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Abstract 

In a linear approximation, the relaxation of a concentration perturbation can be 
described by a matrix exponential, which can be evaluated using Jordan 
decomposition. In time-scale analysis, this approach has advantages when the 
Jacobian has degenerate eigenvalues, which may occur when the mechanism 
contains identical rate constants, characteristic to tropospheric chemistry and low-
temperature combustion.  
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INTRODUCTION 
 
 Concentration perturbation means that the concentrations of one or several 
species are altered in a much shorter time than the characteristic time scale of 
the system. Calculation of the effect of concentration perturbation is 
straightforward in computer modelling using detailed reaction mechanisms [1], 
[2]. In laboratory experiments, such a concentration perturbation can be 
achieved for example by adding a precursor of one (or several) of the species 
and applying laser flash photolysis. 
 The response of chemical kinetic models to the simultaneous perturbations 
in the values of several concentrations was investigated by Lam and Goussis [3] 
and Maas and Pope [4]. They developed a series of Computational Singular 
Perturbation (CSP) and Intrinsic Low Dimensional Manifold (ILDM) methods, 
respectively, for the efficient reduction of large reaction mechanisms using 
time-scale analysis. The background of these methods is  that  a  perturbation  in 
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the concentration space can be decomposed according to the eigenvectors of the 
Jacobian of the kinetic system of differential equations, and their time 
evolutions depend on the corresponding eigenvalues. Lu and Law [5] developed 
a complex CSP method, which can also handle the oscillating relaxation in the 
case of complex eigenvalues.  
 It is usually assumed that the Jacobian is diagonalizable, that is it has a 
complete system of linearly independent eigenvectors. However, if some of the 
eigenvalues of the Jacobian are degenerate, then a more general method is 
required to describe the time evolution of a concentration perturbation. 
 
 
THEORY  

 

Time evolution of a concentration perturbation  
 
 Let a chemical kinetics model be described by the following initial value 
problem  
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where t  is time, c  is the n -vector of variables, p  is the vector of parameters, 

0c  is the vector of the initial values of the variables, and ),( pcf  is the right-

hand-side of the kinetic differential equation system. If initially a small 
concentration perturbation 0c∆ is applied to the system, the production rates of 

the species can be estimated by local linearization of f :  
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where cfJ d/d=  is the Jacobian of the system of ordinary differential 

equations. The Jacobian is a real non-symmetric nn ×  matrix. From equations 
(1) and (2), it follows (see e.g. [6]) that the time evolution of a small 
concentration perturbation c∆  can be described by the variational equation 
(also called sensitivity equation): 
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 Assuming that the Jacobian is constant 0J  in a short time interval, the 

solution can be approximated by multiplying 0c∆ with a matrix exponential, 

called the time-propagator matrix. 
 

0
0 cc

J ∆=∆ t
e . (4) 

 
Decomposition of the time-propagator matrix into eigenmodes 
 
 In order to evaluate the matrix exponential of t0J , it is practical to 

decompose 0J  into a Jordan canonical form J  with an appropriate invertible 

matrix P  because 1
0

−=J P PJ  implies 10 −= PP
J tt

ee J . The eigenvalue 

equation of matrix 0J , where Λ  denotes the diagonal matrix of the eigenvalues, 

and matrix X  contains the right eigenvectors as columns vectors. 
 

XΛXJ =0    ( )nλλ ,...,diag 1=Λ    [ ]nxxX K1=  (5) 

A multiple eigenvalue can be characterized by its algebraic and geometric 
multiplicities. The algebraic multiplicity )(λa  of eigenvalue λ  is the 

multiplicity of root λ  of the characteristic polynomial. The geometric 
multiplicity )(λg  is the dimension of the eigenspace of λ , which is the 

number of linearly independent eigenvectors belonging toλ . If )()( λλ ag <  
for a multiple eigenvalue, then we call it a degenerate eigenvalue. If at least one 
of the eigenvalues of 0J  is degenerate, then the eigenvectors do not form a 

complete system, thus 0J  cannot be diagonalized.  

 For the general case, the Jordan decomposition of the Jacobian should be 
considered to evaluate the matrix exponential. The Jordan basis consists of 
generalized right eigenvectors { ijkx }, which are defined by the generalization 

of the eigenvalue equation. 
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There are m different iλ  eigenvalues of 0J  and ijkx denotes the corresponding 

generalized right eigenvectors. The “ordinary” eigenvectors are the generalized 
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eigenvectors with 1=k . Each linearly independent 1ijx  eigenvector initiates a 

Jordan chain, which contains further 1−ijm  generalized eigenvectors that are 

defined by equation (7). Here j  is the index of the Jordan chain of an 

eigenvalue and k  is the index of the generalized eigenvector within a Jordan 
chain. 
 
 ( ) 10 −=− ijkijki xxIJ λ   ijmk ,...,2=  (7) 

 
Equation (7) also fixes the relative lengths and phases of generalized 
eigenvectors within a chain. Matrix 0J  can be decomposed into a Jordan 

canonical form, with matrices [ ],......., ijkxP =  and 

[ ] [ ]T
ijkijk ,.......,,.......,1

yyP == +− .  Here, { ijky } are the scaled generalized left 

eigenvectors, which are in reciprocal relation with the right eigenvectors 

regarding the Hermitian scalar product: kKjJiIIJKijk δδδ=+ xy . The Jordan form 

of a matrix is built up of Jordan blocks ijJ  of size ijij mm × . Each block 

belongs to a Jordan chain having the same indices ij . 
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A Jordan block qJ is of the form qq NΛ +  of size ijij mm × , where ijq =  and 
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For any matrix 0J  there exists a Jordan basis and the Jordan form is uniquely 

determined up to a permutation of its Jordan blocks ([7], point 12.2). 
Exponential of a block-diagonal matrix can be calculated by blocks.  
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The power of a block can be calculated using Newton’s binomial formula ([7], 
point 12.3).  
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If qN  is an rr ×  matrix, then 0N =r

q . Therefore, the exponential of a Jordan 

block of size rr ×  can be calculated as ([7], point 46.1): 
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Due to the block-diagonal structure of te JJJJ , only products of vectors ijkx  and 
+
ijly  from the same ij  Jordan chain will remain when equation (10) is evaluated. 
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Matrix exponential t
e 0J  transforms the initial perturbation 0c∆  into modes 

parallel with ijkx  by operators of +
→ = ijlijkkijl yxF . Each mode evolves in time 

according to / ( )!it l ke t l kλ − − . For modes lk = , the change is purely 

exponential and operators kijk→F  simplify to skew-projectors += ijkijkijk yxP , 

which are idempotent and disjoint, that is ijkkKjJiIIJKijk PPP δδδ= . 

The case of a diagonalizable Jacobian 
 
If the Jacobian is diagonalizable, then the Jordan decomposition coincides with 
the eigenvalue-eigenvector decomposition ( XP = , = ΛJ ) and 1=ijm for all 

Jordan chains, thus only projector type of operations will remain and the modes 
will not have t  power factor.  
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In this case the eigenvalues may be either real or complex. 
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Interpretation of the real modes in the general case 
 
  The generalized eigenvectors belonging to a real eigenvalue can always be 
selected to be real vectors ([7], point 12.1). The operation described by matrix 

kijl→F  can be decomposed into three operations: a skew-projection onto the 

space spanned by ijlx  along the directions of the basis vectors different from 

ijlx , a rotation from direction ijlx  to direction ijkx , and finally a rescaling by 

ijlijk xx / . 
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Non-bold characters denote the absolute value of the corresponding vector and 
hats denote the normalization of a vector. In general, the modes have (real-
exponential × t power) time dependence. For modes lk = , matrix ijkP  projects 

0c∆  onto the space spanned by ijkx  along the directions of the other 

generalized right eigenvectors, and this projection will change purely 
exponentially in time.  
 

 
Interpretation of the complex modes in the general case 
 
 Complex eigenvalues and eigenvectors always appear in conjugated pairs. 
Let us denote real and imaginary parts of each quantity by subscripts R and I, 

respectively. Expanding reciprocal relations 1=+xy  and 0=+xy , and 
fulfilling their real and imaginary parts simultaneously, the following 
orthonormality relations can be derived: 
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A conjugated pair of complex modes describes the superposition of two non-
parallel oscillatory modes with the same (real-exponential × t  power) 
amplitude dependence: 
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 All previous relationships that define generalized eigenvectors remain true if 
we multiply all right eigenvectors of a Jordan chain with a non-zero complex 
number (that is zijkijk ⋅→ xx ) and simultaneously divide all left eigenvectors 

with its conjugate ( zijkijk /yy → ). Using this transformation, it is possible to 

achieve that one of the right eigenvectors of a Jordan chain of a complex 
eigenvalue will have real and imaginary parts perpendicular to each other 

( 0=T

kI

T

kRxx ). This selection doesn’t change the motion described by this mode, 

but makes easier to visualize it. The operations described by matrix Rkl ,2 →F  are 

skew-projections onto directions lRx̂  and lIx̂ , rotations of these components to 

directions kRx̂  and kIx̂ , and rescalings by factors lRkR xx  and lIkI xx , 

respectively. 
 

[ ] 



=⋅⋅








→

lIkI

lRkR
lIlRRklT

kI

T

kR

xx

xx

0
0

ˆˆ2
ˆ
ˆ

, xxF
x

x
 (19) 

The operation described by matrix Ikl ,2 →− F  can be traced back to Rkl ,2 →F  by a 

subsequent clockwise rotation with an angle of °90  and an additional rescaling 
with kIkR xx and kRkI xx . 

( ) [ ] 









−



=⋅−⋅








→

lIkI

lRkR

kRkI

kIkR
lIlRIklT

kI

T

kR

xx

xx

xx

xx

0
0

01
10

0
0

ˆˆ2
ˆ
ˆ

, xxF
x

x  (20) 

 
  Thus, the motion defined in equation (17) can be characterized by a 
harmonic elliptical motion and the lengths of its principal axes change 
according to time-dependence of (real-exponential × t  power). For modes 

lk = , the matrix RkkkR ,22 →= FP  describes a skew-projection onto the space 

spanned by normalized orthogonal basis vectors kRx̂  and kIx̂ . The operation 

described by matrix IkkkI ,22 →−=− FP  can be traced back to kRP2  like in 

equation (20). This mode describes a harmonic elliptical motion with axes 
having exponential time-dependence. 
 
 
 
SIGNIFICANCE OF THIS APPROACH 
 
  In detailed kinetic models of tropospheric chemical reactions, many 
chemically similar intermediates are considered and, due to the lack of 
information, identical rate coefficients (called “generic rate coefficients” [8], 
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[9]) are assumed for all similar reactions of these intermediates. The situation is 
alike for models of low-temperature hydrocarbon combustion. The consequence 
is that for several such models the Jacobian will be non-diagonalizable and the 
time-dependence of a perturbation can be evaluated only using the general 
approach given in this paper. A transient mode discussed above also has a “ t  
power factor” in its time dependence, and therefore it initially has zero 
amplitude, then reaches a maximum and finally decays to zero. Such a transient 
mode may have an increased decay time compared to the corresponding mode 
having purely exponential decay. A purely exponential mode and a transient 
mode could be contrasted by comparing the times needed for their amplitudes to 
reach the same small fixed threshold. Maas and Pope [4] have met the 
numerical problem of finding the eigenvectors in the degenerate case and they 
applied a Schur decomposition of the Jacobian. This approach solved the 
problem, but prevented the realization of the modes having non-exponential 
decay. Taking into account this general evaluation of the matrix exponential in 
the CSP and ILDM methods would allow an improved determination of the 
relaxation times of modes. Note that species lumping can be based on the 
lifetimes of species [10]. Such a lumping results in the elimination of many 
similar eigenvalues, decreasing the chance of degeneracy. 
 
 
EXAMPLE SYSTEM 
 
 Assume that chemical transformation A→B is catalysed by compound C. 
Also, assume that the concentration of A is kept constant; product B and 
catalyst C has first order decay according to the following equations:  
 
A + C → B + C    k1          R1 
       B → P     k2          R2 
     C → Q     k2          R3 
 
Let us examine the perturbation of the concentrations of B and C, and apply 
perturbations 0b∆  and 0c∆ . The production rates, the Jacobian and Jordan 

matrices are the following: 
 







−
−

=





ck

bkack
c
b

t 2

21

d

d
  





−
−

=⇒
2

12

0 k

akk
J   





−
−

=⇒
2

2

0
1
k

k
J . (21) 

 



NAGY, TURÁNYI: TIME SCALES 277 
  

 

 

Fig. 1. Time evolution of the modes having purely exponential decay 
τte− , and 

also having ( ) τα tet −
 change for cases α=20τ, α=τ, α=τ/20 after 

perturbations 100 =∆=∆ cb  

 

 In this case, the Jacobian is constant and therefore equation (4) is exact. The 

Jacobian has a degenerate eigenvalue 2k−=λ , leading to time scale 
1

2
1 −− =−= kλτ . This is the simplest example for the problem of degenerate 

Jacobian, discussed in the previous sections. Introducing time constant 

( ) 1
1

−= akα , the generalized eigenvectors and the evolutions of perturbations 
are 
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This means that the decay of ∆c is purely exponential according to lifetime τ. 
The change of ∆b follows function ( ) 00 cetbeb tt ∆+∆=∆ −− ττ α , which is 

composed of two modes, thus no similar time scale can be associated to it. 
Figure 1 shows that the amplitude of the “t power” modes and the time required 
to reach one hundredth of the initial perturbation can be either significantly 
smaller or larger than those of the purely exponential one, depending on the 
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ratio of time constant α and characteristic time τ. Quantity 1−α  is identical to 
scaling factor ijlijk xx in equation (15). 

 
 
CONCLUSION 
 
 This paper demonstrates that the time scales of a system, that is the decay 
times of modes after a concentration perturbation depend on the properties of 
the Jacobian. If the Jacobian is diagonalizable, then characteristic time 

Rλτ /1=  belongs to eigenvalue λ. If the Jacobian is not diagonalizable, then 

some of the modes will evolve in time according to function ( ) tn
et λα , where 

α is a time constant and 0>n  is a small integer. In this case, the decay is not 
exponential and can be prolonged if time constant α is small compared to the 
characteristic time of the mode. 
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