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Local and global uncertainty analyses of a flat, premixed, stationary, laminar methane flame model were
carried out using the Leeds methane oxidation mechanism at lean (æ ) 0.70), stoichiometric (æ ) 1.00), and
rich (æ ) 1.20) equivalence ratios. Uncertainties of laminar flame velocity, maximal flame temperature, and
maximal concentrations of radicals H, O, OH, CH, and CH2 were investigated. Global uncertainty analysis
methods included the Morris method, the Monte Carlo analysis with Latin hypercube sampling, and an improved
version of the Sobol’ method. Assumed probability density functions (pdf’s) were assigned to the rate
coefficients of all the 175 reactions and to the enthalpies of formation of the 37 species. The analyses provided
the following answers: approximatepdf’s and standard deviations of the model results, minimum and maximum
values of the results at any physically realistic parameter combination, and the contribution of the uncertainty
of each parameter to the uncertainty of the model result. The uncertainty of a few rate parameters and a few
enthalpies of formation causes most of the uncertainty of the model results. Most uncertainty comes from the
inappropriate knowledge of kinetic data, but the uncertainty caused by thermodynamic data is also significant.

1. Introduction

Modeling of complex chemical kinetic systems is frequently
used for obtaining scientific information that cannot be ac-
complished in any other way. In addition, such modeling is a
common tool for the optimization of processes in chemical
industry, combustion technology, and microelectronics manu-
facturing to improve the efficiency and to decrease the unwanted
impacts on the environment. The credibility of the simulation
results depends on the structure of the model, the values of the
incorporated parameters, and the precision of the numerical
method. Reliable chemical kinetic modeling requires the ap-
plication of accurate reaction rate parameters and thermody-
namic data. However, all parameters in a reaction kinetic model
are results of measurements or calculations and are uncertain
to some extent. Uncertainty analysis is the name of a family of
mathematical methods that investigate the uncertainties of model
results in light of the input uncertainties. Local uncertainty
analysis utilizes the gradient of the model results in the space
of parameters at the actual parameter set, whereas methods of
global uncertainty analysis take into account the whole uncer-
tainty range of parameters.

Many kinetic parameters of elementary reactions related to
combustion and atmospheric chemistry have been evaluated (see,
e.g., refs 1-5). These critical data evaluations not only provide
the recommended kinetic parameters but also report the accuracy
of the data by assigning an uncertainty factor to them. This
uncertainty factor,fj, has been defined in the following way:

wherekj
0 is the recommended value of the rate coefficient of

reaction j and kj
min and kj

max are the extreme values; rate
coefficients outside the [kj

min, kj
max] interval are considered

physically nonrealistic by the evaluators. Thermodynamic data
compilations of gas kinetic modeling relevance6-18 also fre-
quently quote the variance of the enthalpy of formation of the
species. There have been only a few applications of uncertainty
analysis to the investigation of combustion mechanisms. The
methods used by Warnatz,19 Bromly et al.,20 and Brown et al.21

are variants of the local uncertainty analysis method described
below, and their relation has been discussed by Tura´nyi et al.22

Global methods were used by Phenix et al.,23 by Reagan et al.,24

by Tomlin,25 and by Zse´ly et al.26 Uncertainty analysis is an
often applied tool in atmospheric chemistry modeling.27-42

These works utilize mainly global methods.
Combustion of methane is one of the most frequently modeled

chemical reactions because of its high academic and industrial
importance. In a recent article, Tura´nyi et al.22 applied local
uncertainty analysis for the investigation of the effect of the
uncertainty in kinetic and thermodynamic data to methane flame
simulation results. The investigated model was a premixed
laminar methane-air flame using the Leeds methane oxidation
mechanism.43 This mechanism contains 175 reversible reactions
of 37 species. Tura´nyi et al.22 updated the enthalpy of formation
data and assigned 1σ uncertainty values to them by processing
thermodynamic data collections.6-16 On the basis of kinetic data
evaluations,1-5 an uncertainty factor,fj, was assigned to each
rate coefficient. Assuming that the minimum and maximum
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values of rate parameters correspond to 3σ deviations from the
recommended values on a logarithmic scale, the uncertainty
factor was converted to the variance of the logarithm of the
rate coefficient using the following equation:

In the next step, a joint kinetic and thermodynamic uncertainty
analysis was carried out for several output values of the methane
flame using the linear uncertainty analysis method.

A possible objection against the work of Tura´nyi et al.22 is
the application of a linear method for the analysis of a highly
nonlinear system. This linear method, to be detailed in the
following section, provides exact information for linear models
only, and it is expected to be applicable for nonlinear models
only when the standard deviation of the parameters is sufficiently
small. However, for several rate coefficients in the methane
oxidation mechanism, the uncertainty factor is 1.0, that is, the
corresponding rate parameter is uncertain in a range of 2 orders
of magnitude.

In this paper, the methane oxidation mechanism, the reaction
conditions, and the uncertainty features of the parameters were
similar to those used by Tura´nyi et al.22 However, in this work,
four different uncertainty analysis methods are utilized, which
complement each other. The results not only provide a
comprehensive analysis of the methane flame model but also
present a cross testing of four uncertainty methods that can be
used for the investigation of complex chemical kinetic models.

2. Four Methods for Uncertainty Analysis

The main task of uncertainty analysis is the determination of
the probability density functions (pdf’s) of the model results
from the jointpdf of the parameters. A more modest request is
the calculation of the variances of model results from the
variances of the parameters. The ideal method should also
identify which parameters cause high uncertainty in a given
model result, should determine these parameters with few
calculations (using little computer time), and has to be applicable
to large nonlinear models with many parameters. No such
method exists, but four methods will be described in the next
sections that complement each other and together provide all
this information.

2.1. Linear Uncertainty Analysis. Application of linear
uncertainty analysis for chemical kinetic systems has been
discussed in detail by Tura´nyi et al.22 The basic equations are
enumerated below, and some features of this method are
presented here. If the rate coefficients are not correlated, then
the variance of model outputYi can be calculated in the
following way:

In these equations, subscript K refers to an uncertainty of
kinetic origin,σ2(ln kj) is the variance of the logarithm of rate
coefficient kj, and (∂Yi/∂ ln kj)2 is the square of the seminor-
malized local sensitivity coefficient. Partial varianceσKj

2(Yi) is
the contribution of the uncertainty of the rate coefficient of
reactionj to the variance of model outputYi. If the model were
linear, then the kinetic uncertainty contributionσK

2(Yi) would
be the exact variance ofYi because of the uncertainty of kinetic

parameters.SK%ij indicates the percentage contribution of
σKj

2(Yi) to σK
2(Yi).

The influence of the enthalpy of formation data on the model
result can be calculated in a similar way, assuming that the data
are uncorrelated:

where subscript T refers to thermodynamic uncertainty;∂Yi/
∂∆fH°298(j) is the local enthalpy of formation sensitivity coef-
ficient, which is a linear estimation of the effect of changing
the enthalpy of formation; andσT

2(Yi) is the variance of model
outputYi due to the uncertainties of the enthalpies of formation
of all species. The partial thermodynamic uncertainty contribu-
tion σTj

2(Yi) is the contribution of the uncertainty of the enthalpy
of formation of speciesj to the variance of model outputYi,
and ST%ij indicates the percentage contribution ofσTj

2(Yi) to
σT

2(Yi).
The kinetic and thermodynamic parameters are assumed to

be uncorrelated; therefore, the sum of the variances of kinetic
and thermodynamic origin provides the variance of the model
result:

We can also calculate the values

whereσj
2(Yi) is either of kinetic or of thermodynamic origin.

Partial variancesσKj
2(Yi) and σTj

2(Yi) and the percentage
contribution of their sum to the variances indicate the share of
the uncertainty of parameterj to the uncertainty of resulti. Most
of the simulation programs in reaction kinetics include built-in
routines to calculate local sensitivity coefficients; therefore, the
variances and uncertainty contributions above can be easily
calculated. The drawback of this method is that the calculated
values are local estimates only, and the accuracy of this
approximation cannot be assessed.

2.2. Monte Carlo Analysis with Latin Hypercube Sam-
pling. In the Monte Carlo (MC) analysis,44 a large number of
parameter sets are generated according to the probability density
functions of the parameters. The model is simulated with each
of these parameter sets, and the results are processed with
statistical methods. The cornerstone of this approach is the
application of an efficient and unbiased method for the selection
of the parameter sets. In Latin hypercube sampling,44 the range
of parameters to be varied during the MC simulations is divided
into intervals of equal probability. The parameter values are
then randomly and independently sampled in each interval, and
the selected values of the parameters are randomly grouped
without repetition. This ensures that the parameter space is
represented with a good approximation of full coverage.
Analysis of the MC simulation results included the calculation
of the means and the variances of the model output, as well as
the investigation of the resultingpdf’s. Monte Carlo analysis
frequently requires several thousand runs of the model but
provides accurate and unbiased information about the uncertainty
of model results. Although it is possible to calculate individual

σ2(ln kj) ) ((fj ln 10)/3)2 (2)
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2(Yi) ) ( ∂Yi

∂ ln kj
)2

σ2(ln kj) (3)

σK
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j
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2(Yi) ) ( ∂Yi
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contributions of the parameters to the uncertainty of the output
values, e.g., via standardized regression coefficients,44 deter-
mination of accurate values requires far too many calculations
with this method.

2.3. The Morris Method. The Morris one-at-a-time (MOAT)
method44,45 is a global technique, which also estimates the
contribution of the parameters to the uncertainty of the results.
N + 1 parameter sets are designed (whereN is the number of
parameters) with the algorithm of Morris, so that a given
parameter takes exactly two values throughout the sets: in every
run, exactly one parameter is changed randomly compared to
the previous run, and every parameter is changed exactly once
during theN + 1 runs. The values of the parameters are selected
from the whole range of the parameter values by setting outm
equidistant points. A higherm value implies a finer grid, and
m is usually recommended to be around 5; this is the value that
we used. Because MOAT is a screening method (i.e., the results
are qualitative), increasing the value ofm does not cause
significant change in the results. The procedure is repeated
several times, so newN + 1 parameter sets are designed in the
same way.

The elementary effectdij of parameterpj on output valueYi

can be calculated in the following way:

wherep1, p2, etc. are either the kinetic or the thermodynamic
parameters and∆ is a step size given by the algorithm, with
which parameterpj is changed. Equation 9 is calculated for all
theN + 1 runs, and it gives one effect value ofdij per run per
output variable. Calculatingdij several times using different
parameter sets, the means and the standard deviations of the
effects are plotted against each other. Parameters with a high
mean effect are influential, whereas a low mean effect shows
that uncertainty in that parameter does not affect the given output
variable significantly. Low standard deviation shows that the
parameter has approximately a linear effect, whereas a high
value means that the effect of that parameter is nonlinear or
very much depends on the actual values of the other parameters
(interaction). The output of the Morris method is a graph
showing the standard deviation of each parameter effect vs their
mean effect. Unimportant parameters are in the bottom left
corner, important parameters with linear effects are in the lower
right region, and parameters with nonlinear or interaction effects
are in the top right region of the graph. In the original work of
Morris,45 eq 9 was used without taking the absolute values. As
has been shown by Campolongo et al.,46 using the absolute value
of the deviations is a more appropriate way to rank factors in
the order of importance.

The advantage of the Morris method is its computational
cheapness, while the parameters are varied in their whole range.
In addition, the effect of a parameter is calculated at randomly
selected values of the other parameters. However, it does not
take into account the probability distribution functions of the
parameters. In our calculations, every parameter could take four
equidistant values (minimum, maximum, and two intermediate
values) and the procedure was repeated 10 times (10× (N +
1) runs in total).

2.4. Sensitivity Indices.The fourth method employed in this
work is a further developed version47 of the Sobol’48 method.
This is a global sensitivity analysis method, which quantitatively
gives the relative importance of input variablepj in determining
the value of an output variableYi ) fi(p1, p2, ...,pN). If the joint

probability of the input isP(p1, p2, ...,pN), the variance of output
Yi can be expressed as

where E(Yi) is the mean value of the outputYi. To get the
variance inYi due to all parameters butpj, the calculation of
the above integral is needed at fixed values ofpj, for which the
V(Yi|pj ) p̃j) notation is used. Taking all possiblep̃j values into
account, the meanE(V(Yi|pj)) of these values can be obtained.
Then, the differenceV(Yi) - E(V(Yi|pj)) gives the variance of
the expected value ofYi due topj only, V(E(Yi|pj)). From this,
the first-order sensitivity indices (that is, the main effect) can
be calculated:

which characterizes the contribution of parameterpj to the
variance of the output variableYi when the effects of the other
parameters are taken on average. The first-order indices are
scaled between 0 and 1.

If the input parameters are uncorrelated, it is possible to repeat
the procedure by fixing two parameters at a time. The resulting
values are the second-order sensitivity indices:

The second-order term accounts for the variation inYi that
cannot be explained bypi andpk alone (that is the interaction
of parameters). Higher-order terms can be constructed in a
similar way.

The total effect of a parameter (Sj(i)
tot) is the sum of all terms

related to the uncertainty contribution of output valueYi, which
contain parameterj. For example, if there are three parameters
(denoted bya, b, andc), then

The total effect is a very useful measure of nonadditivity in a
model. For a purely additive model∑j)1

N Sj(i) ) 1. On the other
hand, for a model with interacting parameters, the difference
Sj(i)

tot - Sj(i) shows the level of interactions, which can be further
investigated through the second-order termsSkj(i).

For the computation of sensitivity indices, several methods
have been developed, such as the method of Sobol’48 or the
extended version of the Fourier Amplitude Sensitivity Test
(FAST).49 In this work, the method of Saltelli is used,47 which
is an extended version of the Sobol’ method. The method
requiresM(2N + 2) number of Monte Carlo runs in a designed
fashion and providesSj(i), Sj(i)

tot, andSkj(i); increasing the number
of repetitions, M, increases the accuracy of the method. This
method is cheaper and more efficient than the original Sobol’
method and the extended FAST.

3. Uncertainty Analysis of a Methane Flame Model

Using the uncertainty analysis methods described in the
previous section, we examined the Leeds methane oxidation
mechanism43 at the conditions of a one-dimensional (i.e., flat),
adiabatic, freely propagating, laminar, premixed flame. The

dij ) |Yi(p1, ...,pj-1, pj ( ∆, pj+1, ...,pN) -
Yi(p1, ...,pj-1, pj, pj+1, ...,pN)| (9)

V(Yi) ) ∫∫ ...∫fi
2(p1, p2, ...,pN) P(p1, p2, ...,pN)

dp1 dp2 ... dpN - E2(Yi) (10)

Sj(i) ) V(E(Yi|pj))/V(Yi) (11)

Skj(i) )
V(E(Yi|pk, pj)) - V(E(Yi|pk)) - V(E(Yi|pj))

V(Yi)
k * j (12)

Sa(i)
tot ) S

a(i)
+ S

ab(i)
+ S

ac(i)
+ S

abc(i)
(13)
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mechanism contains 175 reactions of 37 species, which also
implies 37 enthalpies of formation data. The enthalpy of
formation of species H2, O2, and N2 is zero at 298.15 K by
definition, and the associated uncertainty is also zero. The
remaining 34 species have an enthalpy of formation with
nonzero uncertainties at 298.15 K. This means that the total
number of parameters to be investigated was 209. The cold
boundary conditions werep ) 1.0 atm andTc ) 298.15 K.
The investigated mechanism, the modeling conditions, and the
uncertainty features of the parameters were identical with those
used in the article of Tura´nyi et al.,22 with the following
exceptions. Application of global methods requires not only the
mean and the variance of the parameters but also theirpdf’s.
The assumed variances of the parameters were identical with
those used in the article,22 and normal distribution truncated at
(3σ was assumed for parameters lnkj and∆fH°298(j), i.e., the
minimum and maximum values of these parameters werepj

0 -
3σ(pj) andpj

0 + 3σ(pj), respectively. This is in accordance with
the assumed extremes of rate coefficients as usually defined in
the kinetic evaluations (see eqs 1 and 2); the possible extremes
of the enthalpy of formation data were defined in an analogous
way. The uncertainty factorsfj assigned to each reaction step
can be downloaded from our Web site,43 and the variance of
the enthalpies of formation can be found in Table 1 in the article
by Turányi et al.22

In the previous work,22 the methane flame was investigated
at equivalence ratiosæ ) 0.62,æ ) 1.00, andæ ) 1.20. The
lean equivalence ratioæ ) 0.62 is close to the low extinction
limit. Therefore, in the global uncertainty calculations in the
cases of several parameter sets, it was not possible to model a
propagating flame; hence, it was not possible to interpret
quantitatively the simulation results. Therefore, a slightly richer
mixture of æ ) 0.70 was chosen in the present calculations,
which resulted in a more stable flame that was not simulated to
be extinguished at any of the parameter sets.

At the time of the publication of the article,22 the enthalpy
of formation of OH was debated and therefore all calculations
were done twice, assuming a higher variance of 2.1 kJ mol-1

and a lower variance of 0.38 kJ mol-1 for ∆fH°298(OH). The
former reflected the scatter of the∆fH°298(OH) values found in
the literature, and the latter was the new recommendation by
Ruscic et al.50,51Recently, the enthalpy of formation of OH and
its uncertainty as recommended by Ruscic et al.51 became
generally accepted; therefore, in this work, only the lower
variance of 0.38 kJ mol-1 for ∆fH°298(OH) was considered.

In the work of Turányi et al.,22 the kinetic and thermodynamic
uncertainties were calculated separately and these results were
merged only in the last step. The calculated thermodynamic
uncertainties were accurate; however, because of a program
error, the kinetic uncertainties were somewhat smaller, and their
relative magnitudes were also not accurate. This resulted in the
results, given in Table 2 and Figure 2 of that article,22 being
incorrect, although they are in most cases qualitatively true.
Figure 1 of the article22 shows that the ratio of kinetic and
thermodynamic uncertainties is also flawed, demonstrating an
exaggerated effect of thermodynamic uncertainties. In this
article, the correct local uncertainty results and the correct ratio
of kinetic and thermodynamic uncertainties are published. This
time, it was possible to check the local uncertainty results by
comparing them with the Monte Carlo outcomes. Another, less
significant error was also found in the same article:22 the
recommended enthalpy of formation of C3H2 is 476.95 kJ mol-1

instead of 591.71 kJ mol-1 as indicated in column 2 of Table
1. During the calculations reported,22 the former value was used.

Methane flame models produce a large number of numerical
results, but only some important ones were selected to make
the uncertainty analysis effective. In accordance with the
previous article,22 the following model outputs were consid-
ered: laminar flame velocityVL, maximum flame temperature
Tmax, and maximum concentrations of radicals H, O, OH, CH,
and CH2. These quantities are generally accepted important
features of a methane flame. Reproduction of the experimental
laminar flame velocity is a usual test of combustion mechanisms.
Exact calculation of the H atom concentration is of high
importance because this radical is the most effective chain carrier
in hydrocarbon combustion systems. Exact calculation of the
flame temperature is also important because a possible aim of
combustion calculations is the determination of heat release.
Another usual aim of combustion simulations is the calculation
of NO production. NO generation is determined by the local
temperature and the concentration of radicals O and OH via
the extended Zeldovich mechanism. In the Fenimore mechanism
of NO generation and at reburn conditions, the NO production
is controlled to a great extent by the concentration of radicals
CH and CH2.

For the flame simulations, the PREMIX code52 was used,
and the local sensitivities were converted to uncertainty features
using the program KINALC.53 The MOAT, the LHS Monte
Carlo, and the improved Sobol’ methods were carried out using
purpose written codes. A single simulation of the methane flame
model from good starting conditions required 30-40 s on a
2000 MHz PC, and the local sensitivity analysis required
additionally about the same time. Calculations with certain
parameter sets required significantly more time (up to 10 min
each). The Morris method and the Monte Carlo analysis required
2130 and 3000 runs, respectively, for each equivalence ratio.
The Sobol’ method, which allows us to estimate first-, second-,
and total-order terms has a cost ofM(2N + 2) ) 220(2× 36
+ 2) ) 13 640 (N is the number of investigated parameters).
Application of these three methods required approximately 22,
33, and 167 h of computational time, respectively, for each
equivalence ratio.

3.1. Uncertainty of Model Results.Results of any math-
ematical model are determined by the structure of the model,
the parameters used, and the method of the solution. The
governing partial differential equations of a one-dimensional
stationary flame model and the applied numerical methods are
well established. Also, the stoichiometry of the reaction steps
of methane oxidation is widely accepted (see an analysis in
Hughes et al.54), and all current methane oxidation mechanisms
use a very similar set of reactions. The largest uncertainty is in
the values of the parameters, but as described above, realistic
estimations of the uncertainty bounds for all parameters are
available.

Monte Carlo analysis is the best method for the determination
of the uncertainty of model results. Table 1 contains the
monitored simulation results at the nominal set of parameters
along with their standard deviations (also expressed in percent-
ages) as determined by the Monte Carlo analysis. This table
also contains these values as determined by local uncertainty
analysis. Table 1 shows that in all cases there is a fairly good
agreement between the Monte Carlo and the local uncertainty
analysis results. However, it is important to note that the 1σ
uncertainty of the laminar flame velocity is consistently under-
predicted by approximately 1-2 cm s-1 in the local analysis at
all fuel/air ratios.

Precise determination of the extremes of the results would
require a sophisticated parameter estimation task with a very
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large number of simultaneously changed parameters. For
example, in the present model, the values of 209 parameters
should be optimized, which is a very challenging problem.
During the Latin hypercube Monte Carlo analysis, all parameters
are changed simultaneously and these parameter sets have been
designed to cover the whole parameter space. Therefore, the
minimum and maximum values collected from the Monte Carlo
analysis results provide a good estimation of the attainable
minimum and maximum model answers. Calculation of these
extreme values is very important. If the experimental data lie
outside the range of attainable results, then the structure of the
model is surely wrong (e.g., important reactions are missing),
provided that thepdf’s of the parameters have been estimated
correctly. Table 1 contains the minimum and maximum values
of the model results and their percentage relation to the main
value.

The standard deviation of the calculated flame velocityσ-
(VL) is 4.1 cm s-1, 6.2 cm s-1, and 6.7 cm s-1 for lean (æ )
0.70), stoichiometric (æ ) 1.00), and rich (æ ) 1.20) flames,
respectively. These are 19.1%, 16.4%, and 24.2% of the nominal
values, respectively. The experimental uncertainty of the de-
termination55 of laminar flame velocity is about(1 cm s-1.
Methane flame models using the most recent reaction mecha-
nisms usually also reproduce54 the experimental data within(1
cm s-1. Such an accuracy can be achieved only by chance or
by fine-tuning of the parameters because the intrinsic uncertainty
of the models is on the order of(4-7 cm s-1 at the 1σ level,
according to the present study. Tuning the parameters within
the physically realistic limits, the laminar flame velocity can
be changed significantly. For example, in the case of stoichio-
metric flame, the laminar flame velocity can be tuned between
21 and 62 cm s-1.

On the other hand, the flame temperature is calculated very
precisely by the models. For example, in the stoichiometric case,
the standard deviation of the maximum flame temperature is

1.7 K at the 1σ level and the achievable values deviate from
the nominal value only by 5-7 K. The very low uncertainty
(0.1-0.5%) of the calculated temperature is reassuring. The
main reason for this is that the calculated maximum temperature
depends mainly on the enthalpies of formation of CH4, H2O,
CO2, and CO, and these values are known with very low
uncertainty.

The standard deviations of the calculated maximum radical
concentrations are in the 4-60% range of the nominal values,
and they depend on the fuel/air ratio. In general, the standard
deviations of O, H, and OH are relatively low, and those of
CH and CH2 are high. This means that the calculation of the
prompt NO production cannot be performed with high accuracy,
even if the parameters of the nitrogen reactions were known
with low uncertainty.

Another result of the Monte Carlo analysis is thepdf’s of
the output values through the analysis of histograms and
cumulative distribution functions. Some typical examples are
shown in Figure 1. The maximum temperature is limited by
the adiabatic thermodynamic threshold value; this limiting value
cannot be exceeded using any kinetic parameter set, and
modifications of the kinetic parameters may lower the calculated
temperature peak. This is probably the reason the temperature
histogram is steep toward the high temperatures and has a long
tail toward the low temperatures. This behavior is the most
emphasized in the rich flame (Figure 1c), but also characteristic
for the lean and the stoichiometric flames (Figure 1a,b).

For the flame velocity and the concentrations of species, the
physical upper limits are not close to the calculated values
obtained by the original parameter set and the histograms of
these results are different (see Figure 1d-f). The calculated
OH atom concentration is nearly of normal distribution (see
Figure 1e), and similar patterns were obtained for the distribution
of the flame velocity and the concentrations of O and H at all
the three equivalence ratios investigated. The calculated CH

TABLE 1: Simulation Results at the Original Parameter Set, Standard Deviation (1σ) of the Results Determined by Local
Uncertainty, and Monte Carlo Analysesa

Monte Carlo analysislocal analysis
standard deviation standard deviation minimum maximumnominal

values 1σ % 1σ % value % value %

æ ) 0.70
VL/cm s-1 21.64 2.95 13.6 4.05 19.1 9.95 47.0 36.22 171.2
Tmax/K 1806.46 8.62 0.5 10.36 0.6 1751.39 97.0 1828.49 101.3
wH,max/10-5 5.82 1.57 27.1 1.40 25.0 2.00 35.8 10.70 191.5
wO,max/10-3 1.33 0.20 15.3 0.23 17.9 0.60 46.5 2.04 159.4
wOH,max/10-3 2.85 0.23 8.2 0.26 9.2 1.85 66.3 3.60 129.0
wCH,max/10-8 2.94 1.89 64.7 1.77 59.7 0.35 11.8 16.80 567.1
wCH2,max/10-6 3.61 1.32 36.6 1.09 32.8 0.79 23.6 9.11 273.4

æ ) 1.00
VL/cm s-1 38.11 4.57 12.0 6.17 16.4 21.31 56.6 61.56 163.4
Tmax/K 2224.23 2.82 0.1 1.73 0.1 2217.36 99.7 2228.58 100.2
wH,max/10-4 2.14 0.31 14.7 0.26 12.6 1.31 63.1 2.99 144.4
wO,max/10-3 1.74 0.23 13.3 0.18 10.4 1.13 66.9 2.30 136.1
wOH,max/10-3 5.27 0.19 3.6 0.21 4.0 4.50 86.4 5.98 114.8
wCH,max/10-7 8.07 3.74 46.3 3.73 49.2 1.18 15.5 36.00 474.6
wCH2,max/10-5 2.54 0.60 23.8 0.56 24.0 0.89 37.9 5.15 219.5

æ ) 1.20
VL/cm s-1 27.22 5.23 19.2 6.70 24.2 10.05 36.3 53.80 194.1
Tmax/K 2131.82 3.72 0.2 4.74 0.2 2092.03 98.2 2136.61 100.3
wH,max/10-4 2.10 0.48 23.0 0.34 16.3 0.91 43.6 3.21 153.6
wO,max/10-4 4.05 1.75 43.2 1.29 30.9 0.83 19.9 8.82 212.0
wOH,max/10-3 2.97 0.49 16.6 0.42 14.3 1.38 46.8 4.19 142.0
wCH,max/10-6 2.61 0.99 37.7 0.97 42.3 0.56 24.3 8.55 369.9
wCH2,max/10-5 3.68 1.22 33.2 0.85 24.7 1.36 39.5 7.45 216.3

a Minimum and maximum values are determined by the Monte Carlo analysis. All values are also expressed as a percentage of the nominal
values.
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radical concentrations have a longer tail to the direction of higher
values (see Figure 1f), and similar histograms were obtained
for radical CH2, also in the whole range of equivalence ratios.

3.2. Tracing the Origin of Uncertainty. The influence of
the uncertainty of the thermodynamic and kinetic parameters
on the uncertainty of each model result was contrasted in Figure
2 (see upper bars) by comparing the extent of the termsσK

2

andσT
2 of eq 7, calculated by local uncertainty analysis. The

lower bars in this figure refer to the ratio of the sum of the
first-order Sobol’ indices, related to kinetic and thermodynamic
parameters. Despite the basic difference in these methods, there
is an excellent agreement among their results. Uncertainty in
the maximum temperature at stoichiometric conditions is highly
related to the thermodynamic uncertainties. The calculated
concentration of the OH radical is also sensitive to uncertainties
in the thermodynamic parameters, mainly at lean and stoichio-
metric conditions. The overall contribution of thermodynamic
parameters to the uncertainty of the results is less significant
than that of the kinetic parameters, but these are in the range of
3-10% and thus certainly can not be neglected.

In Figure 3, some of the Morris plots are presented. In these
plots, all points, which are clearly distinct from the really
unimportant ones, were marked, without selecting a uniform
threshold value for the mean or for the variance of the effect of
the outputs to be shown. In Figure 3a,c,e, the Morris plots for
the laminar flame velocity are shown at different equivalence
ratios. Reaction O2 + H ) OH + O has the greatest contribution
in the uncertainty, and reactions CO+ OH ) CO2 + H and
HCO + M ) H + CO + M also have a great effect. It can be
seen that reaction O2 + H ) OH + O has a smaller variance/
mean ratio than the other reactions.

The Morris analysis indicates that the uncertainty of the
enthalpy of formation of the OH radical is a major source of
the uncertainty of the maximum OH concentration for all
equivalence ratios and also shows that this influence is nearly
linear. The termolecular reaction of O2 + H + M and that of H
+ OH + M also has a relatively low nonlinear effect on the
maximal OH concentration. In general, it can be seen that the
nonlinear effects cannot be neglected to achieve a realistic order
of importance of the parameters.

In the local uncertainty analysis, it is possible to calculate
the percentage contributions of the individual input parameters
to the output values (see eq 8). Figure 4 shows the percentage
contributions for all monitored variables in the cases of lean,
stoichiometric, and rich flames. These speck figures have been
constructed in such a way that the monitored variables are
aligned on the horizontal axis, and the input parameters are along
the vertical axis; the magnitude of the uncertainty contribution
is reflected in the thickness of the specks (continuous scale).
Only parameters with at least 1% contribution are shown. Blank
areas mean that a given parameter has less than 1% contribution
in that case to the uncertainty of a monitored output.

The number of reactions causing high uncertainty is around
30 in every case, which is approximately one-sixth of the total
number of reactions. Moreover, there are only a few really major
sources of uncertainty at all equivalence ratios.

For the efficient calculation of the sensitivity indices, it was
crucial to reduce the total number of varied parameters because
treating all parameters as uncertain ones would have required
too long of a computational time. To stay on the safe side, a
parameter was selected if it was found to be important for at
least one result either in the local or in the Morris analysis. A
group of 27-32 parameters of the possible 209 parameters were
selected at each equivalence ratio for the calculation of the
Sobol’ indices. The first-order sensitivity indices are shown in
Figure 5, but only for parameters havingSj(i) > 0.01. The
representation of the data is the same as for the results of the
local analysis (Figure 4), to facilitate comparison. The sums of
the first-order indices are also shown in the bottom of the
columns. It should be noted that, although the local uncertainty
contributions always add up to 100% by definition, the sum of
the first-order sensitivity indices could be lower if higher-order
effects play an important role. However, the calculation of the
first-order indices has some numerical inaccuracy, so for values
close to 100, it is adequate to say that there are not any important
higher-order effects.

Comparison of Figures 4 and 5 indicates that the local
uncertainty analysis and the calculation of uncertainty indices
gave qualitatively the same results, and the agreement is almost
quantitative. For example, in the stoichiometric case (Figure

Figure 1. Histograms and empirical cumulative distribution functions of some selected model outputs: (a) maximum temperature atæ ) 0.70, (b)
maximum temperature atæ ) 1.0, (c) maximum temperature atæ ) 1.20, (d) laminar flame velocity atæ ) 1.0, (e) maximum OH concentration
at æ ) 1.0, and (f) maximum CH concentration atæ ) 1.0.
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5b), there are only minor differences between the results of the
local analysis and the sensitivity indices. The relative importance
of the O2 + H ) OH + O reaction seems to be slightly lower,
and those of the thermodynamic parameters are higher. For the
rich flame, there are more significant differences between the
findings of the two methods. According to the local analysis,
the H+ CH3 (+ M) ) CH4 (+ M) reaction is important for all
variables, but CH. This observation is not in complete agreement
with the sensitivity indices, where this reaction has only a
secondary importance. Because the extended Sobol’ method is
more sophisticated and general than the local uncertainty
analysis, in the next paragraphs, the influence of the kinetic

and thermodynamic parameters on the modeled results will be
discussed on the basis of sensitivity indices (see Figure 5).

The reaction of O2 with H is one of the most important
reactions; the bimolecular O2 + H ) OH + O reaction channel
dominates as the main contributor to the uncertainty of the
monitored variables. This contribution is very high in several
cases; for example, in the rich mixture, this gives more than
70% of the uncertainty ofTmax andVL; and in the stoichiometric
case, it is responsible for more than 80% of theTmax uncertainty.
In the lean case, the other important reaction is the CO+ OH
) CO2 + H reaction, which also contributes largely (10-30%)
to output uncertainties. The most important reaction for CH2 is
CH3 + OH ) CH2(s) + H2O in the lean case (∼30%), but its
dominance is overridden by the O2 + H ) OH + O reaction in
the rich case. The relaxation of the singlet CH2 radical to the
ground state does not cause much uncertainty to the CH2

concentration (5-10%). The greatest contribution to thewCH,max

uncertainty is due to the H+ CH2 ) CH + H2 reaction; in the
lean flame, it has about a 20% share, and in the rich case, it
has about 30%. Another important contributor to CH uncertainty
is the C2H2 + OH ) C2H + H2O reaction, having about 10-
20% contribution in all cases. The contributions to the uncer-
tainty of Tmax show an interesting pattern. First, the number of
important contributors decreases with increasing equivalence
ratio, enumerating 16, 13, and 9 in the lean, stoichiometric, and
rich cases, respectively. Also, the share of the most important
parameters is different at different fuel/air ratios: in the lean
case, C2H4 + O ) H + CH2HCO has∼25%; in the stoichio-
metric case, the enthalpy of formation of CH2CHO has∼35%;
and in the rich case, the O2 + H ) OH + O reaction has∼70%.
This variability is interesting becauseTmax is the model result
that has the lowest uncertainty (see Table 1).

Several thermodynamic input parameters were also found to
be influential. Although the relative uncertainty in the enthalpy
of formation of the OH radical is small, it still plays a significant
part in the resultingwOH,max uncertainty in the lean and
stoichiometric cases; in the stoichiometric case, it is responsible
for approximately 30% of the calculated uncertainty. The CH2-
CO radical contributes greatly to theTmax uncertainty in the
stoichiometric case. Other important thermodynamic parameters
are the enthalpies of formation of CH4, CH2OH, CH2(S), and
CH2; the latter two are important only in the uncertainty of the
CH2 radical concentration.

In the lean case, the model is fairly additive for all the outputs
but CH, where all the factors, taken on their own, explain only
70% of the total variance of CH. This 70% is mainly due to
reaction H+ CH2 ) CH + H2 (18%), reaction C2H2 + OH )
C2H + H2O (13%), reaction CO+ OH ) CO2 + H (10%),
and reaction O2 + CH ) CO + OH (9%). The remaining 30%
is due to interactions among the parameters. To find the higher-
order interactions for each parameter, the differences between
their total indicesSj(i)

tot and their first-order indicesSj(i) should
be considered. This analysis has shown that second- and higher-
order effects also originate from the main contributors listed
above. Calculating the second-order indices, we obtained the
following results: the interaction of C2H2 + OH and CO+
OH accounts for 16% of the total variance of CH, the interaction
of C2H2 + OH and O2 + CH accounts for 9%, the interaction
of H + CH2 and CO+ OH accounts for 6%, and the interaction
of H + CH2 and C2H2 + OH accounts for 5%. This explains
the missing part of the variance of CH concentration in the lean
case; no third-order parameter interactions have to be taken into
account.

Figure 2. Kinetic (white) and thermodynamic (gray) contributions to
the total uncertainty of the monitored parameters calculated by local
uncertainty analysis (upper bars) and by the Sobol’ method (lower bars)
expressed as percentages. Results for (a) lean, (b) stoichiometric, and
(c) rich flames are shown.
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For stoichiometric and rich methane flames, first-order indices
add up to∼100%, but in some cases, the deviation from 100%
is around (10%. To see whether it is due to numerical
instabilities or to higher-order effects, the difference between
the total and the first-order indices for each parameter has to
be inspected. For all monitored variables but the maximum
concentration of CH, these differences are minor; therefore,
second- and higher-order effects are not significant for these
variables. Second-order effects, i.e., interactions of pairs of
parameters, were calculated in the case of CH. In the stoichio-
metric flame, the interaction of reactions C2H2 + OH ) C2H
+ H2O and H+ CH2 ) CH + H2 explains the entire difference
between the total and the first-order indices. In the rich flame,

the interaction of the two main contributors, reactions O2 + H
) OH + O and H+ CH2 ) CH + H2, does not account for
the missing variance. We have found that the interaction of
reactions C2H2 + CH ) C2H + CH2 and C2H2 + OH ) C2H
+ H2O accounts for 3% of the missing variance; the rest is due
to third- and higher-order effects, which were not investigated.

3.3. Monte Carlo Analysis of Local Sensitivity Coefficients.
When presenting results of a local sensitivity analysis for
nonlinear models, it is always emphasized56 that they are valid
only at the nominal values of the parameters. Using the MC
analysis, it is possible to carry out local sensitivity analysis
systematically at other sets of the parameters. Therefore, during
the MC simulations, the first-order local sensitivity coefficients

Figure 3. Morris plots for (a) laminar flame velocity atæ ) 0.7, (b) maximum OH concentration atæ ) 0.7, (c) laminar flame velocity atæ )
1.0, (d) maximum OH concentration atæ ) 1.0, (e) laminar flame velocity atæ ) 1.20, and (f) maximum OH concentration atæ ) 1.20.
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of rate parameters were calculated in each run. By processing
the results, we obtained the global uncertainties of the local
sensitivity coefficientsdYi/d ln kj; their variance, mean, and
extremes were monitored for all investigated outputs and for

each parameter. The results of the global uncertainty analysis
of local sensitivities are presented in Figure 6. Those parameters,
whose sensitivities are greater than 5% of the highest sensitivity
parameter, are shown only. Only kinetic sensitivities were

Figure 4. Percentage contributions,Sij%, calculated in the local analysis are shown for those input parameters (vertical axis) which contribute at
least 1% to the uncertainty of at least one monitored variable (horizontal axis). Uncertainty contributions are expressed in percentages and the
greater the value, the thicker the line (continuous scale). Figures correspond to (a) lean, (b) stoichiometric, and (c) rich flames.
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Figure 5. Speck figures created from the first-order indicesSj(i) multiplied by 100: (a)æ ) 0.70, (b)æ ) 1.00, and (c)æ ) 1.20. OnlySj(i) > 0.01
values are shown. Numbers below the horizontal axes are the sums of the first-order indices multiplied by 100.
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investigated here because local sensitivity coefficients∂Yi/∂ ln
kj are usually used for kinetic analysis or mechanism reduction.

Figure 6a-c shows only some representative examples, but
very similar figures were obtained for other variables and for
other equivalence ratios. For the laminar flame velocity
sensitivities and the maximum hydrogen atom concentration
sensitivities, the 1σ uncertainty limits are relatively narrow, and
the minimum and maximum achievable values span a wider

range (see Figure 6a,b). Similar figures were obtained for the
local sensitivity coefficients of all other concentrations. For the
maximum temperature sensitivities, larger deviations were found
(results foræ ) 1.20 are shown in Figure 6c). Most parameters
have either positive or negative sensitivity coefficients at any
set of parameters. In the cases of some other parameters, the
sign of the sensitivity coefficient depends on the parameter set.
For example, in the case of maximum temperature (Figure 6c),
all important parameters can have both positive and negative
sensitivity coefficients assigned to them depending on the actual
parameter set, and for the flame velocity and maximum H
concentration, most sensitivity coefficients keep their signs. It
was also found that the order of importance of the sensitivity
functions depends on the actual parameter sets; however, within
the 1σ uncertainty range, the changes in the order are minor,
and the most important parameters are always the same.

4. Conclusions

Uncertainty analysis is important for modeling of complex
reaction systems, such as combustions or atmospheric processes.
It is now widely accepted that calculated uncertainty should
accompany model outputs because it contains valuable informa-
tion about the reliability of the results. Uncertainty analysis can
also reveal whether further experimental or theoretical work is
needed to get a more reliable description of these systems.

Flat, laminar, premixed methane-air flames were modeled
using the Leeds methane oxidation mechanism at three equiva-
lence ratios, and uncertainty analysis was carried out with four
different methods. The advantages and drawbacks of these
methods are summarized in Table 2. Thepdf’s of the monitored
outputs were established by the Monte Carlo analysis with Latin
hypercube sampling. It was shown that the predicted maximum
flame temperature, the laminar flame velocity, and the concen-
tration of radicals O, H, and OH have a low uncertainty in all
cases, but the concentrations of radicals CH and CH2, important
in the prompt NOx formation, are predicted with large uncer-
tainty. Most of the uncertainties are caused by the uncertainties
in the rate coefficient of the O2 + H ) OH + O reaction,
although the extent of its influence was indicated slightly
differently by the different methods. From the Morris and the
Sobol’ method, it is clear that nonlinearities should be taken
into account; however, greater differences between the results
of local and global methods were found only in the rich case.

Figure 6. Result of global uncertainty analysis of the local sensitivity
coefficients for (a)wH,max at æ ) 0.70, (b) the laminar flame velocity
at æ ) 1.00, and (c)Tmax at æ ) 1.20. Only those reactions are shown
whose rate parametric sensitivities are greater than 5% of that of the
one with the highest sensitivity. Gray stripes refer to the local sensitivity
coefficients at the nominal parameter set, small bars interconnected
with a horizontal line indicate the 1σ uncertainty interval of local
sensitivity coefficients, and outer larger bars show the attainable
minimum and maximum sensitivity coefficients at any parameter set
within the uncertainty limits of parameters.

TABLE 2: Comparison of the Four Methods Applied

local Morris MC LHS Sobol’

takes the variance of the
parameters into account

yes yes yes yes

takes thepdfof the
parameters into account

no no yes yes

provides the variance
of the output

yes (biased) no yes yes

provides thepdfof
the output

no no yes no

computationally cheap yes medium no no
provides contributions of

individual parameters
yes yesa nob yes

global method no yes yes yes
provides information on

nonlinearity
no yesa no yes

number of required
simulationsc

1 2130 3000 ∼15000

a Qualitative information only.b Pearson coefficients indicate the
individual parameter contributions, but such a calculation requires about
100 times more simulations than is required for the estimation of the
pdf of the output.c The number of simulations for the methane flame
model at each equivalence ratio, discussed in this paper.
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The shares of the thermodynamic uncertainties are much lower
than those of the kinetic ones but are not negligible in some
cases. Finally, it was shown that in the investigated methane
flame model the local sensitivity coefficients are robust measures
of the reaction importance.

In this paper, all thermodynamic and kinetic parameters were
assumed to be uncorrelated. The reason was that thermodynamic
tables and kinetic data evaluations contain data on the uncer-
tainty of each parameter, but there is no information on the
correlation of them. Enthalpy of formation data can be obtained
from (uncorrelated) mass spectrometric measurements, but these
are deduced also from equilibrium constants, which have been
determined by measuring the rate coefficients of the opposing
reactions. Equilibrium constants are then converted to enthalpies
of reactions, which are the sums of several enthalpies of
formation. This ensures that there is a strong correlation among
the enthalpies of formation of species, which is not indicated
in the summary tables. The Active Table approach of Ruscic et
al.57,58 ensures not only that all recommended enthalpies of
formation are consistent with each other but also that it can
provide the jointpdf of the enthalpies of formation or at least
a correlation matrix. When such information is available for
all species of methane oxidation, the thermodynamic uncertainty
analysis should be repeated. It was also assumed that there is
no correlation between the enthalpies of formation and the
kinetic parameters. This is probably true because the rate
coefficients of the methane oxidation reactions are typically not
used for the derivation of thermodynamic data.

Rate coefficients in the 300-500 K temperature range are
usually determined by laser-flash photolysis or discharge flow
methods. These measurements do not require assumptions for
the values of other rate coefficients and are therefore usually
uncorrelated. However, rate coefficients above 1500 K are
usually determined by shock tube or flame measurements. At
the evaluation of these measurements, several-step mechanisms
are used and the rate coefficients of other reactions are utilized.
This ensures a strong correlation among the rate coefficients of
several reactions. As a result, if the rate coefficient is temper-
ature dependent, the Arrhenius parameters of the reactions will
be correlated. Such correlations are not indicated in the kinetic
data evaluations.

Reaction mechanisms are traditionally assembled in such a
way that the recommended rate parameters are assigned to the
reaction steps. Usually, the obtained reaction mechanism does
not reproduce the bulk measurements, such as flame velocities
or time-to-ignition data. Then, some of the rate coefficients are
tuned within the [kmin, kmax] limits to achieve a better agreement.
The problem is that similarly good agreement can be achieved
by tuning other parameters. Note, we have shown59-61 that in
the cases of several kinetic models an infinite number of
parameter sets can provide practically identical simulation
results, which can be an explanation to this common observation.

An interesting outcome of our calculations was that by
changing all parameters within their allowed [kmin, kmax] range,
all simulation results but the calculated maximal temperature
could be varied in a very wide range. Selecting rate coefficients
from their allowed range to reproduce all available bulk
experimental data introduces a further correlation between them
and a further restriction for the allowed parameter values. An
in-depth discussion of this type of correlation can be found in
the recent articles of Frenklach et al.62-64

The final conclusion is that the results presented here should
be refined later when the correlation of all parameters (ideally
in the form of a parametrized jointpdf) becomes available. All

uncertainty analysis methods used here but the Morris method
can be used in the present or in an extended form to handle
correlated parameters. Most qualitative findings are expected
to remain unchanged, but surely, the quantitative results will
change when the correlations are also taken into account.
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