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ABSTRACT: The Chen et al. (Mol Biol Cell 2000, 11, 369–391) budding yeast cell cycle model is
a biochemical kinetic model that describes how the controlling protein concentrations change
during a proliferation cycle. Time dependence of local sensitivity coefficients was calculated
for all variables and parameters of the model. Some of the local sensitivity coefficients—time
functions could also be obtained from another one by multiplying it with a constant, which
means that these functions exhibit global similarity. Local similarity of the sensitivity functions
was also detected. The distance of the shapes of two scaled sensitivity functions was defined by
the integrated squared difference of these functions. The distance matrices of function shapes
were interpreted by a clustering method, and the shapes could be sorted to two main groups
for each model variable. The presence of the global similarity of sensitivity functions means
that the change of some enzyme activities can be fully compensated by changing the activity of
other enzymes. This feature can be related to the robustness of living organisms. C© 2008 Wiley
Periodicals, Inc. Int J Chem Kinet 40: 710–720, 2008
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Present address of J. Zádor: Combustion Research Facility,

Sandia National Laboratories, Livermore, CA.
Contract grant sponsor: OTKA.
Contract grant numbers: T68256 and F60414.

c© 2008 Wiley Periodicals, Inc.

INTRODUCTION

The cell cycle control is the best known in the budding
yeast (Saccharomyces cerevisiae) among eukaryotic
organisms. This control is based on the role of Cdk
(cyclin-dependent protein kinase) molecules in coor-
dinating the events of DNA synthesis, bud emergence,
spindle formation, nuclear division, and cell separa-
tion. After the cell division, for a long period only the
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cell size increases (phase G1) followed by the DNA
synthesis (phase S/G2). Finally, two identical nuclei
and then two daughter cells are formed (mitotic phase
M of the cell cycle). A series of mathematical models,
using sets of differential and algebraic equations, have
been created to describe the change of enzyme con-
centrations during a cell cycle in wild-type cells and in
various mutants [1–4].

The cell cycle model investigated here was created
by Chen et al. in 2000 [3]. The Chen et al. model is
defined by a 13-variable set of ordinary differential
equations and related algebraic equations. This model
includes 73 parameters and contains all the basic fea-
tures of the Cdk’s control.

Timescale and dimension analyses of this cell cy-
cle model have been carried out by the authors [5].
The analyses were based on the investigation of the
Jacobian of the set of differential equations. In the
model, the cell mass is exponentially growing, which
causes a single constant positive eigenvalue of the
Jacobian. All other eigenvalues are related to chemical
processes, and these are discussed in the rest of the
paper. If at any time the largest eigenvalue is positive,
then small concentration differences can be amplified
and the system is in an excitation period. If the largest
eigenvalue is negative, in most cases the concentration
differences tend to be damped and the system is in a
relaxation period.

The analysis revealed [5] the presence of an ex-
citation period (labeled E4a) just before the cell
division. The next excitation period (E4b) occurs just
after the cell division. At the end of phase G1, there
is an excitation period E1. In phase S of the cell
cycle, two more excitation periods are located. The
very strong excitation period E3 is embedded into the
period of weaker excitation E2. The biochemical ori-
gin of all these excitation periods is discussed in detail
in [5].

The change of the dynamical dimension during the
cell cycle was also investigated. The dynamical dimen-
sion rises up to seven in the excitation periods and de-
creases to one in each relaxation period [5]. This means
that in some periods the original model of 13 variables
could be replaced by a seven-variate system of ordi-
nary differential equations (ODEs), whereas in other
periods all concentrations are in steady state, and their
change is dictated by the increase of the cell mass only.

In this paper, the Chen model [3] of the cell cy-
cle of budding yeast is investigated further using local
sensitivity analysis, and the new results are compared
with our previous ones on timescale and dimension
analyses.

SENSITIVITY ANALYSIS
OF DYNAMICAL MODELS

Sensitivity analysis is the name of a family of mathe-
matical methods that investigate the relation between
the parameters and the output of models. Comprehen-
sive reviews of the various methods of sensitivity anal-
ysis were recently published by Saltelli et al. [6,7].
Applications of sensitivity analysis in reaction kinet-
ics were discussed by Turányi [8] and Tomlin et al.
[9]. Utilization of sensitivity analysis is widespread
in combustion and atmospheric chemistry, but fewer
and mainly recent applications of these methods can
be found in the investigation of biochemical kinetic
systems (see, e.g., [10–12]).

A dynamical model can be characterized by the
following initial value problem:

dY/dt = f(Y, p), Y(0) = Y0 (1)

where t is the time, Y is the n-vector of variables, p

is the m-vector of parameters, Y0 is the vector of the
initial values of the variables, and f is the right-hand
side of the differential equations.

The local sensitivity function sik(t) can be calcu-
lated (see, e.g., [8]) by solving the following initial
value problem:

Ṡ = JS + F S(0) = 0 (2)

where S(t) = {sik(t)} = {∂Yi/∂pk} is the time-
dependent local sensitivity matrix, J is the Jacobian
(J = {∂fi/∂Yj}), and matrix F contains the derivatives
of the right-hand side of the ODE with respect to the
parameters (F = {∂fi /∂pk}). The sik(t) local sensitiv-
ity functions show the effect of a small perturbation
of parameter k on the change of variable i at time t .
Sensitivity coefficients form the sensitivity matrix: S

= {∂Yi /∂pk}. In the case of a general mathematical
model, no relation is expected among the rows and/or
the columns of the sensitivity matrix. However, in sev-
eral chemical kinetic systems the following relations
have been observed:

(i) Local similarity: Value λij (t) depends on time
t and the model results Yi and Yj selected, but
is independent of the parameter pk perturbed.

λij (t) = sik(t)

sjk(t)
(3)

(ii) Scaling relation: Equation (4) is valid for any
parameter pk . Existence of a scaling relation
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includes the presence of local similarity.

dYi

/
dt

dYj

/
dt

= sik(t)

sjk(t)
(4)

(iii) Global similarity: Value μikm is independent
of t (within an interval).

μikm = sik(t)

sim(t)
(5)

Global similarity and in some cases scaling relation
of sensitivity functions were detected by Rabitz et al. in
several flame models [13,14] and in thermal runaway
systems [15].

In a series of works, Zsély et al. [16–19] presented
new results on the similarity of sensitivity functions in
chemical kinetic models. They have shown that the ex-
istence of low-dimensional slow manifolds in chemical
kinetic systems may cause local similarity. Global sim-
ilarity emerges if local similarity is present and the sen-
sitivity differential equations are pseudohomogeneous.
The latter means that in Eq. (2) relation ‖F‖ � ‖JS‖
holds [15,16]. Pseudohomogeneity is related to the ex-
istence of excitation periods, like the autocatalytic run-
away during chain-branching explosions.

Zádor et al. [18] have shown that the level of
local similarity can be characterized by angle θ of the
directions of two sensitivity vectors in the space of
parameters, which can be calculated in the following
way:

ŝT
i ŝj = cos θij (6)

Here ŝi = si/‖si‖ and ŝj = sj /‖sj‖ are unit length sen-
sitivity vectors. Measure cos θij = +1 or cos θij = −1
indicates that the sensitivity vectors are correlated and
therefore are locally similar.

Since in the cell cycle model of Chen et al. [3]
we had detected [5] low-dimensional manifolds (even
dimension one) and excitation periods, we expected
that the local sensitivity functions of the model would
exhibit global similarity. Therefore, a local sensitivity
analysis of the cell cycle model was carried out.

SENSITIVITY ANALYSIS OF
THE CELL CYCLE MODEL

Local sensitivity functions sij (t) = (∂Yi(t)/∂pj ) of the
Chen et al. [3] model were calculated for all vari-
ables and parameters of the model. Integration of the
differential equations and calculation of sensitivities
were carried out by subroutine DASAC [20] that had

been distributed with the SENKIN code [21] of the
CHEMKIN-II package [22].

To compensate the effect of very different pa-
rameter values, the calculated sensitivity func-
tions were seminormalized: sij (t) = pj (∂Yi(t)/∂pj ) =
(∂Yi(t)/∂ ln pj ), and in all further discussions these
(∂Yi(t)/∂ ln pj ) functions are referred to as sensitiv-
ity functions. The initial values of all sensitivities are
zero; therefore, the sensitivity functions were different
in the first cycle compared to the later cycles, but from
the second cell division these became periodic func-
tions. In the Chen model, the period of the cell cycle
depends only on the value of nutrition parameter mu,
therefore the sensitivity functions of each parameter
except for mu became periodic after a transition time.
In this paper, sensitivity functions of the fourth cycle
were investigated and plotted, which were numerically
identical to the sensitivity functions calculated for the
later cycles. Sensitivity functions of mu were not really
periodic, but changed little from one cycle to the other,
and therefore the corresponding sensitivity functions
were not excluded from the function shape investiga-
tions. Sensitivity vectors of variables mass and Vi20
were not considered, because the values of these vari-
ables depend on few parameters only and almost all el-
ements of the sensitivity vectors are zero. Sensitivities
of parameters f , thres1, thres were also excluded from
the investigations. These parameters are not related to
chemical reactions and have special role in the model.
Parameter f is an experimentally determined value, in-
dicating the ratio of the masses of the two newly formed
cells. Parameters thres1 and thres are threshold values
and are not directly related to physical parameters.

Figures 1, 2, and 3 show the sensitivity functions of
Cln2, Clb2T, and Cdc20T, respectively, during a cycle.
Similar figures were prepared for all other variables
of the model. It is clear that the rise of the sensitiv-
ity functions in most cases coincide with the positive
eigenvalue (gray) periods. Perturbing a parameter, af-
ter a delay, causes a deviation of the concentration set
compared to that of the original model. In the excitable
(gray) regions, the distance between the original and
the perturbed concentration sets increases, and there-
fore the absolute value of the sensitivity functions rises.
In the relaxation (white) regions, all eigenvalues are
negative, therefore the distance between the two con-
centration sets usually decreases, and the sensitivity
functions do relax toward zero.

Inspecting Figs. 1–3, it is obvious that several (but
not all) sensitivity functions of a given variable can
be obtained from another one by multiplying it with a
constant, which means that these functions are glob-
ally similar. Also, we have found that the sensitivity
functions can be sorted to several groups according to

International Journal of Chemical Kinetics DOI 10.1002/kin
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Figure 1 Sensitivity functions of the concentration of enzyme Cln2. Here and in all other figures the excitation periods are
denoted by gray and strong excitation period E3 is denoted by dark gray. Time zero marks the time of cell division. The labels
identify the parameters according to Chen et al. [3].

their shapes, and that some of the sensitivity functions
cannot be related to others this way.

To carry out the grouping of the sensitivity func-
tions sik(t) in time interval [t1, t2] in an objective way,
their shapes were compared via the following pro-
cedure. First, the functions were scaled to unit peak

value: >sik(t) = sik(t)/max |sik(t)|. Then, the integrated
difference of the two-scaled sensitivity functions was
arranged to matrix C:

Ci(k, l) =
∫ t2

t1

(>sik(t) − >sil(t))
2dt (7)

Figure 2 Sensitivity functions of the concentration of enzyme Clb2T.

International Journal of Chemical Kinetics DOI 10.1002/kin
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Figure 3 Sensitivity functions of the concentration of enzyme Cdc20T.

This is a distance matrix of sensitivity function shapes,
since if the local sensitivity functions of variable i with
respect to parameters k and l have identical shapes, then
Ci(k,l) is zero, and large Ci(k,l) value indicates very
different shapes. This distance matrix was used as an
input of a clustering code.

Cluster analysis is a technique that discovers groups
of objects that are similar to each other [23]. The sim-
ilarity of the objects can be characterized numerically
by a distance matrix. The diagonal of this matrix should
be zero, and it is a symmetric matrix. The hierarchi-
cal approach of clustering was selected, because we
wanted an unbiased identification of groups of similar
function shapes. Agglomerative and divisive cluster-
ing are the two basic approaches of hierarchical clus-
ter analysis. Agglomerative methods join smaller clus-
ters into larger clusters, whereas divisive methods split
larger clusters into smaller clusters. We used here the
weighted average clustering method, which is an ag-
glomerative one. This method is one of the options
of Fortran code HCINFLU [24], which was applied
in our calculations. The number of the identified clus-
ters depends on a dissimilarity threshold value of the
cluster analysis. When two clusters are merged, the
code shows the level of dissimilarity between these
two clusters. When the dissimilarity value was small,
the function shapes always fitted well to one of the
clusters. When there was a jump in the range of dis-
similarity values and for the first time the dissimilarity
value became large, two clusters of dissimilar function

shapes would have been merged. The cluster analysis
was always stopped before this point.

Figure 4 shows the scaled sensitivity functions of
Cln2. Most of the scaled sensitivity functions of vari-
able Cln2 follow two curves, indicated by a thick solid
and a thick-dotted line in the figure. For each vari-
able, the clustering calculations revealed that most of
the sensitivity functions were of globally similar, and
these functions could be sorted to two basic groups of
global similarity. This is a qualitatively new feature of
the global similarity of sensitivity functions that have
not been observed in other chemical kinetic systems.

Table I summarizes all pieces of information for the
shapes of the sensitivity functions of this cell cycle
model. Identical labels in different rows of the same
column of Table I means that the corresponding sen-
sitivity functions are globally similar. Labels A and B
indicate the two basic shapes for each variable. Labels
A1, A2, . . . (or B1, B2, . . . ) indicate that the corre-
sponding shapes are basically similar, but these func-
tions are different in a small section. Identical shapes
were denoted by exactly identical labels for each vari-
able. Sign X shows that no similar sensitivity function
was found among the sensitivity functions of the same
variable.

Local similarity of the sensitivity vectors was inves-
tigated by two different methods. First at three selected
times located at the ends of the main excitation peri-
ods (0.86, 80.56, and 111.66 min from cell division),
the ratios of the sensitivity coefficients were calculated

International Journal of Chemical Kinetics DOI 10.1002/kin
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Figure 4 Scaled sensitivity functions of Cln2. The thick solid line represents 10 overlapping functions of shape A (cf. Table I),
whereas the thick-dotted line represents 38 overlapping functions of shape B. There are nine scaled sensitivity functions that do
not show similarity to shapes A or B.

according to Eq. (3). At a given time and pair of vari-
ables Yi and Yj those sensitivity coefficients were con-
sidered locally similar, for which the calculated ratio
was identical within a tolerance margin. This way, at
each reaction time 4–12 groups of locally similar sen-
sitivity coefficients were identified to each of the pos-
sible 36 pairs of variables. A part of these groups were
different at different reaction times.

We also wanted to identify whether there are local
similarity relations that extend to all variables and are
valid during the whole period. Therefore, as the next
step, groups of sensitivity coefficients were selected
using the results of the previous analysis, and the cor-
relation of the sensitivity vectors was calculated using
Eq. (6). The measure cos θij = ±1 indicates that the
coefficients belonging to the sensitivity vectors are lo-
cally similar. Figure 5 shows the correlation of the

sensitivity vector of Cln2 with the sensitivity vectors
of all other variables, considering parameters kasbf,
kisbf ′, esbfn3, BCK0; CLN3MAX, Dn3, and Jn3. Dur-
ing the whole period and for each pair of variables,
cos θ is close to ±1. In a similar way, local similarity
that was valid during the whole period and for all pairs
of variables was detected for parameters kiswi′, kaswi,
and Jaswi. Many other alike parameter groups were
detected, but for these groups local similarity was not
fulfilled in some (narrow) range of the cell cycle period
or was not valid for the sensitivity functions of all pairs
of variables.

Results of the analysis presented above show that
in this cell cycle model multiple global similarity and
multiple local similarity relations exist. In combustion
models only single global similarity and single local
similarity have been found [14,16].

Table I The Inventory of All Sensitivity Function Shapes

Cln2 Clb2T Clb5T Sic1T C2 C5 Cdc20T Cdc20 HCT

BCK0 A A1 A A A A A A A1
CLN3MAX A A1 A A A A A A A1
Dn3 A A1 A A A A A A A1
kasbf A A1 A A A A A A A1
kisbf′ A A1 A A A A A A A1
Jn3 A A1 A A A A A A A1
Jisbf A A1 A A A A A A A1
esbfn3 A A1 A A A A A A A1

(Continued)

International Journal of Chemical Kinetics DOI 10.1002/kin
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Table I (Continued)

Cln2 Clb2T Clb5T Sic1T C2 C5 Cdc20T Cdc20 HCT

mu A A2 A A A A A X A1
ksn2′′ X A2 X A A A A A A1
Jasbf X A2 X A A A A A A1
kdn2 X A2 X A X A A A A1
ksb5′′ X A2 X X X X A A A2
kdib5 X A1 X X X X A A A1
kasb5 A X A X B1 X X X A1
ec1n3 B A1 B X X B1 A A A2
ec1k2 B A1 B X X B1 A A A2
ksc1′ B A1 B X X B1 A A A2
kd1c1 B A1 B X X B1 A A A2
kd2c1 B A1 B X X B1 A A A2
Jiswi B A1 B X B1 B1 A A A2
eit1n2 B A2 B B X B2 A A A1
ksc1′′ B A1 B X B1 B1 A A A2
kaswi B A1 B B B1 B1 A A A2
kiswi′ B A1 B B B1 B1 A A A2
Jaswi B A1 B B B1 B1 A A A2
ks20′ B A2 X X A X X X A1
ksb2′ B A2 B B X X A A X
kamcm B A2 B B B2 B2 A A B
kimcm B A2 B B B2 B2 A A B
Jamcm B A2 B B B2 B2 A A B
Jimcm B A2 B B B2 B2 A A B
Jd2c1 B A2 B X X B1 B1 B A2
ec1b5 B A2 B X X B1 B1 B A2
kasb2 X X X X B1 X X X A1
kdib2 X X X X B1 X X X A1
ksb5′ X X X X X X B1 B A2
kdb5′ X X X X X X B1 B A2
kisbf′′ B X B X X X B1 B X
esbfb5 B X B X X X B1 A X
kdb5′′ B X X X B1 X B1 B A2
eit1b5 B X B B B2 B2 B1 B A2
kiswi′′ B X X X B1 X X X B
kd20 B B2 X B B3 X X X X
ka20 B B1 X X B3 X B2 X X
ec1b2 B B1 X X X X B2 B X
kat1′ B X X B B4 B2 B1 B X
ksb2′′ B X X B B4 B2 B1 B B
kdb2′′ B B1 X B B5 B2 B2 B X
kdb2p B B1 X B B5 B2 B2 B X
ks20′′ B B1 X B B3 B2 B1 B B
kat1′′ B B1 X B B5 B2 B2 B X
Jit1 B B1 X B B5 B2 B2 B X
eit1b2 B B1 X B B5 B2 B2 B X
kdb2′ B B1 X B B4 B2 B2 B B
kit1′′ B B2 B B B5 B2 B1 B X
Jat1 B B2 B B B5 B2 B1 B X

Columns belong to the variables, and rows belong to the parameters of the cell cycle model. Names of the variables and parameters can be
checked in the previous papers related to this model [3,5].

Identical labels (except for X) within a column indicate globally similar sensitivity functions. Sign X shows that no similar sensitivity
function was found for the same variable.

Sensitivity functions of parameters ki20′, ki20′′, ksspn, kdspn, ksn2′, kit1′, ksbud, kdbud, Jspn, ebudb5, eorib2, kdori, ksori, kdib5, and kdib2
were near zero at all times and for all variables. The rows corresponding to these parameters are not given in the table.

International Journal of Chemical Kinetics DOI 10.1002/kin
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Figure 5 Correlation of the sensitivity vector of Cln2 with the sensitivity vectors of all other variables, considering parameters
kasbf, kisbf ′, esbfn3, BCK0; CLN3MAX, Dn3, and Jn3. Measure cos θ is close to ±1 at most times and for all variables,
indicating local similarity of these vectors.

If two cells in Table I belonging to the same variable
(or column) have identical labels, it means that the
change of the corresponding parameters has a similar
effect for this variable during the whole cycle. This
means that the effect of changing one parameter can
be compensated by the appropriate change of the other

parameter. If two parameters belong to the same local
similarity group for a given pairs of variables, then this
compensation extends to the concentration–time curve
belonging to the other variable.

Figure 6 shows the concentration—time curve of
Cln2 in the original model during a cycle. If parameter

Figure 6 The concentration of Cln2 in the original model (solid line), the calculated Cln2 concentration when parameter
kisbf ′ is increased by 10% (crosses), and when parameters kisbf′ and BCK0 are simultaneously increased by 10% and 22%,
respectively (dots).

International Journal of Chemical Kinetics DOI 10.1002/kin
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Figure 7 The concentration–time curves of all species of the cell cycle model, calculated by the original parameter set (solid
line) and when two important parameters were simultaneously changed (crosses). In the later case parameters kisbf′ and BCK0
were increased by 10% and 22%, respectively.

kisbf ′ is increased by 10%, this curve changes signif-
icantly. However, an appropriate (+22%) change of
another parameter (BCK0) perfectly restores the orig-
inal curve. The reason is that the sensitivity function
curves of Cln2 with respect to parameters kisbf′ and
BCK0 show global similarity; therefore, the parameter
changes have similar effect anytime during the cell cy-
cle. As Fig. 5 shows, the sensitivity coefficients of all
variables belonging to these parameters also exhibit
local similarity; therefore, the simultaneous change
of parameters kisbf′ and BCK0 results in the same
concentration–time curves for all species (see Fig. 7)
compared to the original model.

SIGNIFICANCE OF THE SIMILARITY OF
THE SENSITIVITY FUNCTIONS OF
THE CELL CYCLE MODEL

Global similarity of sensitivity functions in biochem-
ical and biological models is of high importance, be-
cause it can be related to the robustness of living or-
ganisms. In general, in nonlinear systems the change
of each parameter has different effect on the simulated
time curves of variables. Change of one parameter can
be fully compensated by changing another parameter
only in special cases, when, for example, only the ratio
of two parameters influences the results. However, if

the sensitivity functions are globally similar, then the
change of these parameters can compensate each other.
Most parameters in the cell cycle model are related to
enzyme activities. These enzyme activity parameters
can change due to mutations. If such a mutation is
not lethal, but harms the normal operation of the cell,
a further mutation, influencing another parameter in
the same similarity group, can fully restore the normal
operation. Since the requirement is not the (unlikely)
restoration of the value of the same parameter, this
mending mechanism is much more versatile.

CONCLUSIONS

Models can be effectively analyzed via perturbations.
Local parametric sensitivity coefficients ∂Yi/∂pk show
how the calculated variable value Yi changes due to
small change of parameter pk . Timescale and sensitiv-
ity analyses are frequently applied tools for the investi-
gation of chemical kinetic models, and these tools are
well applicable for any other model based on differ-
ential equations. Inspection of the eigenvalues of the
Jacobian reveals the actual timescales of the system,
and also excitation and relaxation periods can be distin-
guished. The dynamical dimension of the system can
also be calculated [19,25,26]. This dynamical dimen-
sion is equal to the number of differential equations in
a minimal model of the same accuracy.

International Journal of Chemical Kinetics DOI 10.1002/kin
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Zsély et al. [16–19] have investigated a series of
combustion models, looking for the similarity features
of local sensitivity functions. Two sensitivity functions
may have identical shapes, which means that one can
be obtained from the other by multiplying it with a con-
stant. These sensitivity functions are globally similar,
and in this case the changes of the related parameters
have similar effect for the value of a variable during
the whole time interval. If the shapes of the sensitivity
functions for two parameters are identical for all vari-
ables, then any change of one of the parameters can be
compensated by changing the other parameter.

In the combustion models investigated so far, the
nonzero sensitivity functions were either all globally
similar or global similarity was not detected. The sim-
ilarity of sensitivity functions was related to the ex-
istence of low-dimensional slow manifolds in chem-
ical kinetic systems and the presence of an autocat-
alytic runaway during a period. Until now, all models
showing the similarity of local sensitivity functions
described high-temperature gas kinetics (combustion)
systems.

The dynamical dimension of the cell cycle model of
Chen et al. [3] was also found to be much smaller than
the number of variables and excitation (autocatalytic)
periods were identified [5]. Therefore, similarity of the
sensitivity functions was expected. Numerical calcula-
tion and investigation of the local sensitivity functions
of this model showed that the sensitivity functions are
really similar, but a qualitatively new feature of these
sensitivity functions was found. For each variable, most
of the sensitivity functions were globally similar, but
these functions could be sorted to several groups of
global similarity. Such a feature was not found in the
previously investigated chemical kinetic systems.

A possible reason for this new type of global simi-
larity can be related to the basically different nature of
the cell cycle model compared to the combustion sys-
tems. In high-temperature gas phase combustion mod-
els, the autocatalytic runaway is caused by a single
group of strongly coupled reaction steps, the chain-
branching H/O radical reactions. In the budding yeast
cell cycle, several loosely connected excitation cen-
ters are present, composed by enzyme catalytic groups
of reactions, and these are firing one after the other
according to a strict order [5]. This may cause the
multiple global similarities of the sensitivity functions.
Of course, this is a qualitative explanation, which
should be extended to a formal mathematical proof.

If two sensitivity functions of variable i have simi-
lar shapes, it means that the perturbation of the corre-
sponding parameters have similar effects, which is an
important structural information. Global similarity of
the sensitivity functions of two parameters means that

the change of one parameter can be fully compensated
by an appropriate change of the other parameter. This
is important information for the validation of complex
dynamical models.

The joint application of local sensitivity and
timescale analyses is a very powerful set of tools for
the investigation of complex dynamical models. It re-
veals the excitation periods, the change of dynamic
dimension, and the effect of parameter perturbation.
Similarities of local sensitivity functions carry impor-
tant information on the role of parameters in the model.
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