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ABSTRACT: Chemical kinetics databases for many elementary gas-phase reactions provide the
recommended values of the Arrhenius parameters, the temperature range of their validity,
and the temperature dependence of the uncertainty of the rate coefficient k. An analytical
expression is derived that describes the temperature dependence of the uncertainty of k as
a function of the elements of the covariance matrix of the Arrhenius parameters. Based on
this analytical expression, the various descriptions of the temperature dependence of the
uncertainty of k used in the combustion, and in the IUPAC and JPL atmospheric chemical
databases are analyzed in detail. Recommendations are given for an improved representation
of the uncertainty information in future chemical kinetics databases using the covariance matrix
of the Arrhenius parameters. Utilization of the joint uncertainty of the Arrhenius parameters is
needed for a correct uncertainty analysis in varying temperature chemical kinetic systems. A
method is suggested for the determination of the covariance matrix and the joint probability
density function of the Arrhenius parameters from the present uncertainty information given in
the kinetics databases. The method is demonstrated on seven gas kinetic reactions exhibiting
different types of uncertainty representation. C© 2011 Wiley Periodicals, Inc. Int J Chem Kinet
43: 359–378, 2011

INTRODUCTION

The rate parameters of chemical reactions are always
determined with some uncertainty in either experi-
ments or theoretical calculations. The published uncer-
tainty of the measured rate parameters usually reflects
the scattering of the measurement data only, whereas
evaluated rate parameters are based on several (some-
times dozens or even hundreds of) measurements or
calculations, and thus can take into account the system-
atic errors of all determinations. The uncertainty values
recommended in the kinetic data evaluations are the re-
sults of the critical evaluation by the groups of experts
and they do not represent the results of the straight sta-
tistical analyses of the entire data sets available from
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the original publications. However, the uncertainty in-
formation, provided in collections of evaluated data, is
a good indicator of the depth of knowledge of a given
reaction and the data evaluations attribute a statistical
meaning to the uncertainty limits.

In liquid-phase kinetics and atmospheric chemistry,
the temperature dependence of a rate coefficient
k is described using the Arrhenius expression
k = A exp(−E/RT ). In high-temperature gas kinetic
systems, such as combustion and pyrolytic systems,
the temperature dependence of rate coefficient k is
traditionally given in the form of the modified Arrhe-
nius expression k = AT n exp(−E/RT ). The modified
Arrhenius expression is sometimes used in form
k = BT n exp(−C/RT ), to emphasize that parameters
B and C are different from preexponential factor A

and activation energy E, respectively. In this paper,
the form k = AT n exp(−E/RT ) is used because it
allows a common discussion of all Arrhenius-type



360 NAGY AND TURÁNYI

expressions. For some gas-phase reactions, the expres-
sion k = AT n describes the temperature dependence
of the rate coefficient. Temperature independent rate
coefficients are defined by the expression k = A.
The latter two functions and the original Arrhenius
expression can be considered as simplified special
forms of the modified Arrhenius expression.

Determination of the main values and the variances
of the parameters of Arrhenius-type expressions from
experimental k data has been discussed in the classic
articles of Cvetanović et al. [1–3]. The uncertainties of
Arrhenius parameters have also been investigated by
Héberger et al. [4]. They concluded that the Arrhenius
coefficients determined in most experiments are
highly correlated and that this correlation should be
characterized by a covariance matrix. In their work, the
uncertainties of the Arrhenius parameters were calcu-
lated from simulated rate coefficient data. Estimation
of Arrhenius parameters A and E using the logarithmic
form of the Arrhenius equation was investigated by
Klička and Kubáček [5], and by Sundberg [6], based
on different assumptions for the errors of the measured
rate coefficients. Rodrı́guez-Aragón and López-
Fidalgo [7] discussed the determination of the Arrhe-
nius parameters from the point of view of experimental
design theory. Schwaab et al. [8,9] studied the question
of the selection of the optimum reference temperature
to decrease the correlation between the parameters of
the reparameterized Arrhenius equation. This inves-
tigation was extended also to power functions [10].
Najm et al. [11] carried out a numerical simulation of
the ignition of a stoichiometric methane-air mixture
using a detailed methane combustion mechanism. The
calculated CH4 concentrations were considered to be
measured data and random Gaussian noise was added
to these values. Then, the joint probability density
function (pdf) of transformed Arrhenius parameters
ln A and ln E, belonging to a single-step global
reaction, was determined using the Markov chain
Monte Carlo (MCMC) method. Strong correlation
was found between these transformed Arrhenius
parameters and their calculated pdf was almost of a
two-dimensional (2D) normal distribution.

The approach presented in this paper is different
from those described in the articles above. In all of
the above articles, the uncertainty of the Arrhenius
parameters was calculated from either real or simu-
lated experimental data. This paper investigates the re-
lationship between the temperature dependence of the
uncertainty of rate coefficient k and the temperature
independent uncertainty of the Arrhenius parameters
A, n, and E.

Many fields of practical importance, including at-
mospheric chemistry, combustion, and chemical indus-

try, use the results of gas kinetic simulations. Uncer-
tain rate parameters cause uncertainty in the simula-
tion results. Not only are the results obtained using the
nominal parameter set important but also the predicted
uncertainty of the simulation results. It will be shown
that a good characterization of the uncertainty of the
Arrhenius parameters is a starting point of realistic
uncertainty analysis of models using detailed reaction
mechanisms.

USUAL DEFINITIONS OF THE
UNCERTAINTY OF THE RATE
COEFFICIENT

Critical compilations of gas kinetic reactions provide
not only the recommended Arrhenius parameters but
also report the reliability of the rate coefficients by
assigning an uncertainty parameter to them. A temper-
ature range is given that refers to the range of valid-
ity of the rate coefficient and its uncertainty. A series
of comprehensive evaluations of combustion reactions
was published by Baulch et al. [12–14]. In the field of
atmospheric chemistry, a series of kinetic evaluations
was carried out by the International Union of Pure and
Applied Chemistry (IUPAC) Subcommittee for Gas
Kinetic Data Evaluation (see its web page [15]). These
results were also published in a series of articles by
Atkinson et al. [16–19]. The Jet Propulsion Laboratory
(JPL) group regularly publishes an updated database
of chemical kinetics and photochemical data for use in
atmospheric studies. Evaluation Number 15 was the
latest database [20] and Evaluation Number 16 will be
released soon.

The combustion reviews, the IUPAC and the JPL
evaluations use different but related methods for the
characterization of the uncertainties of the rate coef-
ficients. In the combustion reviews of Baulch et al.
[12–14], the uncertainty of the rate coefficient is de-
fined by value f in the following way:

f = log10

(
k0

/
kmin

) = log10

(
kmax

/
k0

)
(1)

where k0 is the recommended value of the rate co-
efficient of the reaction, and kmin and kmax are the
possible extreme values; rate coefficients outside the
[kmin, kmax] interval are considered very improbable
by the evaluators. Temperature independent parameter
f was defined for some reactions, whereas for other
reactions different f values were set at different tem-
peratures or temperature intervals (see Table III for ex-
amples). Similar definition of uncertainty information
is used in other combustion chemistry data collections
(see, e.g., refs. [21–22]).
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Assuming that the minimum and maximum val-
ues of the rate coefficients correspond to 3σ devia-
tions [23–29] or 2σ deviations [30] from the recom-
mended value on a logarithmic scale, the uncertainty
parameterf can be converted [25] at a given tempera-
ture T to the standard deviation of the logarithm of the
rate coefficient using the equation

σ (log10 k) = σ (ln k)

ln 10
= 1

m
f (T ) (2)

where m = 3 or 2, respectively.
Rigorously speaking, using the notation ln k is not

correct because the logarithm of a quantity with a phys-
ical unit cannot be evaluated. The correct notation is ln
{k}, where the operator {} keeps the numerical value
of k but removes the physical unit [31]. All similar
logarithms will be considered this way, but the curly
brackets will be avoided to simplify notation.

In the IUPAC atmospheric chemical kinetic data
evaluations [15–19], the uncertainties are characterized
by three parameters (T0, d0, g) in the following way:

d(T ) = � log10 k (T ) = d0 + g

ln 10
· (

T −1 − T −1
0

)
(3)

where T0 = 298 K and d0 = � log10 k (T0). Uncer-
tainty measures d0 and g are provided with ± signs,
corresponding to ±2σ confidence limits in log10 k and
E/R, respectively:

σ (log10 k) = σ (ln k)

ln 10
= |d(T )|

2
(4)

σ (E/R) = |g|
2

(5)

Substitution of uncertainty measures d0 and g with pos-
itive signs into Eq. (3) gives a monotonically decreas-
ing function d(T ). If d0 < g · T −1

0 / ln 10 then d(T )
may become negative within the reference tempera-
ture range. For example, for reaction R266 (HO +
CH3I → H2O + CH2I) the corresponding data [19]
are d0 = ±0.2, T = 270 − 430 K, g = ±500 K, giv-
ing d (430 K) = −0.024. Of course, a negative uncer-
tainty measure is not interpretable. This means that
application of Eq. (3) without the appropriate selection
of the signs of d0 and g may give an incorrect result.

The IUPAC uncertainty expression can be trans-
formed to an unambiguous form by taking the absolute
values of the error terms, which results in a constructive
superposition of the positive errors at any temperature
T :

d(T ) = |d0| +
∣∣∣ g

ln 10
· (

T −1 − T −1
0

)∣∣∣ (6)

Using this equation, uncertainty d(T ) is always pos-
itive and has a minimum value of |d0| at T0. This is
equivalent to an appropriate temperature-dependent se-
lection of the signs of d0 and g in Eq. (3) to achieve
constructive superposition of terms.

The JPL data evaluations [20] overcome this prob-
lem by using absolute value in the function that cor-
responds to Eq. (3) and by defining the parameters,
similar to d0 and g, to be strictly positive. In the JPL
database, no unit is supplied for g, although it should be
given as K. In this approach, at any given temperature
the uncertainty factor fJPL(T ) may be obtained from
the following three-parameter (T0, f0, g) expression:

fJPL(T ) = f0 exp
(
g |T −1 − T −1

0 |) (7)

where T0 = 298 K; f0 = fJPL (T0) and g are positive
parameters. After linearization we get

ln fJPL(T ) = ln f0 + g |T −1 − T −1
0 | (8)

Note that here g has a meaning different from that
used in the IUPAC definition and also the exponent
contains an absolute value. The JPL evaluation [20]
claims that “an upper or lower bound (corresponding
approximately to one standard deviation) of the rate
constant at any temperature T can be obtained by mul-
tiplying or dividing the recommended value of the rate
constant at that temperature by the factorf (T )”. This
means that the standard deviation of ln k is as follows:

σ (ln k) = ln fJPL(T ) (9)

The JPL database considers one standard deviation
as upper and lower bounds, but does not recommend
truncation at these bounds. However, definition of a
truncation threshold is still needed when the JPL data
are used for uncertainty analysis to avoid the consider-
ation of very improbable values.

The IUPAC and the JPL approaches are based on the
facts that the rate coefficients of atmospheric chemical
reactions are typically known with minimum uncer-
tainty at standard temperature 298 K, and that the over-
all uncertainty normally increases toward lower and
higher temperatures, because there are usually fewer
measured data at those temperatures. The temperature
dependence of the uncertainty of the rate coefficient is
defined by different functions, but these are essentially
equivalent.

In all studies where the uncertainties of rate co-
efficients given in databases of evaluated data have
been utilized (see, e.g., refs. [24–30,32,33]), the un-
certainty of k was considered to be equal to the un-
certainty of preexponential factor A, silently assuming
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that the uncertainties of Arrhenius parameters E and
n are zero, which is a physically unrealistic assump-
tion. Joint characterization of the uncertainties of the
Arrhenius parameters is needed to calculate properly
the uncertainties of the simulation results.

TEMPERATURE DEPENDENCE OF THE
UNCERTAINTY OF THE RATE
COEFFICIENT

Three-Parameter (A, n, E) Arrhenius
Equation

The main aim of this section is to show that assuming
an Arrhenius-type temperature dependence of the rate
coefficient k implies a certain type of function for the
temperature dependence of the uncertainty of ln k. The
most flexible description of the temperature depen-
dence of k is the modified Arrhenius equation k(T ) =
AT n exp (−E/RT ). Taking the logarithm of this equa-
tion yields ln k (T ) = ln A + n · ln T − E

/
R · T −1,

which can be written in a more compact form using
transformed parameters κ (T ) := ln k(T ), α := ln A,
ε := E/R and column vector notations p := (α, n, ε)T

and θ := (1, ln T , − T −1)T, where superscript T
denotes transposition.

κ(T ) = α + n · ln T − ε · T −1 = θTp = pTθ (10)

In this linearized form of the equation, κ is a homo-
geneous linear function of parameters (α, n, ε). Here κ

is a temperature-dependent random variable, and there-
fore parameters (α, n, ε), which are determined from
κ in a temperature range, are also random variables. It
was shown in the preceding section that according to
all critical data evaluations uncertainty is proportional
to the standard deviation of the logarithm of the rate
coefficient, thus the uncertainty also has a probabilistic
meaning.

The theories of reaction rates do not yield an
Arrhenius-type equation, but the temperature depen-
dence of the experimentally or theoretically obtained

σκ (T ) =
√

(κ(T ) − κ̄(T ))2 =
√

θT�pθ (15)

σκ (T ) =
√

σ 2
α + σ 2

n ln2 T + σ 2
ε T −2 + 2rαnσασn ln T − 2rαεσασεT −1 − 2rnεσnσεT −1 ln T (16)

rate coefficients can be accurately described by a two-
parameter Arrhenius expression in a less than 100
K range of temperature and by a three-parameter

Arrhenius expression in a wide temperature range.
This is the reason why all kinetics databases use ei-
ther the modified or the original Arrhenius expression
for the characterization of the temperature dependence
of the rate coefficient. Within the scope of the Arrhe-
nius expression, parameters α, n, and ε are physically
well-defined quantities, therefore their joint pdf, which
reflects our current state of knowledge on the rate co-
efficient, is temperature independent and consequently
their expected values p̄ = (ᾱ, n̄, ε̄)T, standard devia-
tions σp = (σα, σn, σε), and correlations rαn, rαε, rnε

are also temperature independent. By definition, these
have the following properties:

0 ≤ σα, σn, σε, −1 ≤ rαn, rαε, rnε ≤ +1 (11)

The covariance matrix �p of parameters (α, n, ε) is
defined and can be expanded as [34]:

�p = (p − p̄) (p − p̄)T

=
⎡
⎣ σ 2

α rαn σα σn rαε σα σε

rαn σα σn σ 2
n rnε σn σε

rαε σα σε rnε σn σε σ 2
ε

⎤
⎦ (12)

By definition, the covariance matrix is symmetric
and positive semidefinit, implying that its determinant
is nonnegative, which requires that the following be
true:

0 ≤ σ 2
ασ 2

n σ 2
ε

(
1 − r2

αn − r2
αε − r2

nε + 2rαnrαεrnε

)
(13)

Let us assume that the temperature-dependent pdf of
κ (T ) is known in the temperature range of [T1, T2]. At
a given temperature T ∈ [T1, T2], the expected value
and the variance of κ is denoted by κ̄ (T ) and σ 2

κ (T ),
respectively. A consequence of Eq. (10) is that there
exists a relationship between the expected values of
κ(T ) and (α, n, ε).

κ̄(T ) = θTp̄ = p̄Tθ = ᾱ + n̄ · ln T − ε̄ · T −1 (14)

Another consequence of Eq. (10) is the following
relationship between the variance of κ(T ) and the ele-
ments of the covariance matrix:

According to Eqs. (2), (4), and (9), the variance of
κ (T ) is temperature independent if and only if its un-
certainty parameter is temperature independent. Equa-
tion (16) implies that it is possible only if σ 2

κ (T ) = σ 2
α ,
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and that all other standard deviations and correlations
are zero. This trivial solution has been applied previ-
ously in all uncertainty studies, when the temperature
independent variance of κ was assumed to be identi-
cal to the variance of α, and the variances of the other
Arrhenius parameters and their correlations were not
considered. However, this is a physically unrealistic
assumption, if the temperature dependence of the rate
coefficient is also considered. Equation (16) shows that
if the uncertainties of Arrhenius parameters n and/or
E are also considered, then the variance of κ cannot be
temperature independent. Equation (16) suggests that a
temperature independent uncertainty is physically un-
realistic, and also shows the required functional form
of the temperature dependence of the uncertainty.

The special cases derived from the modified Arrhe-
nius expression by assuming missing parameters are
discussed in the next sections.

Two-Parameter (A, E ) and (A, n) and
One-Parameter (A) Arrhenius Equations

The linearized equations for the two-parameter (A, E)
simple, (A, n) power-type, and the one-parameter (A)
constant Arrhenius expressions are

κ(T ) = α − ε · T −1 (17)

κ(T ) = α + n · ln T (18)

κ(T ) = α (19)

The corresponding relationships exist between the
variance of κ(T ) and the elements of the covariance
matrix:

σκ (T ) =
√

σ 2
α + σ 2

ε T −2 − 2rαεσασεT −1 (20)

σκ (T ) =
√

σ 2
α + σ 2

n ln2 T + 2rαnσασn ln T (21)

σκ (T ) = σα (22)

Equations (20) and (21) also suggest that a temper-
ature independent uncertainty is physically unrealistic,
and they also show the required functional form of the
temperature dependence of the uncertainty.

A consequence of Eq. (22) is that if the rate
coefficient is temperature independent, then the
uncertainty of κ(T ) should also be temperature in-
dependent. Another possibility is to approximate the
variance of a temperature independent (constant) rate
coefficient using the modified Arrhenius Eq. (10) with
random parameters n and E having expected values of
zero but nonzero variances and correlations. This way,
temperature-dependent uncertainty can be obtained

even for a temperature independent rate coefficient. In
a similar way, in the cases of the two-parameter expres-
sions the temperature dependence of the uncertainties
can be made more flexible by introducing nonzero vari-
ances and correlations for the missing third parameter.

IUPAC Uncertainty Definition

Here, we show that the IUPAC error handling is not in
accordance with Eq. (20). If we assume correlation of
unit absolute value (rαε = ±1), then Eq. (20) is reduced
to the following:

σκ (T ) = √
σ 2

α + σ 2
ε T −2 − 2rαεσασεT −1

= ∣∣σα − rαεσεT
−1

∣∣ =

=

⎧⎪⎪⎨
⎪⎪⎩

+σα + σεT
−1

−σα + σεT
−1

+σα − σεT
−1

if

if

if

rαε = −1

rαε = +1

rαε = +1

and

and

and

for any T

T ≤ σε/σα

T > σε/σα

(23)

Here, we took advantage of the fact that in this case
there is a complete square under the square root sign.
The IUPAC uncertainty expression (Eq. (6)) can be
transformed in a similar way:

σκ,IUPAC(T ) = ln 10
2 d(T ) = ln 10

2 |d0|
+ ∣∣ g

2 · (
T −1 − T −1

0

)∣∣

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+σα︷ ︸︸ ︷
ln 10

2
|d0| − |g|

2
T −1

0

+σεT
−1︷ ︸︸ ︷

+ |g|
2

T −1

if T ≤ T0 > |g| / |d0| / ln 10
−σα︷ ︸︸ ︷

ln 10

2
|d0| − |g|

2
T −1

0

+σεT
−1︷ ︸︸ ︷

+ |g|
2

T −1

if T ≤ T0 < |g| / |d0| / ln 10
(⇒ T ≤ T0 < σε /σα)

+σα︷ ︸︸ ︷
ln 10

2
|d0| + |g|

2
T −1

0

−σεT
−1︷ ︸︸ ︷

− |g|
2

T −1

if T > T0

(⇒ T > T0 > σε /σα)

(24)

All sign combinations of the terms and the corre-
sponding conditions in Eq. (24) can be matched and ful-
filled with one of the cases in Eq. (23). In summary, two
parameter sets for the joint pdf of the two-parameter
Arrhenius equation and thus also two standard devia-
tion functions σκ (T ) can be obtained from the IUPAC
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uncertainty measures d0 and g in the following way:

σα =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣ ln 10

2
|d0| − |g|

2
T −1

0

∣∣∣∣ if T ≤ T0

ln 10

2
|d0| + |g|

2
T −1

0 if T > T0

(25)

σε = |g|
2

(26)

rαε =
{

sign
(|g| T −1

0 − ln 10 · |d0|
)

if T ≤ T0

+1 if T > T0

(27)

σκ (T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣ ln 10

2
|d0| + |g|

2
· (T −1 − T −1

0

)∣∣∣∣ if T ≤ T0∣∣∣∣ ln 10

2
|d0| − |g|

2
· (T −1 − T −1

0

)∣∣∣∣ if T > T0

(28)

This means that there is no unique temperature in-
dependent value for σα , since different σα values can
be determined below and above T0. Also, different cor-
relation coefficient rαε is obtained below and above
T0, unless |g| T −1

0 > ln 10 · |d0|. Thus, the IUPAC-type
uncertainty definition is not in accordance with the ex-
istence of a unique temperature independent joint pdf
of the Arrhenius parameters, and therefore it cannot be
used for the uncertainty analysis of varying tempera-
ture systems.

JPL Uncertainty Definition

As the JPL uncertainty definition is essentially the same
as the IUPAC one, it is also not in accordance with
Eq. (20). Transforming the JPL uncertainty expression
(Eq. (8)) into a form similar to Eq. (23), we get the
following:

σκ,JPL(T ) = ln fJPL(T ) = ln f0

+g
∣∣T −1 − T −1

0

∣∣

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+σα︷ ︸︸ ︷
ln f0 − gT −1

0

+σεT
−1︷ ︸︸ ︷

+gT −1 if T ≤ T0 > g/ ln f0
−σα︷ ︸︸ ︷

ln f0 − gT −1
0

+σεT
−1︷ ︸︸ ︷

+gT −1 if T ≤ T0 < g/ ln f0

(⇒ T ≤ T0 < σε/σα)
+σα︷ ︸︸ ︷

ln f0 + gT −1
0

−σεT
−1︷ ︸︸ ︷

−gT −1 if T > T0

(⇒ T > T0 > σε/σα)

(29)

The uncertainty factorf0 is always greater than one;
therefore ln f0 > 0, and ln f0 + gT −1

0 > 0. All sign
combinations of the terms and the corresponding con-

ditions in Eq. (29) can be matched and fulfilled with
one of the cases in Eq. (23). In summary, two different
covariance matrices of the Arrhenius parameters and
thus two standard deviation functions σκ (T ) can be de-
termined from the JPL uncertainty measures ln f0 and
g as follows:

σα =
{ ∣∣ln f0 − gT −1

0

∣∣ if T ≤ T0

ln f0 + gT −1
0 if T > T0

(30)

σε = g (31)

rαε =
{

sign
(
gT −1

0 − ln f0
)

if T ≤ T0

+1 if T > T0
(32)

σκ (T ) =
{ ∣∣ln f0 + g

(
T −1 − T −1

0

)∣∣∣∣ln f0 − g
(
T −1 − T −1

0

)∣∣ if
if

T ≤ T0

T > T0

(33)

This means that there is no unique temperature in-
dependent value for σα because different σα values can
be determined below and above T0. Also, different cor-
relation coefficient rαε is obtained below and above T0,
unless gT −1

0 > ln f0. The conclusion is the same as for
the IUPAC uncertainty definition. The JPL uncertainty
definition is not in accordance with the existence of a
unique temperature independent joint pdf of the Arrhe-
nius parameters and cannot be used for the uncertainty
analysis of varying temperature systems.

DETERMINATION OF THE COVARIANCE
MATRIX OF THE ARRHENIUS
PARAMETERS

Equations deduced for the temperature dependence of
σκ (T ) (see Eqs. (16), (20), and (21)) together with the
uncertainty information given in the chemical kinet-
ics databases (see Eqs. (2), (4), and (9)) can be used
for the determination of the covariance matrix of the
Arrhenius parameters.

To simplify the equations below, a common notation
will be used for the definition of uncertainty parameter
F (T ) and for the proportionality factor M of σκ (T ).
The meaning of F (T ) and M is given in Table I for

Table I Unified Notations for the Uncertainty
Definitions of Various Kinetics Databases

Kinetics database F (T ) M

Combustion truncation at 3σ f (T ) 3/ ln 10
Combustion truncation at 2σ f (T ) 2/ ln 10
IUPAC d(T ) 2

/
ln 10

JPL ln fJPL(T ) 1
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the different types of kinetics databases. Equation (34)
defines the relationship between F (T ), M , and σκ (T ).

F (T ) = M σκ (T ) (34)

In the case of a three-parameter modified Arrhenius
expression, based on Eq. (16), the elements of the co-
variance matrix can be determined by a least squares
fit to the uncertainty data using the following function:

F (T ) = M

√
σ 2

α + σ 2
n ln2 T + σ 2

ε T −2 + 2rαnσασn ln T − 2rαεσασεT −1 − 2rnεσnσεT −1 ln T (35)

When determining the parameters, the linear
(Eq. (11)) and multivariate nonlinear (Eq. (13)) in-
equality constraints for the standard deviations and cor-
relations also have to be taken into account. Only a few
data fitting software are capable of handling nonlin-
ear constraints and one of them is EASY-FIT Express
[35]. A computer code is also available for the de-
termination of the covariance matrix of the Arrhenius
parameters from the uncertainty parameter of the rate
coefficient in web page http://garfield.chem.elte.hu/
Combustion/Combustion.html.

In the case of the two-parameter (α, ε) and (α, n)
expression, the corresponding functions to be used in
fitting are

F (T ) = M

√
σ 2

α + σ 2
ε T −2 − 2rαεσασεT −1 (36)

F (T ) = M

√
σ 2

α + σ 2
n ln2 T + 2rαnσασn ln T (37)

In these cases, only constraints defined in Eq. (11) have
to be taken into account and the uncertainty has to be
known at least at three temperatures.

If the rate coefficient is described by the constant
parameter α, then the corresponding equation is

F (T ) = Mσα (38)

Even if the number of uncertainty points is equal
to that minimally required, the above equations with
optimized parameters may not reproduce these points
exactly, since Eqs. (35), (36), and (37) are not fully
flexible. If the uncertainties are provided at more
temperatures than minimally required, then we have
an over determined set of parameters. In both cases,
the optimal values can be determined by a least
squares fit, taking into account the constraints defined
in Eqs. (11) and (13).

If the rate coefficient is constant or the temperature
dependence is described by a two-parameter Arrhenius
expression and the corresponding uncertainty equation
(Eqs. (36), (37), and (38)) do not reproduce properly
the given uncertainty data, then it is possible to assume

the existence of further Arrhenius parameters with ex-
pected values of zero but nonzero uncertainties and
correlations. Thus, uncertainty equations with two and
three Arrhenius parameters (Eqs (35), (36), and (37))
can be used instead to provide a better fit. Constant
Rate Coefficient with Uncertain Arrhenius Parameters
(α, n) and (α, ε) section provides an illustration for
such an approach.

If the uncertainty values were known at fewer points
than required, then fixing some of the correlations at
certain values (e.g., ±1) might look like a good idea.
In our sample calculations (see the Examples for the
Construction of the Joint pdf of the Arrhenius Param-
eters from the Uncertainty Information of the Kinetics
Databases section and Table IV), nearly unit correla-
tions were found in several cases. However, as will be
shown in the above-mentioned section, perfect corre-
lation among all Arrhenius parameters results in zero
uncertainty of the rate coefficient at some tempera-
ture(s), which is physically unrealistic.

Another possibility for fitting the expression F (T )
to fewer than required uncertainty data points is to
set the variance of some of the Arrhenius parameters
to zero. This implies that all correlation coefficients
of these parameters are also zero. As parameter A is
always present in a rate expression, σα should never be
zero. The possible cases are given in Table II.

If uncertainty values are available at fewer points
than sufficient, another possible approach is to in-
crease the number of points via linear interpolation
between two uncertainty values. Note that if a linear
interpolation of the uncertainties is applied in a T −1

or ln T scale, then a strong correlation will be gen-
erated between Arrhenius parameters (α, ε) or (α, n),
respectively, because the corresponding terms within
the square root in Eqs. (35), (36), and (37) will be closer
to a complete square, which corresponds to a perfect
correlation.

THE JOINT NORMAL PDF OF THE
ARRHENIUS PARAMETERS

To this point, no particular type of pdf was assumed
for either the rate coefficient or the Arrhenius
parameters. Some methods of uncertainty analysis
[36] calculate the variance of the simulation results
from the variances (or the covariance matrix) of the
parameters. For these types of methods, the covariance
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Table II Simplified Equations for Temperature in Special Cases Regarding the Parameters of the Covariance Matrix
of the Arrhenius Parameters

Case ID σn σε rαn rαε rnε σκ (T )

0 0 0 0 0 0 σα

2r + 0 rαn 0 0
√

σ 2
α + σ 2

n ln2 T + 2rαnσασn ln T

2+ +1 σα + σn ln T

2− −1 |σα − σn ln T |
3r 0 + 0 rαε 0

√
σ 2

α + σ 2
ε T −2 − 2rαεσασεT −1

3+ +1
∣∣σα − σεT

−1
∣∣

3− −1 σα + σεT
−1

2 ± 3± + + ±1 ±1 +1
∣∣σα ± σn ln T ∓ σεT

−1
∣∣

2 ± 3∓ + + ±1 ∓1 −1
∣∣σα ± σn ln T ± σεT

−1
∣∣

matrix of the Arrhenius parameters provides enough
information. Other methods of uncertainty analysis
are able to calculate the pdf of the simulation results
using the joint pdf of the parameters. Therefore, it is
advantageous to define an approximate joint pdf of
the Arrhenius parameters.

In several works dealing with the uncertainty of
combustion systems [26–28], a normal distribution was
assumed for parameters ln k, truncated at ±3σ . A nor-
mal distribution for ln k, but with ±2σ truncation, was
used in another combustion uncertainty analysis study
[30] and in the uncertainty analysis of atmospheric
chemical systems [32,33]. In the data evaluations, the
assumed distribution of the rate coefficient is usually
not stated explicitly, but implicitly a normal distribu-
tion of ln k is assumed by assigning [15] 95% proba-
bility percentages to the uncertainty limits. As a matter
of fact, considering a truncated normal distribution for
ln k is also just an assumption. Not enough measure-
ments are available for any rate coefficient to justify
this assumption. However, it can be assumed that the
recommended value ln k0 is the most probable value
and that the pdf smoothly decreases to zero toward the
extreme values ln kmin and ln kmax.

In this section, the main conclusions made about the
relationship between the temperature-dependent pdf of
the rate coefficients and the temperature independent
pdf of the Arrhenius parameters are listed and the de-
tailed mathematical proofs are given in the Appendices.

It can be shown (see Appendix A) that the joint pdf
of the Arrhenius parameters uniquely determines the
pdf of the rate coefficient at every temperature.

It can be proven (see Appendix B) that if the tem-
perature dependence of the rate coefficient is described
by a three-parameter (two-parameter) Arrhenius equa-
tion, then the ln k values are uncorrelated only up to
three (two) temperatures. The random ln k values at
all other temperatures are correlated. If the ln k values
are sampled independently from each other at several

(more than three (or two)) temperatures, then the set of
these random ln k values is physically unrealistic. Us-
ing such data leads to misleading uncertainty analysis
results.

If ln k follows a normal distribution at each tempera-
ture, it does not necessarily mean that the transformed
Arrhenius parameters (α, n, ε) follow a multivariate
normal distribution (see Appendix C). If ln k follows
a normal distribution at many temperatures, then the
most natural assumption is that (α, n, ε) follow a mul-
tivariate normal distribution. A joint multivariate nor-
mal distribution of Arrhenius parameters (α, n, ε) im-
plies a normal distribution for ln k at any temperature.

An algorithm is provided for the generation of ran-
dom Arrhenius parameter values from their pdf (Ap-
pendix D). The pdf should be truncated, that is, the ex-
treme values should be discarded a posteriori to ensure
that the ln k values always remain between the ln kmin

and ln kmax values in the whole temperature interval.

EXAMPLES FOR THE CONSTRUCTION OF
THE JOINT PDF OF THE ARRHENIUS
PARAMETERS FROM THE UNCERTAINTY
INFORMATION OF THE KINETICS
DATABASES

The covariance matrices of the Arrhenius parameters
of seven reactions were determined using the equa-
tions derived in the preceding sections. The chemical
reactions were selected to present a wide spectrum of
possible uncertainty cases. The examples were chosen
from the latest evaluation of Baulch et al. [14], and the
latest IUPAC [19] and JPL [20] evaluations. The Ar-
rhenius parameters, the temperature range of validity,
and the uncertainty information for sample reactions
R1-R7 are given in Table III. The determined corre-
sponding covariance matrices are given in Table IV.
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Table III Data of the Reactions Used in the Examples. Parameter α Is Calculated with Parameter A Given in Units
mole, cm, and s

# Reaction α n ε/K Temperature Interval Uncertainty M Ref.

R1 O + N2O → NO + NO 32.134 − 13930 1000–4000 K 2000 K: 0.2; 4000 K:
0.3; 1000 K: 0.4

3
ln 10 [14]

R2 N + OH → NO + H 32.317 −0.2 − 100–2500 K 300 K: 0.1; 100 K: 0.3;
2500 K: 0.4

R3 HO2 + C3H5 → C3H6 + O2 28.605 − − 600–1000 K 600–800 K: 0.3;
1000 K: 0.5

R4 O + C2H4 → products 16.422 1.88 92 220–2000 K 300–1000 K: 0.1;
220 K: 0.3;
2000 K: 0.3

R5 H + CH3 → H2+1CH2 37.076 −0.56 1350 300–2500 K 300–1000 K: 0.15;
1000–1700 K : 0.3;
1700–2500 K: 0.2

R6 HO + CH3I → H2O + CH2I 23.474 − 1120 270–430 K IUPAC definition:
T0 = 298 K,
d0 = ±0.2,
g = ±500 K

2
ln 10 [19]

R7 O(1D) + H2O → OH + OH 32.218 − −60 200–400 K JPL definition: T0 =
298 K, f0 =
1.15,g = 45 K

1 [20]

Uncertain Arrhenius Parameters (α, ε)

Temperature dependence of the rate coefficient of re-
action R1 is defined by a two-parameter (α, ε) original
Arrhenius equation. The uncertainty value f is defined
[14] at three temperatures and, according to Eq. (36),
these values determine the covariance matrix. The op-
timized parameters of the covariance matrix are given
in Table IV (row R1) and the f (T ) function obtained
with these parameter values is plotted in Fig. 1.

Figure 2 presents the temperature-dependent pdf of
transformed rate coefficient κ . As Fig. 1 shows, the
variance of κ is smaller and therefore pdf is narrower
at intermediate temperatures. As the area under the pdf
is equal to one at each temperature, the peak of the
pdf is higher at intermediate temperatures. Figure 3
shows a three-dimensional (3D) plot of the truncated
joint pdf of the Arrhenius parameters. It is interesting
that the shape of the border of the allowed values of

Table IV Determined Elements of the Covariance Matrix of the Arrhenius Parameters the Reactions Defined in Table
III. For the Explanation of the Notations see the Text

Type σα σn σε/K rαn rαε rnε

COMBUSTION R1 0.355 − 588 − 0.9045 −
R2 0.970 0.162 − −0.9979 − −
R2x 1.020 0.169 − fixed −1 − −
R3a 5.951 0.909 − −0.99949 − −
R3b 1.110 − 752 − 0.9884 −
R4 3.427 0.463 254 −0.99972 0.999996 −0.99965
R4x 4.198 0.558 317 fixed −1 fixed +1 fixed −1
R5 1.177 0.121 172 −0.999992 0.9814 −0.9806
R5m 1.008 0.138 66.1 −0.9936 0.9928 −0.99997

IUPAC R6a 0.609 − 250 − +1 −
R6b 1.069 − 250 − +1 −
R6 1.564 − 479 − 0.9898 −

JPL R7a 0.011 − 45 − +1 −
R7b 0.291 − 45 − +1 −
R7 0.411 − 110 − 0.9415 −
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Figure 1 Uncertainties of reaction R1 are defined [14] at
temperatures 1000, 2000, and 4000 K (circles). The right
axis shows the corresponding standard deviation σκ . The
uncertainty–temperature function (solid line) is calculated
from the covariance matrix of the Arrhenius parameters (see
Table IV, row R1).

the transformed Arrhenius parameters is significantly
different from the elliptical shape of the isocontours.
The calculated correlation coefficient rαε = +0.9045
indicates strong correlation between parameters α and
ε and this correlation is also visible in Fig. 3.

Uncertain Arrhenius Parameters (α, n)

Temperature dependence of the rate coefficient of re-
action R2 is defined by a two-parameter (α, n) power-
type equation. Uncertainty f is defined [14] at three
temperatures and these points determine (see Eq. (37))
the three parameters of the covariance matrix of the
two Arrhenius parameters. These optimized parame-

Figure 2 3D graph and its 2D projection of the temperature-
dependent pdf of variable κ = ln k for reaction R1. [Color
figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

Figure 3 3D graph and its 2D projection of the joint
pdf of the Arrhenius parameters for reaction R1. The pdf
is truncated to give kmin < k < kmax (truncation at ±3σ )
in the entire evaluated temperature range. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

ters are given in Table IV (row R2) and the f (T )
function obtained with them is plotted in Fig. 4.
There is a strong anticorrelation between α and n

(rαn = −0.9979). However, it is important that cor-
relation rαn is not equal to −1, which would be case
2 in Table II. The dotted line in Fig. 4 shows that the
minor change of rαn from −0.9979 to −1 dramatically
changes the uncertainty–temperature curve. At temper-
ature T = exp (σα/σn) it goes to zero in a physically
unrealistic way. The conclusion is that although param-
eters α and n are strongly anticorrelated, assuming a

Figure 4 Uncertainties of reaction R2 are defined [14]
at temperatures 100, 300, and 2500 K (circles). The
uncertainty–temperature function (solid line) is calculated
from the covariance matrix of the Arrhenius parameters (see
Table IV, row R2). When correlation rαn = −1 is assumed,
then the fitted curve is very different (dotted line; row R2x
in Table IV).
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correlation of rαn = −1 leads to qualitatively incorrect
results. Nevertheless, the fitted parameters σα and σn

changed only slightly (see row R2x in Table IV).

Constant Rate Coefficient with Uncertain
Arrhenius Parameters (α, n) and (α, ε)

The rate coefficient of reaction R3 is considered tem-
perature independent in the interval of 600–1000 K
that should imply that the uncertainty is constant in the
whole temperature range. This is not the case, because
its recommended uncertainty is constant [14] in the
interval of 600–800 K, whereas a different value was
defined [14] at 1000 K. If these uncertainty values are
valid, then Arrhenius parameter either n or ε should
be regarded as a random parameter having an expected
value of zero, but nonzero corresponding elements in
the covariance matrix (see the Two-Parameter (α, ε)
and (α, n) and One-Parameter (α) Arrhenius Equations
section).

Both pairs of Arrhenius parameters (α, n) and (α, ε)
are considered. The uncertainty values defined at tem-
peratures 600, 800, and 1000 K are taken into ac-
count and the optimized parameters of the covariance
matrix are presented in rows R3a and R3b, respec-
tively, of Table IV. The two fitting functions are dif-
ferent, but the corresponding uncertainty–temperature
functions (see Fig. 5) are very close to each other.

Figure 5 Uncertainties of reaction R3 is defined [14]
at 1000 K (circle) and is considered constant [14] in
the temperature interval of 600–800 K (dashed line). The
uncertainty–temperature function was fitted to the points
indicated by circles. To interpret the temperature depen-
dence of the uncertainty parameter, in case (a) uncertain
n was assumed with expected value n̄ = 0, whereas in case
(b) uncertain ε was assumed with expected value ε̄ = 0. The
fitted functions for cases (a) and (b) are denoted by solid
and dotted lines, respectively. The corresponding elements
of the covariance matrix are given in rows R3a and R3b,
respectively, of Table IV.

There is a strong correlation between parameters α

and n (rαn = −0.99949), and parameters α and ε

(rαε = +0.9884); however, it is important again that
these correlations are not equal to −1 and +1, respec-
tively.

Uncertain Arrhenius Parameters (α, n, ε)

The rate coefficient of reaction R4 changes with tem-
perature according to modified Arrhenius Eq. (10). Its
uncertainty f was considered [14] to be constant in
the temperature interval of 300–1000 K and differ-
ent f values were defined at temperatures of 220 and
2000 K.

The definition of the covariance matrix of the Ar-
rhenius parameters, according to Eq. (35) requires the
knowledge of the uncertainty value at least at six dif-
ferent temperatures. In our calculations, uncertainties
were considered at 10 points (denoted by circles in
Fig. 6). These included the uncertainties at 220 and
2000 K, and also in eight equally spaced points in the
temperature interval of 300–1000 K. The six param-
eters of Eq. (35) were determined by fitting them to
these points using the method of least squares, also
taking into account the constraints defined in Eqs.
(11) and (13). The value of the f (T ) function cal-
culated from the parameters of the correlation matrix
is plotted in Fig. 6. According to the optimized pa-
rameters (see row R4 in Table IV), one of the cor-
relations is plus one and the other two correlations
are almost of unit absolute values (rαn = −0.99972,

Figure 6 Uncertainty of reaction R4 is defined at temper-
atures 220 and 2000 K (circles) and is considered constant
in the temperature interval of 300–1000 K (dashed line) in
ref. [14]. The uncertainty–temperature function (solid line)
was fitted to all points indicated by circles. After fixing
correlation coefficients at values rαn = −1, rαε = +1, and
rnε = −1, the fitted uncertainty–temperature function (dot-
ted line) reaches twice the x axis. The corresponding ele-
ments of the covariance matrix are given in rows R4 and
R4x, respectively, of Table IV.
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rαε = 0.999996, rnε = −0.99965). Again, it is impor-
tant that the absolute values of the correlations are not
equal to one. Fixing values rαn = −1, rαε = +1, and
rnε = −1 (corresponding to case 2 − 3+ in Table II)
during the fitting results in a very different uncertainty–
temperature curve (see the dotted line in Fig. 6).

Uncertain Arrhenius Parameters (α, n, ε)
with Uncertainty Maximum of the Rate
Coefficient at Intermediate Temperatures

Rate coefficients of elementary gas-phase reactions can
be determined with relatively low error in the tempera-
ture range of about 300–1000 K by direct methods like
laser photolysis / laser induced fluorescence (LP/LIF)
or discharge flow-LIF. Most of the rate coefficients
obtained by the shock tube method are available from
about 1700 K, although this method is applicable down
to 1000 K. Therefore, the evaluators are tempted to as-
sign low uncertainty values to the rate coefficient in the
low and the high temperature range, and a higher uncer-
tainty in the intermediate temperature range. For exam-
ple, for reaction R5 the recommended [14] uncertainty
is f = 0.15 in the temperature range of 300–1000 K,
f = 0.3 in the temperature range of 1000–1700 K,
and f = 0.2 in the temperature range of 1700–2500
K. These uncertainty data were fitted using Eq. (35).
Figure 7 shows that the fitted uncertainty–temperature
curve goes far from the recommended uncertainty val-
ues. The reason of this failure is that if k (T ) can be

Figure 7 Uncertainties of reaction R5 are defined [14] in
three temperature intervals and the uncertainty–temperature
function was fitted to the values represented by the circles.
The best least squares fit (solid line; see row R5 in Table IV)
does not approach these points well, because the recom-
mended uncertainties were not consistent. The alternatively
proposed f (T ) curve (dotted line) remains below all uncer-
tainty points and has the highest average value of σ 2

κ (T ) in
the inverse temperature interval of [1/T2, 1/T1] (see text and
row R5m in Table IV).

described by a single Arrhenius expression, then the
value of the uncertainty parameter cannot be signifi-
cantly higher at intermediate temperatures than at the
boundaries of the temperature interval. It can be qual-
itatively explained in such a way that consideration of
the low and the high temperature measurements to-
gether limits the uncertainty of the rate coefficient at
intermediate temperatures via the Arrhenius expres-
sion. Uncertainty–temperature function with a signifi-
cant maximum at intermediate temperatures cannot be
related to any joint pdf of the Arrhenius parameters.

An alternative approach is to consider all uncer-
tainty data as upper estimates. In this case, the fitted
curve will not depend on the high uncertainty values at
intermediate temperatures, thus, these values are con-
sidered as redundant. This can be achieved by fitting
the elements of the covariance matrix of the modified
Arrhenius parameters in such a way that the f (T ) curve
remains below all uncertainty points (see dotted line in
Fig. 7), while the integral V is also maximized:

V =
1/T1∫

1/T2

dT −1σ 2
κ (T ) (39)

This integral is proportional to the average variance
of κ in the inverse temperature interval of [1/T2, 1/T1].
When large number of points are approximated, the
determined covariance matrix is independent of the
number of points sampled from temperature ranges
with constant uncertainty. Equation (39) is also appli-
cable if less data points are available than the number
of independent elements of the covariance matrix.

Uncertain Arrhenius Parameters
(α, ε)–IUPAC Uncertainty Definition

The rate coefficient of reaction R6 has a temperature
dependence defined by the original Arrhenius equation.
Its uncertainty is defined in the temperature range of
270–430 K by the IUPAC evaluation [19] using Eq. (6).
In this case, the uncertainty was defined by two lines
(see the solid gray lines in Fig. 8). Two different pdfs of
the Arrhenius parameters can be determined, one that
is valid below T0 and another one that is valid above T0.
The parameters of the corresponding covariance ma-
trices, calculated by Eqs. (25)–(27), are given in rows
R6a and R6b, respectively, of Table IV. Parameter σα

is different, whereas parameters σε and rαε are identical
in both cases. The corresponding uncertainty–inverse
temperature functions are plotted by dashed and dotted
lines, respectively, in Fig. 8. However, the assumption
of different pdfs of the Arrhenius parameters below
and above T0 is physically unrealistic.
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Figure 8 The IUPAC-type uncertainty definition provides
minimal uncertainty at 298 K and linearly increasing un-
certainties as a function of inverse temperature toward both
higher and lower temperatures (solid gray lines). This can
be interpreted as a composite of two different uncertainty
definitions, one valid below 298 K (dotted line; row R6a in
Table IV) and the other valid above 298 K (dashed line; row
R6b in Table IV). The plotted functions belong to reaction
R6.

To determine the joint pdf of two Arrhenius param-
eters, the uncertainty of rate coefficient k has to be
known at least at three temperatures. Uncertainty val-
ues defined by the intersection of the two gray lines
(at T0) and at the extremes of the temperature interval
(270 and 430 K) were selected. The parameters of the
covariance matrix of the Arrhenius parameters were
determined by fitting Eq. (36) to these points. Using
this equation with the optimized parameters, the un-
certainty of the rate coefficient was calculated in the
whole temperature interval (see Fig. 9).

It is impossible to reproduce the lines defined by
the IUPAC evaluation this way, but the obtained curve
passes through the selected points and predicts a signif-

Figure 9 Uncertainties of reaction R6 are defined in the
IUPAC evaluation [19] according to the dashed lines. The
uncertainty–temperature function (solid line) was fitted to
the points indicated by circles.

icantly lower uncertainty at other temperatures. Both
the current IUPAC-type uncertainty definition and the
uncertainty definition based on the covariance matrix
require the same number of parameters; these param-
eter sets are (T0, d0, g) and (σα, σε, rαε), respectively.
There is a significant correlation (rαε = +0.9898) be-
tween Arrhenius parameters α and ε (see row R6 in
Table IV).

Uncertain Arrhenius Parameters (α, ε)–JPL
Uncertainty Definition

The discussion of the JPL-type uncertainty definition is
very similar to the IUPAC one. The example is the rate
coefficient of reaction R7 that is defined by the two-
parameter original Arrhenius equation. Its uncertainty
is given in the temperature range of 200–400 K by
the JPL collection of evaluated data [20] using Eq.
(8). The JPL-type uncertainty was defined by two lines
(see the solid gray lines in Fig. 10). Two different pdfs
of the Arrhenius parameters correspond to these lines,
which are valid below and above T0. The parameters
of the covariance matrices, calculated by Eqs. (30)–
(32), are given in rows R7a and R7b of Table IV; the
uncertainty–inverse temperature functions are plotted
by dotted and dashed lines, respectively, in Fig. 10.

Again, a proper physical interpretation of the JPL-
type uncertainty is to determine the parameters of the
covariance matrix by fitting Eq. (36) to the uncertainty
values, defined by the intersection of the two gray lines
(T0) and at the extremes of the temperature interval

Figure 10 The JPL-type uncertainty definition for reac-
tion R7 provides minimal uncertainty at 298 K and linearly
increasing uncertainties as a function of inverse temperature
toward both higher and lower temperatures (solid gray lines).
This can be interpreted as a composite of two fully correlated
(rαε = +1) different uncertainty definitions, one valid below
298 K (dotted line; row R7a in Table IV) and the other valid
above 298 K (dashed line; row R7b in Table IV). The plotted
functions belong to reaction R7.
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Figure 11 Uncertainties of reaction R7 are defined in the
JPL evaluation [20] according to the dashed lines. The
uncertainty–temperature function (solid line) was fitted to
the points indicated by circles.

(200 and 400 K). The obtained curve (see Fig. 11)
passes through the selected points and predicts a lower
uncertainty at other temperatures (see row R7 in Table
IV). Given the limited information content behind the
defined uncertainties in all kinetic data evaluations, this
fitted uncertainty–temperature function defines essen-
tially the same level of uncertainty than the original JPL
data, but this function is not arbitrary and has a physi-
cal background. Both the current JPL-type uncertainty
definition and the uncertainty definition based on the
covariance matrix require the same number of param-
eters; being (T0, f0, g) and (σα, σε, rαε), respectively.

CONCLUSIONS

Databases of evaluated chemical kinetic data for sev-
eral thousand gas-phase reactions contain the recom-
mended values of Arrhenius parameters, the temper-
ature interval of applicability, and information on the
uncertainty of rate coefficient k. These uncertainty def-
initions do not take into account that the Arrhenius
equation imposes limitations on the temperature de-
pendence of the uncertainty of the rate coefficient.

In the data evaluations commonly used in combus-
tion, the uncertainty is either considered to be con-
stant in some temperature intervals, or it is defined at
a few temperatures only. In several cases, the uncer-
tainty information provided in the combustion chem-
istry databases is not consistent with the Arrhenius
form of k(T ). In the IUPAC and JPL atmospheric
chemical data evaluations, the uncertainties are defined
as linear functions of inverse temperature. However,
these uncertainty definitions determine different pdfs
of the Arrhenius parameters below and above T0 =
298 K, which is physically unrealistic because a unique

Arrhenius expression is considered valid in the whole
temperature range.

It is suggested here that the chemical kinetics
databases in the future should contain the elements
of the covariance matrix of the transformed Arrhenius
parameters (α = ln A, n, ε = E/R). This means six
figures (σα , σn, σε, rαn, rαε, rnε) for a three-parameter
modified Arrhenius equation and three figures (σα ,
σε, rαε or σα , σn, rαn) for two-parameter k(T ) equa-
tions. The elements of the covariance matrix unam-
biguously determine the temperature dependence of
the uncertainty of the rate coefficient in a physically
realistic way.

The functional form of the pdf of ln k is debated. It
is assumed in several publications that this pdf can be
approximated by a normal distribution at any temper-
ature, truncated at the ln kmin and ln kmax values. The
covariance matrix, the bounds for the rate coefficient
(defined e.g., by thresholds ±2σ or ±3σ ), and the tem-
perature interval of validity together define a truncated
multivariate normal distribution for the joint pdf of the
transformed Arrhenius parameters. For any tempera-
ture, the corresponding pdf of the rate coefficients will
be a truncated normal distribution.

In this paper, a method is described for the con-
version of the uncertainty information present in the
combustion and atmospheric chemical databases to
the covariance matrix of the Arrhenius parameters. In
some cases, it can be done in an automatic way, but in
most cases the uncertainty information present in the
databases is either incomplete or inconsistent; there-
fore a reassessment of the temperature dependence of
uncertainties of these rate coefficients is needed. The
method is demonstrated on the examples of seven re-
actions that were selected to show many different types
of uncertainty definitions and their related problems.

Using uncertainty analysis, the uncertainty of simu-
lation results can be calculated from the uncertainty of
the parameters. Uncertainty analysis of models based
on detailed reaction mechanisms is a very important
extension to simulation studies. It is needed for the
validation of the models, since the uncertainty range
of simulation results should overlap with the uncer-
tainty range of measured data. When such models
are used in industry, uncertainty analysis indicates the
level of reliability and the scope of applicability of the
model.

So far, uncertainty information for the rate coeffi-
cients has been available in the combustion and atmo-
spheric chemistry databases, but no information was
available on the uncertainty of the Arrhenius param-
eters. Therefore, the kinetic uncertainty studies were
based on the uncertainty of k. This approach is cor-
rect for constant temperature systems, but as it has
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been proven in this paper, in the uncertainty analy-
sis of varying temperature chemical kinetic models,
the results obtained from the uncertainty of the rate
coefficients are incorrect. Proper uncertainty analysis
of nonisothermal chemical kinetic models should be
based on the joint pdf of the Arrhenius parameters.

A computer code is available for the determina-
tion of the covariance matrix of the Arrhenius pa-
rameters from the uncertainty parameter of the rate
coefficient in web page http://garfield.chem.elte.hu/
Combustion/Combustion.html.

APPENDIX A: CALCULATION OF THE
TEMPERATURE-DEPENDENT PDF OF
THE RATE COEFFICIENT FROM THE JOINT
PDF OF THE TRANSFORMED ARRHENIUS
PARAMETERS (α, n, ε)

In this section, the relationship between the pdfs of
κ (T ) and (α, n, ε) is discussed. These are denoted by
ρ1 (κ; T ) and ρ3 (α, n, ε), respectively.

The pdf of the logarithm of the rate coefficient (κ)
at a given temperature can be obtained by integrating
the joint pdf of Arrhenius parameters over a subspace
corresponding to the constant κ = θTp (see Eq. (10)).
This constrained integration can be expressed [37] with
the help of the Dirac-delta distribution, as shown be-
low:

ρ1 (κ; T ) =
∫
�3

dαdndε ρ3 (p) · δ
(
θTp − κ

)
(A1)

First, let us transform the integration variables from
pT = (α, n, ε) to (κ, n, ε) at temperature T , then carry
out integration according to variable κ .

ρ1 (κ; T ) = ∫∫∫
�3

dκ dndε

∣∣∣∣∂ (α, n, ε)

∂ (κ, n, ε)

∣∣∣∣
ρ3 (α (κ, n, ε; T ) , n, ε) · δ(θTp − κ)

= ∫∫
�2

dndε ρ3
(
κ − n ln T + εT −1, n, ε

) (A2)

Here, we made use of the fact that the Jacobian de-
terminant always simplifies to (∂α/∂κ)n,ε = 1, which
shows that this is a one-to-one transformation. Deriva-
tions can be carried out in a similar way in the case
of the two-parameter Arrhenius equations. No inte-
gration is required in the one-parameter case, and
ρ1 (κ; T ) = ρ1 (α) is obtained immediately, which sug-
gests that the probability distribution of the rate coeffi-
cient, and therefore its uncertainty should be tempera-
ture independent for the constant case. The pdf of rate

coefficient (ρ̃1 (k; T )) can also be calculated from the
pdf of κ = ln k (ρ1(κ; T )) for any temperature:

∫
�

dκ ρ1(κ; T ) =
∫

�+
dk k−1ρ1(ln k; T )

⇒ ρ̃1(k; T ) = ρ1(ln k; T ) k−1 (A3)

where � and �+ denote intervals (−∞, +∞)
and (0, +∞), respectively. The joint pdf of the
transformed Arrhenius parameters ρ3 (α, n, ε) and
the joint pdf of the original Arrhenius parameters
ρ̃3 (A, n,E) uniquely determine each other:

∫∫∫
�3

dαdndε ρ3 (α, n, ε)

=
∫∫∫

�+×�2

dAdndE A−1R−1 · ρ3(ln A, n,ER−1)

⇒ ρ̃3 (A, n,E) = A−1R−1 · ρ3(ln A, n,ER−1)

⇒ ρ3 (α, n, ε) = eαR · ρ̃3 (eα, n, εR) (A4)

In this section, we proved that the joint pdf of Ar-
rhenius parameters uniquely determines the pdf of the
rate coefficient at all temperatures.

APPENDIX B: INTERRELATION OF
RANDOM RATE COEFFICIENTS
BELONGING TO DIFFERENT
TEMPERATURES

Although so far the joint pdf of the Arrhenius parame-
ters has not been available, during uncertainty analysis
of varying temperature chemical kinetic systems (e.g.,
homogeneous ignition, laminar flame), the uncertainty
of κ was always considered to be temperature indepen-
dent. In Monte Carlo calculations, the parameter A was
selected randomly according to a temperature indepen-
dent uncertainty f , keeping n and E fixed at their nomi-
nal values; therefore, at all temperatures k had the same
relative deviation from the nominal value. As discussed
in the Temperature Dependence of the Uncertainty of
the Rate Coefficient section, this approach is physically
unrealistic. Moreover, in this section, we show that the
proper selection of a random value for k at each temper-
ature cannot be based on the temperature dependence
of pdf ρ1 (κ; T ), but the joint pdf ρ3 (α, n, ε) of the
Arrhenius parameters has to be used instead.

Let κi denote the random variable of the
temperature-dependent random variable κ(T )
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belonging to temperature Ti. Let θi denote vector θ (see
Eq. (10)) belonging to temperature Ti. The following
linear equation can be set up between the Arrhenius pa-
rameters and κi for i = 1, . . . , N , by applying Eq. (10)
for N > 1 different temperatures and introducing ma-
trix � = (θ1, . . . ,θN ) and vector κ = (κ1, . . . , κN )T.

⎡
⎢⎣

κ1
...

κN

⎤
⎥⎦ =

⎡
⎢⎣

1 ln T1 −T −1
1

...
...

...
1 ln TN −T −1

N

⎤
⎥⎦

⎡
⎣α

n

ε

⎤
⎦ ⇒ κ = �Tp

(B1)
Monte Carlo analysis of a chemical kinetic system

may require the random selection of the rate coeffi-
cients at several temperatures simultaneously. How-
ever, even if the pdf of a rate coefficient were known at
these temperatures, independent random sampling of
them would be allowed only if their distributions were
independent. If they are not independent (e.g., cor-
related), then the realistic random sampling of them
should be based on the joint pdf of the Arrhenius pa-
rameters. The correlation of random variables can be
characterized by their covariance matrix.

The covariance matrix �κ of the rate coefficients
κi belonging to different temperatures relates to the
covariance matrix �p of the Arrhenius parameters in
the following way:

�κ = (κ − κ̄)(κ − κ̄)T = �T(p − p̄) (p − p̄)T�

= �T�p� (B2)

First, we exclude the possibility of zero standard
deviation of κ for any temperature as it would mean
zero uncertainty, which is physically unrealistic. This
means that all diagonal elements of matrix �κ are
positive.

Rate coefficients κi and κj belonging to two different
temperatures are not correlated if the corresponding
(i,j) off-diagonal element of covariance matrix �κ is
zero.

If none of the κi variables are correlated, then �κ is
a diagonal matrix, with positive eigenvalues, in its main
diagonal. In this case, it has N linearly independent row
vectors (and column vectors), that is its rank would be
N , which can be denoted as rank �κ = N . However,
the rank of �κ cannot be larger than the minimum of
the ranks of matrices in the product �T�p�, that is,

rank�κ ≤ min(rank�p, rank�) (B3)

Similarly, the rank of matrix � cannot be larger
than the smaller dimension of the matrix, which means
rank � ≤ min(N, 3). However, each column vector θi

belongs to different temperatures, thus any two or three
of them are linearly independent due to the definition
of its elements (see Eq. (10)). This implies equality
instead of inequality and thus the rank of matrix �κ

can be constrained more precisely:

rank 
 = min(N, 3)

⇒ rank�κ ≤ min(rank�p, N, 3) (B4)

This means that the rank of matrix �κ cannot be larger
than three.

Unit correlation (±1) between two parameters
means complete linear dependence between them, that
is, they are a linear function of each other. A composite
function of two linear functions is also a linear function
(transitivity property), thus if any two of the correla-
tion coefficients among parameters (α, n, ε) have unit
absolute value then so does the third one, therefore
they fulfil relationship rαnrαεrnε = 1. In this case, the
rank of matrix �p is 1 because all of its three column
vectors (or row vectors) are parallel with each other.
Therefore, the rank of �κ is also one.

If one of the correlation coefficients among Arrhe-
nius parameters (α, n, ε) (denoted by r12), has unit ab-
solute value, then the other two correlation coefficients
(denoted by r13 and r23) must have equal absolute value
and fulfil relationship r13 = r12r23. In this case, the
corresponding two column vectors (or row vectors) of
matrix �p will parallel or antiparallel; thus the rank of
matrix �p is two. This implies that the rank of �κ is
also two. Note that if these two correlation coefficients
have an absolute value of unity, then we get back the
previous case.

Even if none of the (anti)correlations are perfect,
that is none of the column vectors (row vectors) of ma-
trix �p are parallel, they can still be linearly dependent
(e.g., rαn = 2−1 and rαε = rnε = 2−131/2), which also
reduces the rank of matrices �p and �κ to 2.

If the column vectors (and also the row vectors) of
matrix �p are linearly independent, then the rank of
matrix �p is equal to its dimension, which is 3.

Linear dependence of the column vectors means
that there exist three coefficients (not all zero) with
which the linear combination of the column vectors
give a nullvector. This precisely means that the vector
formed by these three coefficients is an eigenvector of
matrix �p corresponding to a zero eigenvalue. Each
independent linear interdependence corresponds to a
zero eigenvalue. This means that the rank of a (sym-
metric) covariance matrix is equal to the number of its
nonzero eigenvalues.

A nonzero eigenvalue of a covariance matrix im-
plies that the linear combinations of random variables,
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defined by the elements of the corresponding eigenvec-
tor, are not uniquely determined. On the contrary, each
zero eigenvalue of the covariance matrix uniquely de-
termines the corresponding linear combination of the
random variables and thus it reduces the number of
dimensions by one, along which the variables can be
sampled randomly. The number of independently sam-
plable dimensions is equal to or less than the number
of randomly samplable dimensions.

If we assume that N > 3 then matrix �κ, which
has a dimension of N × N , cannot be diagonal other-
wise its rank would be higher than 3. Therefore, the
κ variables belonging to three or more different tem-
peratures are inherently correlated; thus they cannot be
sampled independently. This means that the κ variables
belonging to temperatures T4, . . . , TN must be corre-
lated with at least one of the κ variables belonging to
temperatures T1, T2, T3, and similarly, there must be a
correlation between the corresponding κ variables for
any selection of these three and N−3 temperatures.

As to whether there is a correlation between the κ

variables belonging to any three temperatures, assume
that N = 3, which simplifies equation (B2) to a di-
agonalization problem of matrix �p. As matrix �p is
symmetric, an orthogonal basis can be selected from its
eigenvectors and the � matrix formed by them as col-
umn vectors can make �p diagonal via transformation
�T�p�. Note that this diagonal matrix is different
from the diagonal matrix of eigenvalues, because vec-
tors θi are not normalized, due to their fixed form (see
Eq. (10)). A sufficient requirement for such a matrix is
that its θi vectors are orthogonal, which requires that
ln Ti · ln Tj < 0 for all i, j pairs, because the first (1)
and third (−T −1

i ) components of these vectors have
fixed, positive, and negative signs, respectively. The
condition that ln Ti · ln Tj < 0 cannot be fulfilled for
any three temperatures simultaneously.

A similar train of thought applies to the one-
parameter and to both of the two-parameter Ar-
rhenius equations with the appropriate substitutions,
with an exception only in the power-type expres-
sion. In the power-type Arrhenius equation where only
two temperatures are considered, the condition that
ln T1 · ln T2 < 0 and the orthogonality condition can
be fulfilled if one of the temperatures is lower than
1 K, which is chemically irrelevant.

Unfortunately, the orthogonality requirement of
vectors θi is not a necessary one to obtain a diago-
nal matrix by �T�p� transformation. The matrix �

is invertable, thus assuming a diagonal matrix �κ for
the κ variables belonging to temperatures defined in
�, the corresponding �p matrix can be calculated by
equation (B5). This provides a proper covariance ma-
trix, despite the column vectors of matrix � being

nonorthogonal.

�p = (�T)−1�κ�−1 = (�−1)T�κ�−1 (B5)

The requirements for matrix �p and solution for
the temperatures can be obtained by expressing the
off-diagonal elements of �κ from equation (B2) and
setting them to zero. This means one and three equa-
tions for two and three temperatures in the two- and
three-parameter cases, respectively. This confines the
number of the solutions to one freely selectable tem-
perature in the two-parameter cases (the dimension of
the solution in space �2 is one), and zero freely se-
lectable temperatures in the three-parameter cases (the
dimension of the solution in space �3 is zero). Re-
quirements for matrix �p can also be derived, which
show that selection of such temperatures is impossi-
ble for all �p matrices. For the �p matrices that fulfil
these conditions, some selections of two or three tem-
perature points exist for the two- and three-parameter
cases, respectively, where sampling of the rate coeffi-
cients can be done without correlation. Thus they might
be sampled independently if uncorrelatedness implies
independency, which is valid for a normal distribu-
tion. However, the selection of temperatures cannot be
given in advance and the joint pdf of the Arrhenius
parameters should be determined first.

In summary, the random rate coefficients belong-
ing to different temperatures are intrinsically correlated
due to the existence of the joint pdf of the Arrhenius pa-
rameters. The number of temperatures where κ = ln k

variables are uncorrelated is not more than the number
of parameters in the Arrhenius equation. Independent
sampling of the rate coefficients at different tempera-
tures in a Monte Carlo study leads to systematic errors.
In varying temperature chemical kinetic systems, ap-
plication of the joint pdf of the Arrhenius parameters
is crucial for a realistic uncertainty analysis because it
allows a correct sampling of κ in the temperature range
relevant for the simulation.

APPENDIX C: ASSUMPTION OF A
LOGNORMAL DISTRIBUTION FOR THE
RATE COEFFICIENT

The joint pdf of a uni- or multivariate normal distribu-
tion of parameter vector x of dimension L is defined
in the equation (C1). It is completely determined by
the vector x̄ of expectation values and the covariance
matrix �x.

gL (x; x̄,�x) = exp
[− 1

2 (x − x̄)T �−1
x (x − x̄)

]
(2π )L/2 √

det�x

(C1)
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In the case of multivariate normal distribution,
zero correlation between two parameters means total
independence.

If the transformed Arrhenius parameters (α, n, ε)
have a multivariate normal distribution, then the natural
logarithms of rate coefficients κi for any N ≥ 1 num-
ber of temperatures follows a univariate (L = 1) or a
multivariate normal distribution (L > 1), as they are
linear functions of the transformed Arrhenius parame-
ters (see equation (B1)) [35]. The expectation value of
vector κ is κ̄ = �Tp̄ and its covariance matrix can be
obtained from equation (B2).

It has been proven in Appendix B that if matrix
� is constructed for three (or two) different tempera-
tures, then the column vectors of matrix � are linearly
independent in the three- (or two-)parameter cases,
respectively, thus the square matrix � is invertable.
Therefore, the transformed Arrhenius parameters are
also unique linear functions of the κ variables belong-
ing to the corresponding three (or two) temperatures.
Thus, if we assume that these κ variables follow a
multivariate normal distribution then the transformed
Arrhenius parameters (α, n, ε) also follow a multivari-
ate normal distribution. The expectation value of p is

p̄ = (
�T)−1

κ̄ and their covariance matrix can be ob-
tained from equation (B5). This also implies that the
κ variables for any N number of temperatures follow
a multivariate normal distribution, and its covariance
matrix has a maximum rank of min(rank�p, N, 3) (or
min(rank�p, N, 2)).

Let us assume that at all temperatures the logarithm
of the rate coefficients follows a univariate normal
distribution, but there is no information about their in-
terdependence. At each temperature, the corresponding
κi variable represents a linear combination of parame-
ters (α, n, ε) with coefficients θT

i = (1, ln Ti,−T −1
i ),

denoting a direction in space, along which the
distribution is normal. If all linear combinations
of parameters (α, n, ε) follow a univariate normal
distribution then they also follow a multivariate normal
distribution [35]. By changing the temperature, these
θi vectors designate only a one-dimensional (1D)
subspace of directions in the 2D direction space
defined by vectors in the 3D space of (α, n, ε). Thus,
this condition is not sufficient to state that any possible
linear combination of (α, n, ε) parameters are normal,
which would mean that they form a multivariate
normal distribution [35]. It is also not sufficient in
the two-parameter (α, ε) case, where coefficients
(1,−T −1

i ) can’t cover directions parallel with vectors
(1, non-negative) or (0, 1) in the 1D direction space
defined by vectors in the 2D space of (α, ε). However,
it is a sufficient assumption in the two-parameter
(α, n) case, where coefficients (1, ln Ti) can cover all

directions apart from the one along vector (0, 1). How-
ever, along direction (1, ln Ti) the distribution can also
be considered as normal due to the basic requirement
of continuity of the joint pdf of parameters (α, n).
Thus, apart from the two-parameter (α, n) case, we
have to extend analytically our normal distributions
to the rest of the directions in the parameter space to
get the multivariate distribution for the transformed
Arrhenius parameters, if we don’t assume anything on
the interrelation between the κ parameters belonging
to the different temperatures.

In this section, we showed that ln k following a nor-
mal distribution at each temperature does not necessar-
ily imply that the transformed Arrhenius parameters
(α, n, ε) also follow a multivariate normal distribu-
tion. If ln k follows a normal distribution at a given
temperature, then a cross-section of the joint pdf of the
Arrhenius parameters also follow a normal distribu-
tion. Therefore, if ln k follows a normal distribution at
many temperatures, then the most natural assumption
is that (α, n, ε) also follows a multivariate normal dis-
tribution. A joint multivariate normal distribution of
Arrhenius parameters (α, n, ε) implies a normal dis-
tribution for ln k at all temperatures.

APPENDIX D: SAMPLING FROM A
MULTIVARIATE NORMAL DISTRIBUTION

One of the applications of the joint pdf of the Arrhenius
parameters is the Monte Carlo uncertainty analysis of
models based on detailed chemical kinetic mechanism.
It is not trivial how a random sampling of the Arrhenius
parameters can be carried out that corresponds to their
pdf. This topic is discussed here briefly.

Each eigenvalue λi and the corresponding eigenvec-
tor oi of the covariance matrix define an independent
normal distribution along a line in the space of vari-
ables α, n and ε.

OT �pO = � = diag (λ1, λ2, λ3) (D1)

where O = [
o1 o2 o3

]
and OT = O−1. The random

variables ti are defined in such a way that the vari-
ables corresponding to nonzero eigenvalues follow a
standard normal distribution and those corresponding
to zero eigenvalues have a definite zero value as they
follow a Dirac-delta distribution:

ti =
{

0 if λi = 0
oT

i (p − p̄) /
√

λi if λi �= 0
(D2)

The corresponding random values of Arrhe-
nius parameters can be obtained using the
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following equation:

p = p̄ + O�1/2 t = p̄ +
∑

i:λi>0

√
λitioi (D3)

As discussed above, if the Arrhenius parameters are
sampled according to a multivariate normal distribu-
tion, the rate coefficients calculated at any temperature
will follow a univariate normal distribution.

g1 (κ; T ) = 1√
2π σκ (T )

exp

[
−

(
κ(T ) − κ(T )

)2

2σ 2
κ (T )

]

(D4)

To avoid using physically unrealistic high and low
rate coefficients, the calculated distribution should be
truncated at m · σκ (m = 2 or 3). The joint pdfs have
to be truncated a posteriori to ensure that values κ(T )
always remain within the allowed uncertainty range at
any temperature T within interval [T1, T2]:

|κ − κ̄(T )| ≤ m · σκ (T ), T ∈ [T1, T2] (D5)

Assuming a normal distribution, truncation at ±2σ

and ±3σ excludes 5% and 0.3% of all cases, respec-
tively. Therefore, this truncation only slightly affects
the elements of covariance matrix (α, n, ε) and the nor-
malization of their joint pdf. This way, the relationship
between the variance of κ(T ) and the covariance matrix
of the Arrhenius parameters (α, n, ε), as discussed in
the Temperature Dependence of the Uncertainty of the
Rate Coefficient section, remains valid after truncation
within a good approximation.

Note that several sources recommend truncation at
2σ or 3σ without making an assumption about the
distribution. However, the Chebyshev’s inequality the-
orem shows [34] that the range defined by 1σ , 2σ ,
and 3σ radii may contain 0%–100%, 75%−100%, and
88.9%–100% of the random values, respectively, de-
pending on the distribution. This implies that the rec-
ommendation for a truncation at 2σ may exclude one
quarter of the values in the worst case, which is not
negligible.
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László Varga, Alison S. Tomlin, Attila Demeter, Sándor
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1. Cvetanović, R. J.; Overend, R.; Paraskevopoulos, G. Int
J Chem Kinet 1975, S1, 249–271.
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