, and this deviation can be approximately calculated from 
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the following equation: 

Here, A d  is not the real overall error, as the overall error is 
the result o r a  continuous perturbation, but eq 24 shows that the 
initial concentration sensitivities ac,(t,)/acY(t,) can indicate 
whether the small errors of QSSA species are increased or 
decreased when propagated to the important species. 

6. Algorithm for the Proper Application of QSSA 
The following algorithm is suggested for the selection of the 

QSSA species. Following an integration of eq 1, the individual 
fractional instantaneous QSSA error Acf/c, of each species 
should be calculated by eqs 8 and 9. Those having a small 
fractional error are potential QSSA species, and the interaction 
of their errors has to be calculated using eqs 7 and 9. If the errors 
A$/ci remain small, these species can be considered as QSSA 
species. A trial calculation using eqs 3 and 4 can prove if the 
small instantaneous errors of QSSA species cause small overall 
errors in important species. If small instantaneous errors result 
in large overall errors of important species, then the"prob1ematic" 
QSSA species can be pinpointed on the basis of the calculation 
of the initial concentration sensitivity matrix. It is thus possible 
to estimate the errors induced by the application of the QSSA 
to various groups of species with only one simulation of the full 
model and in this way to choose the optimum group. 

Equations 7 and 8 are applicable not only for the selection of 
QSSA species but also for the determination of the time interval 
over which the QSSA is valid. If the QSSA species concentrations 
are initially zero and the instantaneous error is calculated at  
several times, a sudden decrease in the instantaneous error is 
observed and the induction period has been passed. Clearly the 
length of the induction period depends on the QSSA species 
selected. This method is an exact way of the determination of 
induction period find, while rough approximation can be based on 
eq 20. 

In some cases the QSSA has been found to be invalid a t  very 
high conversions,30 and so its validity must be checked over the 
whole time interval of intended application. 

7. Lifetime of Species 

The lifetime of a species is an important quantity in photo- 
chemistry. Since most photochemical processes are first order, 
the photochemical lifetime is usually defi11ed6~ as the reciprocal 
of the sum of the pseudo-first-order rate coefficients of the 
consuming reactions of species i, Le., 7,  = l/Zk,. 

Lifetimes are also frequently calculated in atmospheric chem- 
istry. The rate of change of species i can be written as dc,/dt = 
P - Lc,, where P and Lc, are the production and loss terms, so 
that T, = 1/L.24 L depends on the concentration of other species, 
but it is independent of c, provided there are no loss terms which 
are second order in c,. This requirement is fulfilled in atmospheric 
chemistry for many radical species but implies a loss of generality. 
In laboratory photochemical studies, conditions can usually be 
arranged such that the concentrations of other species reacting 
with c, are invariant, so that T, is constant and proportional to the 
half-life. The atmospheric lifetime, on the other hand, can be 
time and space dependent and is based on the current, local 
concentrations. 

A generalized interpretation of the lifetime can be based on 
the Jacobian. Using our present notation I, = -J,,-I for any 
mechanism. It is easy to show that this is equivalent to the 
photochemical lifetime if there are only first order reactions in 
the mechanism. It is also equal to the atmospheric chemistry 
lifetime providing there are no quadratic consuming reactions of 
species i (Le., L does not contain any c, terms). 
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The concept of a species lifetime may be used to amplify our 
earlier discussions. Equation 8 implies that the absolute instan- 
taneous error of a single QSSA species is equal to the product 
of its lifetime and of its net production rate. Equation 20 implies 
that the induction period is expected to be several times the lifetime 
of the longest lived QSSA species. 

Conclusions differing from those presented here have been 
reached in earlier studies. Frank-KamenetskiP2 compares the 
lifetime of the QSSA species with the normalized rate of the 
fastest changing species concentration, which he calls the 
characteristic time of the course of the reaction. Rice$s continuing 
Frank-Kamenetskii's argument, stated that, for the successful 
application of the QSSA, the lifetime of QSSA species has to be 
much less than the lifetime of non-QSSA species and that the 
induction period has to be small compared with the time for the 
overall reaction. In the present paper, the lifetime of a QSSA 
species is compared with the rate of change of concentration of 
the same species. It is also clear from the error equations derived 
here that the error and the lifetime of each species are independent 
of the length of the simulation time scale. Clearly the overall 
simulation time should be greater than the induction period for 
a successful application of the QSSA, but is not related to the 
instantaneous error of the QSSA species. 

Hesstvedt et al.24 have applied the lifetime as a criterion for 
the selection of QSSA species. Our error formulas, however, do 
not justify their assumption that the selection of the QSSA species 
depends on the step size of the integration. 

8. Stiffness of Kinetic Equations and the QSSA 

An important practical feature of chemical kinetic differential 
equations is that they are almost always stiff. Special programs 
have to be used for their numerical solution, and the solution 
requires much more computer time than is required for nonstiff 
equations. 

Many practical applications require the simulation of spatially 
inhomogeneous systems. The operator splitting method is 
frequently applied for the numerical solution of such systems, 
where the kinetic equations have to be solved at each grid point. 
Having solved the kinetic equations, the transport equation is 
solved over the same time interval. This time interval At is 
determined by the stability and/or the accuracy of the transport 
equation and is usually short, while stiff ODE solvers require 
time to "start up" and are therefore not very efficient over a short 
time interval. Hence any method, which decreases the stiffness 
of kinetic equations, may result in considerable savings of computer 
time in the modeling of spatially inhomogeneous systems. 

The stiffness of a system of differential equations can be 
characterized by the stiffness ratio, which depends linearly on 
the largest absolute eigenvalues of the Jacobian (see ref 66, p 
165). Stiffness relates to the eigenvalues of the Jacobian while 
the QSSA was related to the diagonal elements. To relate stiffness 
to the QSSA, a relation has to be found between the eigenvalues 
and the diagonal elements of the Jacobian. A series of mechanisms 
have been investigated in the fields of atmospheric, combustion, 
and pyrolysis chemistry, and good agreement has been found 
between thediagonal elements and the eigenvalues of the Jacobian. 
This agreement is even better for the J(22) submatrix of QSSA 
species. Coincidence of eigenvalues and diagonal elements is 
good in the caseof nearly diagonal or nearly triangular matri~es.6~ 
The Jacobian is in many cases nearly triangular, and this feature 
becomes apparent if the rows and columns of the matrix are 
arranged in the order of increasing diagonal elements. Figure 
4 represents an example from propane pyrolysis which will be 
discussed in more detail in section 10. The height of a column 
indicates the log of the Jacobian element divided by the 
corresponding diagonal element in the same row. There are few 
significant elements in the upper triangle. 

For a triangular matrix the eigenvalues Xi are equal to the 
diagonal elements. For a nearly lower triangular matrix, the 

ABOVE 12 
r-r-l l o t o  12 

I 1 81010 
1 ] 5108 ' I 2105 

0 10 2 
. ,  -, -2 I O 0  ,,CD 

-5 10 -2 

8 :o -5 
1010 8 

1210.10 
' BELOW-12 

- 
, -- 
- - _  

Figure 4. Illustration of a nearly triangular Jacobian for the propane 
scheme at z = s. The height of the columns represents the log of 
the absolutevalueof the Jacobian element relative to thediagonal element 
and species are ordered in terms of increasing lifetime. 

TABLE I: Comparison of the Eigenvalues with the Diagonal 
Jacobian Elements for Each Species of the Propane Pyrolysis 
Mechanism at t = lo-* sa 

species i eigenvalue Xi diagonal element Jii 

-0.2165 X 1OIo 
-0.2265 X lo7 
-0.6111 X lo6 
-0.2164 X lo6 
-0.2561 X los 
-0.6179 X lo3 
-0.9168 X 
-0.4043 X 
-0.1226 X 
-0.2292 X 

0.2174 X lo4 

-0.2165 X 10'O 

-0.6111 X 106 
-0.4099 X IO6 
-0.2561 X los 
-0.9349 x 104 
-0.9168 X IO-' 
-0.8818 X lW3 
-0.1904 X 1W3 
-0.1434 X 
-0.1205 X 

-0.2072 x 107 

Reaction conditions are as in ref 6 Le., at a reaction temperature of 
8 17.16 K and an initial propane concentration of 1.91 2 X 1 O-' mol dm-3. 
The initial concentrations of all other species are zero. 

diagonals provide an approximation to the eigenvalues, the 
deviations depending on the magnitude of the upper triangular 
elements.67 Let A be a lower triangular matrix and E an upper 
triangular matrix with small elements. The nearly triangular 
matrix is given by A + E. If X is an eigenvalue of A and x and 
y satisfy Ax = Ax and yTA = XyT with llxllz = llyllz = 1 ,  then a 
bound on the deviations of the eigenvalues of A + E from those 
ofA isgiven by 11Ell/s(X), wheresis theconditionoftheeigenvalue: 

Practically s(X) is small only if A is close to a matrix having 
multiple eigenvalues, and so if this ill-conditioning is avoided a 
small perturbation from the triangular matrix implies a small 
perturbation of the eigenvalues. This deviation will therefore be 
much smaller for large diagonal elements where the upper matrix 
elements are less significant and the differences between the 
absolute values of the eigenvalues are bigger. Large diagonal 
elements correspond, therefore, to large eigenvalues. (A com- 
parison is made in Table I for the propane example at the same 
conditions as for Figure4.) Removing species with large Jiivalues 
therefore reduces the stiffness of the system. 

9. Practical Application 

The algorithm presented in section 6 enables the selection of 
QSSA species and of the time interval for application of the 
QSSA. On the basis of the discussion in section 8, it is evident 
that, in most cases, the morespecies to which the QSSA is applied, 
the greater the reduction in the stiffness of the problem. There 
are however, some practical aspects which may limit the number 
of QSSA species. 

In most cases the aim of the application of QSSA is to save 
computer simulation time. There are several possible strategies 
for the application of QSSA, some may improve efficiency more 
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than others. If eq 4 has at  least one real positive root, this root 
can always be calculated numerically. However, numerical 
solution of a nonlinear system of algebraic equations is based on 
iteration, while the solution of a linear system can be obtained 
by Gauss elimination. It may be more efficient to limit the 
application of the QSSA to a subset of the QSSA species which 
results in a set of linear algebraic eqs 4. 

Some recent programs for the solution of differential equations 
have also been designed to handle differential-algebraic systems 
(see, e.g., DASSL,6* SPRINT69). The simultaneous solution of 
differential-algebraic equations seems to be the most efficient 
way for the numerical solution of eqs 3 and 4. Some of these 
programs have a choice of integration routines depending on the 
stiffness of the system which may further increase the numerical 
efficiency. However, we have found that the application of the 
QSSA using a numerical solution, even with the use of an efficient 
differential-algebraic equation solver, does not significantly reduce 
simulation time. A possible reason for this unexpected result is 
that the recent stiff ODE solvers are very efficient, and it is not 
easy to improve the efficiency further by a purely numerical 
approach. Of course, the savings depend on the problem and it 
is possible that for some specific problems considerable savings 
can be achieved. However, in our opinion to producea significant 
increase of computational efficiency, the practical application of 
the QSSA must involve the analytical solution of the QSSA 
equations, which requires the conversion of eq 4 into an explicit 
form. If this equation is linear, such an explicit form can always 
be found although the algebra may be difficult. The analytical 
solution of eq 4 is still possible if the system contains second order 
terms in one of the species, but it becomes impossible even in the 
case of second-order terms for two species. The requirement of 
finding an explicit solution of eq 4 may therefore exclude the 
application of the QSSA to some species even if the algorithm 
given in section 6 indicates that they are potential QSSA species. 

If there are many QSSA species the explicit solution is not 
easily found and can rarely be achieved by hand. Algebraic 
manipulation packages such as REDUCE70 and MATHEMAT- 
ICA7’ can be used. Both are able to produce the resulting 
expressions in the form of a Fortran code which can immediately 
be used with an ODE solver. The major problem with such 
packages is that they cannot yet be used to solve automatically 
nonlinear sets of equations. Another possible solution is to 
approximate the solution of the QSSA equations by a set of 
polynomials, or to truncatezz the QSSA expressions to some linear 
form. 

The explicit solution for the concentration of QSSA species, 
obtained by hand, by an algebraic manipulation program or by 
a polynomial fit, is then inserted into the function calculation 
subroutine of the differential equation solver. In this case, 
considerable savings can be expected compared with the solution 
of the original kinetic differential equations. If an analytical 
expression has been found for the calculation of the concentrations 
of all short lifetime species, the resulting problem will not be stiff 
and longer time steps and/or a more efficient integrator can be 
chosen. The number of variables also decreases and, according 
to theoretical predictions, the simulation time is proportional to 
the second or third power of the number of variables, depending 
on the algorithm applied. On the other hand, calculation of the 
concentrations of QSSA species itself consumes computer time. 

Having recognized the stiff variables, a saving of computer 
time can also be achieved without the application of the QSSA. 
A well-established technique for the efficient solution of stiff 
differential equations is partitioning of the system into transient 
and smooth parts (see references in ref 66, pp 240-243). The 
differential equations are separated into two sets which are solved 
by different methods (Le., the nonstiff equations are solved by 
a nonstiff ODE solver and the stiff (“transient”) equations by a 
stiff ODE solver). Partitioning is usually based on the eigenvalues 
of the Jacobian. As the partitioning is time dependent, it has to 
be checked several times, reducing the effectiveness of the method. 
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TABLE II: Lifetimes and Ap roximated and Real 
Instantaneous Fractional (AclPc,) Errors for Single Species of 
the Propane Pyrolysis Mechanism at t = 10-2 sa 

Ac:/c, 
order species approx real swcies lifetime T / S  

1 C2H4 -1.052 X lo6 -1.052 X 106 

3 C3H6 -1.455 X 10’ -1.455 X 10’ 

5 C ~ H I  9.961 X lo-’ 9.961 X lo-’ 

2 H2 -8.937 X lo5 -8.937 X 10’ 

4 ( C I H ~ ) ~  -4.303 X lo3 -4.303 X 103 

6 C3HS -5.194 X lo-’ -5.194 X 10-3 
7 2-C3H7 -4.476 X -4.476 X 
8 C2HJ 2.812 X 2.812 X 
9 H  1.430 X IO-‘ 1.430 X 
IO l-ClH7 4.315 X 10-5 4.315 X IO-’ 
11  CH3 2.789 X IO-’ 2.789 X 10-5 

Conditions are the same as for Table I. 

08298 E O c  
0.6971 X lo4 
0.5252 X IO4 
0.1134 X 104 
0.1091 X 102 
0.1070 X IO-] 
0.3904 x 10-4 
0.2440 X IO-’ 
0.1636 X 
0.4825 X 10-6 
0.46 18 X 1 0-9 

By basing the separation of stiff and nonstiff variables on eq 8, 
the effectiveness of the usual partitioning methods is enhanced. 

10. Examples: Propane Pyrolysis and Hydrogen Oxidation 
Pyrolysis models are conventional fields for the application of 

QSSA. The first detailed low-temperature alkane pyrolysis model 
was presented by Edelson and Allara and a refined version was 
inve~ t iga t ed~~  by concentration sensitivity analysis. As it is a 
widely known mechanism, it was chosen as a basis of our numerical 
example without updating the rate coefficients. 

This 98-step alkane pyrolysis model of 36 species has been 
reduced by Turlnyi6’ to a 38-step propane pyrolysis model of 13 
species. The deviation between the two models is of the order of 
0.5% for each important species. This reduced model was 
employed in our investigations and the following results serve to 
illustrate the theoretical points made above. The model and the 
circumstances of investigation are reproduced from refs 72 and 
61. 

10.1. Calculation of Instantaneous Errors. 10.1.1. Single 
Species: The instantaneous errors for each individual species are 
presented in Table I1 at t = lo-* s. The errors are presented as 
fractional errors, Le., Aci/ci. The second column shows the 
estimated instantaneous error Acf/ci calculated from eq 8. In 
column 3 the errors are calculated from the difference between 
the real concentrations and the concentrations calculated from 
algebraic eqs 4, where the concentrations of the non-QSSA species 
are their real concentrations. The agreement is excellent and 
extends to six significant figures. Table I1 also presents the 
instantaneous lifetimes, q, of all the species. The six species with 
the shortest lifetimes also have the smallest instantaneous errors, 
although their ordering is slightly different. The results suggest 
that these six species are practical QSSA candidates. 

10.1.2. Groups of Species: To study the interaction of the 
instantaneous errors, the approximate and real instantaneous 
errors A 4  and Aci were compared for groups of QSSA species. 
The groups were formed in such a way that the first two, three, 
four, etc. species were considered together in the order of the 
increasing instantaneous errors for single species. Table 111 
compares A q / q  and Acf/ci with A 4 / c i  calculated from eq 7, 
which includes contributions to theerror fromother QSSAspecies. 
The results are presented with increasing numbers in the QSSA 
group. The agreement is good up to four QSSA species but with 
five species the group error estimates differ significantly from 
the individual errors; indeed in some cases the sign is even wrong. 
The interactions between QSSA species are therefore very 
significant. 

The agreement of the group estimated instantaneous error 
A 4 / c i  with the real instantaneous error AcJq is always very 
good provided only those species with small Ac; are included in 
the group. Deviations are below 1%. Inspection of the six species 
group indicates that these six species (CH3, 1-C3H7, H, CzHs, 
2-CjH7, and C3H5) are good QSSA candidates, as the interaction 
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TABLE 111: Comparison of Approximated and Real 
Instantaneous (Ac,/c,) Fraction81 Errors Calculated for Single 
Species (Acflc,) and for Groups of Species ( 4 / c i )  of the 
Propane Pyrolysis Mechanism at t = sa 

no. of 
species species Ac:lct A4lct  Acilct 

2 CH3 2.789 x 10-5 1.211 x 10-4 1.211 x 10-4 
I-C3H7 4.315 X 9.582 X 9.582 X 

3 CHI 2.789 X 2.518 X 2.518 X 
1-C3H7 4.315 X 4.315 X 2.301 X 
H 1.430 X 10" 1.430 X 1.430 X 

CHI 2.789 X 2.574 X 2.574 X 
I-C3H7 4.315 X 2.359 X lo" 2.359 X 
H 1.430 X IO4 1.431 X 1.431 X 

5 2-CjH7 -4.476 x 10-4 -3.975 x 10-3 -3.967 x 10-3 
H 1.430 X -3.828 X lo-) -3.820 X 
I - C ~ H ,  2.301 x 10-4 -3.573 x 10-3 -3.566 x 10-3 
CH3 2.789 X -3.448 X -3.441 X lo-) 
~ 2 ~ 5  2.812 x 10-4 2.810 x 10-4 2.810 x 10-4 

2-CjH7 -4.476 x 10-4 -3.975 x 10-3 -3.967 x 10-3 

CH3 2.789 x 10-5 -3.449 x 10-3 -3.442 x 10-3 

4 C2H5 2.812 X 2.812 X 2.812 X 

6 C3H5 -5.194 X -9.012 X -9.004 X 

H 1.430 X -3.829 X -3.821 X IO-' 
1-cjH.1 4.315 X -3.574 X lo-) -3.566 X 

C2H5 2.812 X 2.812 X low4 2.810 X 

7 (C3H5)2 -4.303 X lo3 -4.381 X lo3 -4.381 X lo3 
C3H5 -5.194 X -9.012 X -9.004 X 
2-C3H7 -4.476 X -3.975 X -3.967 X 
H 1.430 X -3.829 X -3.821 X 

CH3 2.789 X -3.449 X IO-' -3.442 X lo--' 
C2H5 2.812 X 2.812 X 2.810 X 

1-CJH7 4.315 x 10-5 -3.574 x 10-3 -3.566 x 10-3 

8 ( ~ 3 ~ 5 ) 2  -4.303 x 103 -3.708 x 109 -1.123 x 1014 

C3H5 -5.194 X -4.307 X IO5 -1.415 X IO5 
H 1.430 X 10" 2.834 9.880 X 10-1 
CH3 2.789 X 1.468 9.472 X lo-' 
1-CjH.I 4.315 X lW5 1.268 6.156 x 10-1 

C3H6 -1.455 X 10' -4.285 X lo5 -1.212 x lo7 

2-C3H7 -4.476 X 6.618 X 1.713 X lo-' 
C2H5 2.812 X 10" 2.466 X 1.375 X 

Conditions are the same as for Table I. 

Turdnyi et al. 

of the individual errors does not increase the total error, when 
they are treated as QSSA species simultaneously. 

Admitting long-lifetime species into the groups causes the 
estimated error to deviate from the real error emphasizing the 
point that only species with small individual errors should be 
included in the group calculation and that it is worthwhile using 
eq 8 as a first guide. 

10.2. Induction Period. According to the algorithm given in 
section 6, the next step is the determination of time domain over 
which the QSSA is applicable. In this case it means the 
determination of the length of the induction period. The group 
instantaneous error of the six QSSA species was calculated by 
eq 7 at several times over the time interval 0-0.1 s. The 
instantaneous error for all the species becomes sufficiently small 
after about 0.01 s and therefore the QSSA is applicable from this 
time for the whole group. At s the group fractional errors 
are >1 for most of the six species although the individual errors 
for some are small. If a smaller group is chosen including only 
l-C3H7, CHa, C~HS,  and H the group errors are sufficiently small 
at 

Equations 20 and 21 provide order-of-magnitude estimates of 
the length of the induction period. As the lifetime of the longest 
lifetime species (2-C3H7) is greater than 1 X 10-4, the length of 
the induction period must be at least t = 10-3 s. 

10.3. Comparison of Instantaneous and Overall Errors. The 
QSSA was then applied from 0.01 s for the six species and the 
(real) overall error of each species calculated. The overall error 
is simply the difference in concentrations calculated from a full 
solution (via eq 1) and a QSSA solution (via eqs 3 and 4). As 

s for the application of the QSSA. 
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Figure 5. Log of fractional overall and instantaneous errors for CH3, the 
QSSA species with the lowest individual instantaneous error: (a) overall; 
(b) instantaneous. 
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Figure 6. Log of fractional overall and instantaneous errors for CJH,, 
the QSSA species with the highest individual instantaneous error: (a) 
overall; (b) instantaneous. 
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Figure 7. Log of fractional overall error for C3H6, the major product. 

an example, the fractional overall error of C3H5 and CHJ, Le., 
the species with the highest and lowest individual instantaneous 
errors of the six QSSA species, respectively, are plotted in Figures 
5 and 6. 

For a comparison, the estimated instantaneous error A t / c ,  
(calculated by eq 7) is also given in the figures. 

The real test of the application of the QSSA is the error induced 
in the important species. Figure 7 shows the real overall error 
of C3H6, which is a main product of the pyrolysis. The error 
remains small showing that the propagation of errors is low for 
all QSSA species. 

10.4. Initial Concentration Sensitivities. The above results 
are confirmed by the calculation of initial concentration sensi- 
tivities, showing the effect of a perturbation in any of the QSSA 
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TABLE IV: Exam le Fractional Error Calculation (A4/ch 

Instantaneous Error) from a Model Describing the Oscillatory 
Oxidation of Hydrogen in a Flow Reactor under 
Stoichiometric Conditions' 

Approximate Error P or Sigle Species; Ac,/ch Real 

order 
1 
2 
3 
4 
5 
6 
7 
8 
9 

- species 

H2 
0 2  
Hz0 
H202 
0 3  
H02 
H 
0 
OH 

AC;/C~ 
-9.507 
-7.030 
1.000 
9.999 x 10-1 
9.952 x lo-' 
3.804 x 
8.679 X lo-) 
3.115 X 10-3 
3.207 X 

A c ~  f ci 

-9.507 
-7.030 

1 .ooo 
9.999 x 10-1 
9.952 X 10-1 
3.804 X 
8.679 x IO-' 
3.115 X lo-' 
3.207 X 

species lifetime/i/s 

H2 0.8OOOX 10 
0 2  0.8000x 10 
H2O 0.8000 X 10 
H202 0.6405 X 10 
03 0.1642 
H02 0.1331 X lo-' 
H 0.2369 X 
0 0.6545 X 
OH 0.7049 X loe4 

Pressure = 20 Torr, temperature = 790K, residence time = 8s and 
t = 0.1s. 
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Figure 8. Initial concentration sensitivities &i(r2)/dci(tl) for radicals H, 
OH, and HO2 during the first ignition stages of the reaction under 
stoichiometric conditions, showing that the system is far more sensitive 
to initial errors in H concentration than to errors in the concentration of 
H02. Pressure = 20 Torr, temperature = 790 K, residence time = 8 s. 

species concentrations on the important species CjH8, H2, CH4, 
C3H6, C2H4, C2H6. The result of this calculation is that the 
perturbation of each QSSA species produced approximately the 
same effect on the non-QSSA species. This means that the 
interconversion of radicals is fast and the spread of errors to the 
important species is much the same for each QSSA species. 

There are certain situations where the sensitivity to radical 
perturbations is very different for each radical species. A good 
example is the hydrogen oxidation reaction in a flow reactor as 
discussed in an earlier article.5' Under certain conditions the 
radicals 0, OH, H, and also HOz have a short lifetime and a low 
instantaneous error as shown in Table IV and so are chosen as 
the group of QSSA species. An initial QSSA calculations shows 
however that such an approximation leads to negative radical 
concentrations and so at  least one of this group is not a good 
QSSA species. Calculation of initial concentration sensitivities 
of Hz to the radicals shows (Figure 8) that the sensitivity to H 
and OH is many orders of magnitude higher than to H02, and 
so any errors in their concentrations spread much more quickly 
to the important species than for H02. H is suspected as the 
'pathological" species since it has a much higher instantaneous 
error and a longer lifetime than OH, and when H is removed 
from the group the agreement between the QSSA calculation 
and the full calculation is good. Thus the unsuitability of H as 
a QSSA species can be demonstrated by supplementing the 
instantaneous error tests with a calculation of the initial 
concentration sensitivities. 

11. Conclusions 
For a single QSSA species at  a specific time, the deviation 

between the exact solution and the quasi-steady-state approxi- 
mation (the instantaneous error) can be interpreted as the product 
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of the lifetime and the net production rate of this species. The 
lifetime of a species, according to a general interpretation, is 
equal to the negative reciprocal of the corresponding diagonal 
element of the Jacobian of the system of kinetic differential 
equations. In the case of several QSSA species, the instantaneous 
errors of individual QSSA species interact, but the resulting 
instantaneous errors can be obtained by the solution of a simple 
system of algebraic equations which contains the corresponding 
block of the Jacobian and the reaction rate of QSSA species only. 
The error formulas derived provide a simple guideline for the 
selection of QSSA species and the exact determination of the 
time period when the QSSA approximation is valid for the QSSA 
species chosen. 

The error in the concentration of QSSA species causes an error 
in the concentration of important species. The overall error of 
important species is the most significant measure of the appli- 
cability of QSSA for a particular problem, but low instantaneous 
QSSA errors usually imply low overall errors. The calculation 
of the initial concentration sensitivity matrix can be used to 
investigate "pathological" cases since it indicates if the kinetic 
system investigated increases or decreases the instantaneous errors 
causing a large or small overall error, respectively. In the former 
case the QSSA is applicable even in case of large instantaneous 
errors. The simplest way to calculate the overall errors is to 
compare results from a full and a QSSA calculation and in this 
respect it is not possible to predict a priori the exact error induced 
by the application of the QSSA. However, the instantaneous 
error which can be calculated via a simple expression involving 
only onesimulation ofthe full model, providesa reasonable method 
of estimating possible errors. A selection of QSSA species can 
therefore be made without preparing and testing numerous QSSA 
calculations involving different numbers of QSSA species. 

Two physical pictures are provided for the interpretation of 
the QSSA, and both exclude the simplistic idea that the overall 
production rate of QSSA species must be close to zero. According 
to the first, static picture, the difference between the actual 
concentration of a species and the quasi-stationary concentration, 
depends on the steepness of the net production rate surface in the 
space of species concentrations. This steepness is characterized 
by the Jacobian. According to the second, dynamic picture, the 
concentrations of the QSSA species follow the quasi-stationary 
concentrations and the difference between the two concentrations 
depends on the lifetime of species and the rate of change of the 
species. On the basis of the dynamic approach, an estimation is 
given for the length of the induction period which is of the order 
of 10 times the lifetime of the longest lifetime QSSA species. 

A technique for the separation of stiff and nonstiff variables 
has previously been discussed by Miranker.') The technique uses 
the fact that the solution of stiff systems can be characterized in 
terms of boundary layers. Singular perturbation theory can then 
be used to separate the variables and find inner and outer solutions. 
Such methods normally apply in systems where a small parameter 
e can be identified. Miranker has extended the techniques to 
systems where the small parameter remains hidden, by dividing 
the system into regular and singular parts. This technique for 
the separation of variables does not require the use of a stiff ODE 
solver. Miranker, however, makes no estimation of the length of 
the boundary layer (or induction period using the present 
terminology), nor an estimation of the accuracy of the outer 
solution once the induction period has passed. 

C8me45 extended Miranker's work by defining criteria for the 
application of the QSSA. These criteria relate to the time period 
over which the QSSA can be applied. Again Cbme's method 
does not require a stiff solver but requires an a priori selection 
of QSSA species, which he assumes to be radicals. His work 
does not provide a method for predicting the error during the 
period over which the QSSA is a valid approximation. The present 
work has provided a method for the selection of QSSA variables 
regardless of their status as chemical species. Our method is 
based on the investigation of simple, physically interpretable 
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quantities such as lifetimes and production rates. We have shown 
that even for valid QSSA species, an error is still induced after 
the boundary layer has passed and have provided a method for 
calculating this error. 

There have been several empirical observations or conclusions 
based on the investigation of small model reaction systems which 
showed that the rates of consuming reactions of QSSA species 
are usually high,23,74 that the concentrati~ns,~,~~~~~J~,~~ and the 
net rates of reaction" of QSSA species are usually low, that the 
induction period is usually short,23J0~74~7s and that most QSSA 
species are radicals. These observations are simple consequences 
of the physical pictures presented above and the error formulas 
derived from them. 

The quasi-steady-state approximation is frequently applied in 
chemical kinetics both for kinetic modeling and for the derivation 
of theoretical formulas in several fields (e&, enzyme kinetics, 
theory of unimolecular reactions). The error formulas here 
derived are directly applicable in both cases. In the theory of 
numerical methods for the solution of stiff differential equations, 
the error formulas may be applied without any physical back- 
ground for the improvement of the numerical procedure as a part 
of the partition process. 

Practically a very important application of the QSSA is in the 
simulation of spatially inhomogeneous combustion processes. The 
derivation of error formulas which consider not only spatially 
homogeneous kinetics but also the effect of diffusion, the spatial 
stiffness, and the damping of the instantaneous errors in spatial 
simulations is a task for the future. 

12. Computations 

The numerical solution of the differential and coupled dif- 
ferential-algebraic equations was calculated using the program 
package SPRINT.69 The initial concentration sensitivities and 
species lifetimes were calculated by KINAL.76 The NAG routine 
fO2Abf was used for eigenvalue, eigenvector calculations, and 
REDUCE70 for the explicit solution of the algebraic QSSA 
equations. 
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