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Abstract

Computer modelling plays a crucial part in the understanding of complex chemical reactions. Parameters of elementary chemical and

physical processes are usually determined in independent experiments and are always associated with uncertainties. Two typical examples

of complex chemical kinetic systems are the combustion of gases and the photochemical processes in the atmosphere. In this study, local

uncertainty analysis, the Morris method, and Monte Carlo analysis with Latin hypercube sampling were applied to an atmospheric and

to a combustion model. These models had 45 and 37 variables along with 141 and 212 uncertain parameters, respectively. The toolkit

used here consists of complementary methods and is able to map both the sources and the magnitudes of uncertainties. In the case of the

combustion model, the global uncertainties of the local sensitivity coefficients were also investigated, and the order of parameter

importance based on local sensitivities were found to be almost independent of the parameter values within their range of uncertainty.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Local uncertainty analysis; Morris method; Monte Carlo method; Atmospheric chemistry; Combustion modelling; Mechanism validation
1. Uncertainty analysis methods

Uncertain parameters used in a model may give rise to
uncertainties in simulation results. Highly nonlinear
models tend to magnify the uncertainty of some parameters
and damp the uncertainty of others. There is a wide range
of methods for uncertainty analysis [1], which differ from
each other in their applicability to different types of
models, in the scope of information provided, and in the
level of sophistication and computational demand. For
chemical kinetic models, the most comprehensive task is
the conversion of the joint probability density function
(pdf) of the parameters into the pdfs of the simulation
results. A more modest request is the estimation of the
variance of results from the variance of parameters. In this
work, several types of uncertainty methods were used and
the uncertainty indicators obtained from them were
compared.
atter r 2005 Elsevier Ltd. All rights reserved.
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1.1. Local uncertainty analysis

Local uncertainties were calculated by combining local
sensitivity coefficients sij [2] with uncertainty estimates of
the input parameters [3]. An individual contribution sj

2(ci)
of rate coefficient kj to the total uncertainty of concentra-
tion ci can be expressed as

s2j ðciÞ ¼ s2ðln kjÞ
qci

q ln kj

� �2

, (1)

where s2(ln kj) is the variance of the logarithm of rate
coefficient kj. The overall variance s2(ci) of the output
concentration ci is:

s2ðciÞ ¼
X

j

s2j ðciÞ. (2)

The individual contribution of kj can be expressed as
percentage sij %:

sij% ¼ s2j ðciÞ=s2ðciÞ � 100. (3)

The main drawback of this method is the linearity
assumption applied for a highly nonlinear chemical kinetic
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model. The main advantage is the low computational cost
that is gained in turn.

1.2. Morris method

Morris method is a screening method [1,4]. Screening
methods are relatively cheap, compared to Monte Carlo
(MC) type methods, but also investigate the model on a
global range, i.e. the input parameters are varied over the
whole range of their possible values. In the Morris method,
the uncertainty of the results is characterised by a value
called effect, which is assigned to each uncertain parameter
for each investigated output result. This effect is calculated
several times, by varying the input parameter set according
to a given algorithm. In this work we have used the
improved Morris method, where the absolute values of the
effects are considered [5]. The results of the Morris analysis
are usually shown on a graph, where the horizontal axis
refers to the mean of the calculated effects, while the
vertical axis represents the standard deviation of the
effects.

This procedure enables the selection of important
parameters, by evaluating the model with various input
parameter sets. Besides importance, information on the
type of the effect of the parameter is also provided, since it
is possible to distinguish parameters with linear effects
from parameters with nonlinear or interaction effects. The
drawback of this method is that it cannot quantify the
uncertainty of the results because it does not take the pdfs
of the parameters into account.

1.3. Monte Carlo simulations with Latin hypercube

sampling

The above methods are computationally cheap, but are
not able to provide the exact and unbiased pdf of the
output values. For this reason, Monte Carlo-type simula-
tions were also carried out. To keep the number of runs as
low as possible, Latin hypercube sampling [6] was applied.
This sampling covers the parameter space with minimal
sample size and in an unbiased manner [1]. The number of
runs was 3000 in each calculation.

1.4. Assignment of uncertainties to parameters

Great attention was paid to the careful selection of input
uncertainties, which is often one of the most time-
consuming parts of the analysis, and where the judgement
of professionals of the field plays a crucial role. Un-
certainty factors for the rate coefficients and for the
enthalpy-of-formation data were collected from chemical
kinetic and thermodynamic databases [7–10], which were
critically evaluated and are frequently updated. These
factors were converted to the variance of the parameters
using the method described in the article [3]. If no
uncertainty factor was found for a reaction, then a
thorough literature search was carried out and this factor
was estimated. The pdfs of the parameters were also
established; lognormal distribution was assumed for rate
coefficients, normal distribution for the enthalpy-of-for-
mation data, and uniform distribution for parameters of
other type (e.g. channel ratios of reactions).

2. Uncertainty analysis of a photochemical air pollution

model

2.1. Brief description of the model

Detailed uncertainty analysis was carried out on the
photochemical degradation model of ethene that had been
implemented in the Master Chemical Mechanism version 3
(MCMv3) [11]. The MCMv3 is an explicit chemical
mechanism, containing the photochemical degradation
scheme of more than 120 volatile organic compounds
(VOCs), and incorporating approximately 10,000 reactions
of 2500 species. The initial compounds in the submechan-
ism used in this article are ethene (C2H4) and nitrogen
oxides (NO, NO2), and this model contains 141 reactions
of 45 chemical species. The rate coefficient of each reaction
was treated as uncertain. For brevity, in this paper only the
results concerning the uncertainty of ozone (O3) and
formaldehyde (HCHO) concentrations are discussed.
Ozone is one of the most important photochemical

pollutants and the prediction of its concentration from the
initial concentrations of VOCs and nitrogen oxides is
crucial. Formaldehyde also plays a very important role in
the oxidation scheme of many VOCs. It is responsible for
several chemical processes, in which it accelerates the chain
reaction of VOC degradation, through the recycling of
radicals that are formed during the photolysis of for-
maldehyde. In this paper we briefly describe the uncer-
tainty analysis of this model, with some representative
results. More detailed results and further discussions are
presented in a recently submitted paper [12].

2.2. Experimental results

Uncertainty analysis for tropospheric ethene oxidation
was developed for the interpretation of measurements
made in the European Photoreactor (EUPHORE) at
Valencia, Spain. This is a so-called smog chamber, where
the chemical compounds are injected into a tent having
Teflon walls, and their concentration-time profiles are
followed by various analytical instrumentation. The
volume of the chamber is approximately 200m3. There
are three sources of error when chemical models are tested
against smog chamber measurements: (i) measurement
errors, (ii) errors introduced by chamber specific effects and
(iii) errors and uncertainties in the model itself. Our work
aimed to reveal the significance of the various error sources
by means of finding those parameters, which have the
highest contribution to the overall uncertainty of the most
important variables, such as the concentrations of ozone
and formaldehyde.
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2.3. Results for the atmospheric chemical model

The ethene oxidation model was tested at two experi-
mental circumstances: one with a high, the other with a low
initial NOx concentration. Fig. 1 shows that the calculated
maximal ozone concentration depends on the initial ethene
and NOx concentrations in a nonlinear manner. It can be
seen that the gradient of the ozone surface is qualitatively
different at high and at low ethene-to-NOx ratios, so the
two selected cases represent two fundamentally different
regions according to this plot. In the low NOx case,
changing the initial ethene concentration does not affect
the maximal ozone concentration, while in the other case
ozone increases with increased initial ethene concentration.

In the low NOx experiment the initial concentrations of
NO, NO2, and C2H4 were 39, 9, and 1259 ppb, respectively.
In the high NOx case the initial concentrations of NO,
NO2, and C2H4 were 175, 23, and 613 ppb, respectively.
Temperature and pressure in the chamber were monitored,
and the corresponding values were about 30 1C and 105 Pa,
respectively. Each experiment lasted for 6 h. The calcula-
tions were done with program FACSIMILE [13], and with
purpose written Fortran programs.

2.3.1. Local uncertainty analysis

Fig. 2 shows reactions with the highest uncertainty
contribution sij % (see Eq. (3)) to the calculated final
HCHO concentration at the end of the experiment. The
sensitivity coefficients were calculated by the brute force
method [2], by increasing each rate coefficient by 1% of the
nominal value. The cut-off criterion on the figures was 10%
compared to the reaction having the highest uncertainty
contribution. It is well visible that in the low NOx case
more reactions have significant contribution to the
uncertainty of the formaldehyde concentration.

In the low NOx case reactions HCHO ¼ H2+CO,
HCHO ¼ 2HO2+CO and C2H4+OH ¼ HOCH2CH2O2
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Fig. 1. Simulated maximal ozone concentrations as a function of the

initial concentrations of C2H4 and NOx. The * signs show the initial

concentrations for the two investigated experiments.

Fig. 2. Contribution of the uncertainty of the rate coefficients to the

uncertainty in the calculated formaldehyde concentration at the end of the

experiment at (a) low and (b) high NOx conditions as determined by local

uncertainty analysis.
account for well above 30% of the total HCHO
uncertainty. The overall 2s uncertainty for formaldehyde,
calculated by Eq. (2), is 20%. In the high NOx case, more
than 20% of the total uncertainty in formaldehyde
originates from reactions HCHO ¼ 2HO2+CO and
OH+NO2 ¼ HNO3. The overall uncertainty of the calcu-
lated formaldehyde concentration at the final time was
found to be 30%. Results for ozone concentration were
similar to those of formaldehyde: in the high NOx case
significantly fewer reactions have substantial contribution
to the ozone uncertainty than in the low NOx case.
2.3.2. Morris analysis

Fig. 3 shows the results of the Morris analysis for
formaldehyde. The mean values are usually in fairly good
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Fig. 3. The mean and the standard deviation effects, calculated with the

Morris method for formaldehyde in the (a) low and (b) high NOx case.
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accordance with the results of the local uncertainty
analysis. The ranking based on the mean values differ in
some cases significantly from the ranking obtained from
the local analysis. For example, in the low NOx case
reaction C2H4+OH ¼ HOCH2CH2O2 was the third most
influential in the local analysis, while the Morris analysis
shows only a medium importance for this reaction. The
standard deviations provide interesting insights into the
linearity assumption used, because ranking the rate
coefficients according to their standard deviation differs
from the ranking that results from the means. Under high
NOx conditions, the reactions of the HOCH2CH2O2 and
HOCH2CH2O molecules are ranked higher on the stan-
dard deviation scale than on the mean scale. This can be
due to the fact, that these parameters are important only in
a period of the oxidation. In the high NOx case, reaction
OH+NO2 ¼ HNO3 has a very high nonlinear or interac-
tion characteristic in its contribution to the uncertainty.

In the low NOx case approximately 10, and in the high
NOx case only 4 reactions out of the 141 reactions are
responsible for most of the uncertainties in the final
formaldehyde concentration. The mean values and the
standard deviations of the effects are about the same for
both cases, which suggests that the nonlinear behaviour is
about the same for the two experiments. There is a
significant correlation between the mean and the standard
deviation: rate coefficients with great absolute effects tend
to have high nonlinear effects as well [1].

2.3.3. Monte Carlo simulations

Fig. 4 compares the uncertainty ranges of the measure-
ments with that of the MC analysis results. MC estimates
of the uncertainties in the calculated formaldehyde
concentrations were determined in every exact hour of
the experiments. The MC calculations indicated that the
distribution of the calculated formaldehyde concentration
is always nearly lognormal, while measurement uncertain-
ties were assumed to be normally distributed. The overlap
of the 2s uncertainty limits of the experimental values and
the model results is marginal, which suggests a systematic
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Fig. 5. The percentage contributions are shown for those input
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over-prediction of formaldehyde concentration. There are
difficulties in simulating both the rise time and the peak
formaldehyde concentration. The uncertainty contribution
of reaction OH+NO2 ¼ HNO3 is high to the formalde-
hyde concentration uncertainty, especially in the high NOx

case (see Figs. 2 and 3). The rate coefficient of this reaction
has been extensively studied recently [7], therefore it is
expected that the uncertainty of the rate coefficient of this
reaction will decrease significantly in the near future. If
this happens, uncertainty in the high NOx case will drop
significantly and consequently the overlap is likely to
disappear.

3. Uncertainty analysis of a methane flame

3.1. Brief description of a methane oxidation mechanism

Until recently, there have been only few applications of
uncertainty analysis to the investigation of complex
combustion mechanisms [3,14–20]. In our calculations, a
stoichiometric, stationary, laminar, freely propagating
methane flame was investigated and the simulations were
performed with the Leeds Methane Oxidation Mechanism
[21,22]. This mechanism contains 175 reversible chemical
reactions and 37 species. Our aim was to determine the
uncertainty of the simulation results caused by the
uncertainty of thermodynamic and kinetic parameters; it
means that the uncertain parameters in the mechanism
were the 175 rate coefficients and the 37 enthalpy-of-
formation data, which adds up to 212 uncertain parameters
in total.

The investigated results were the concentration maxima
of some important species (OH, H, O, CH2, CH), the
maximum temperature, and the laminar flame velocity (vL);
the latter number is characteristic to a freely propagating
flame [23] and is often used when modelling and measure-
ment results are compared [22].

The simulations were carried out with program PRE-
MIX [24] of the CHEMKIN-II package [25] and with
program KINALC [21]. The calculations were done at
atmospheric pressure; the cold boundary temperature was
298.15K. The uncertainties of the parameters were the
same as in the paper of Turányi et al. [3].

3.2. Results for the combustion model

3.2.1. Local uncertainties

The results of the local uncertainty analysis are
summarised on a blob graph, shown in Fig. 5. It can be
seen that only 33 out of the 212 parameters contribute at
least with 1% to the total uncertainty of any of the
monitored results. Moreover, there are only few really
important contributors; the most important is reaction
O2+H ¼ OH+O. This reaction is responsible for about
60% of the uncertainty in the laminar flame velocity. From
the thermodynamic parameters, the enthalpy-of-formation
of OH has a significant contribution to the uncertainty in
the maximum OH concentration, while the enthalpy-of-
formation of CH2CO has approximately 40% contribution
to the uncertainty of the maximum flame temperature. It
can be seen from the figure, that there are relatively few
reactions having significant uncertainty contributions,
especially compared to the total number of uncertain
parameters (212).
In Fig. 6, the contributions of the kinetic and thermo-

dynamic parameter uncertainties are compared. These
results should be handled with some precaution, because
these are valid only if the values of the parameters are not
correlated, as it was assumed in our calculations. Also,
there is an inherent nonlinearity in this chemical kinetic
system, and therefore these results are semi-quantitative
only. Our calculations show that for most of the monitored
variables, the effect of kinetic uncertainties is much greater
than that of the thermodynamic ones. The two exceptions
are the calculated flame temperature and the calculated
OH concentration. Therefore, uncertainties arising from
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thermodynamic data cannot be neglected in a mechanism
validation procedure.

3.2.2. Morris method

Results of the Morris method are shown in Fig. 7. In this
analysis, the significant parameters in the Morris figures
are the same as those that have a great uncertainty
contribution in the local analysis. However, there are
changes in the order of reactions when looking at their
mean effect. For example, in the case of the maximum
temperature, the H+CH3 (+M) ¼ CH4 (+M) precedes
reaction H+OH+M ¼ H2O+M, while the order is the
opposite according to the local analysis. In the case of
maximum flame temperature, the enthalpy-of-formation of
CH2CO cannot be found in the Morris plot, unlike in the
local analysis.

It had been observed [1] in other models that greater
standard deviation in the Morris plot belonged to greater
mean effect and it was found also in this case. One
exception is the maximum temperature, where the en-
thalpy-of-formation of some species (H2O, OH, CO, CO2

and CH4) affects the resulting temperature uncertainty
significantly, but in a purely linear way, according to the
Morris analysis. This is an interesting result, which shows
that thermodynamic parameters have a somewhat different
behaviour in the methane oxidation mechanism, compared
to the kinetic ones.

3.2.3. Monte Carlo analysis

The MC simulations resulted in the pdfs of the
monitored results. Fig. 8 shows the histograms of the
flame velocity, maximal H concentration and maximal
temperature. These distributions have a high variability in
both shape and width. The overall 1s standard deviation
for the laminar flame velocity is 12%, for the temperature
0.1%, while for the concentration of the H radical is 13%.
The uncertainty of some other species (like the CH radical)
can be as high as about 50%.

The results of the MC analysis enable the comparison of
the experimental and modelled results. In this way, it is
possible to judge the simulation results not only by the
mean values, but also by taking the uncertainties in to
account. Model validation experiments can also be
justified. The uncertainty of the measured peak flame
temperature was reported to be around7100K [26,27] and
this uncertainty limit is much higher than the uncertainty in
the computed temperature of 72K. It means that it is not
possible to validate flame models by investigating experi-
mentally the maximum flame temperature.

On the other hand, the uncertainty of the measured
laminar flame velocity is relatively small, it is about 1 cm s–1

[28,29]. This is much smaller than the intrinsic uncertainty
of the model, which is about 6 cm s–1. It means that the
good agreement between the calculated and the measured
flame velocity values in methane flame models are only a
matter of good luck and maybe the fine-tuning of some
model parameters.
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3.3. Global uncertainty of local sensitivity coefficients: a

numerical approach

Local sensitivities are often used in chemical kinetics as
indicators of reaction importance. However, these are
almost exclusively calculated at the nominal values of the
parameters. Therefore, the robustness of local sensitivity
coefficients to great parameter changes in chemical kinetic
systems has to be investigated. During the MC simulations,
all parameters were varied simultaneously within their
uncertainty limits and the first-order local sensitivity
coefficients of rate parameters were also calculated in each
run. By processing the results, the global uncertainties of
the local sensitivities were obtained.
Fig. 9 shows the results for the laminar flame velocity,

for the maximum concentration of hydrogen atom and
for the maximum temperature. The cut-off criterion for
the figure was 10% of the highest sensitivity coefficient.
Figs. 9a and b show that for the laminar flame velocity and
maximum hydrogen atom concentration sensitivities,
respectively, the 1s uncertainty limits are relatively narrow.
Looking at the possible extremes of the calculated local
sensitivity coefficients, it can be seen that the sensitivity
coefficients almost never change their sign. The small
variation of the calculated sensitivity coefficients within the
1s uncertainty range of parameters means that the rank
order of importance of kinetic parameter as deduced by the
local sensitivity coefficients is basically independent of the
values of parameters within their range of uncertainty.
Their order can change when taking the extreme values
into account; however, the qualitative information ob-
tained from local sensitivity analysis remains identical if the
order of the most important reactions alters due to the
change of the parameter values within their uncertainty
limits. In the case of the local sensitivity coefficients of the
maximal flame temperature, the 1s uncertainty limits are
also relatively narrow, but the attainable extremes are
somewhat wider. These figures show only representative
examples, but very similar figures were obtained for the
other variables as well.

4. Conclusions

The two most significant areas of applications of large
reaction mechanisms are the simulation of tropospheric
chemical systems and the combustion of fuels. In these
fields, the most important topics include the prediction of
maximum-generated ozone concentration at given condi-
tions, and the simulation of hydrocarbon flames. In this
paper, we presented uncertainty analysis results for models
of both types. Uncertainties of simulation results were
calculated by local uncertainty methods and Monte Carlo
analysis, and also contribution of the various parameters to
the uncertainty of the results were investigated by local
uncertainty analysis and the Morris method. The surpris-
ing joint experience from the analyses of the two chemical
kinetic models is that few parameters cause most of the
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Fig. 9. Results of global uncertainty analysis of local sensitivity coefficients

for (a) laminar flame velocity, (b) maximum hydrogen radical concentration,

(c) maximum adiabatic flame temperature of the stoichiometric methane–air

flame. Only those reactions are shown, for which the corresponding

sensitivities are greater than 10% of that of the highest sensitivity one. Bars

refer to the local sensitivity coefficients at the nominal parameter set, ticks

interconnected with a vertical line indicate the 1s uncertainty interval, and the

outer stripes show the attainable minimum and maximum sensitivity

coefficients at any parameter set within the uncertainty limits of parameters.
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uncertainties. The atmospheric chemical and the combus-
tion models contained 141 and 212 uncertain parameters,
respectively, and only about 30 parameters had noticeable
contribution to the uncertainty of any of the important
results. This means that knowing better a few parameters
only may significantly improve the quality of simulations
both in atmospheric chemistry and combustion science,
which are among the most important fields of application
of complex reaction mechanisms.
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[12] Zádor J, Wagner V, Wirtz K, Pilling MJ. Quantitative assessment of

uncertainties for a model of tropospheric ethene oxidation using the

European photochemical reactor. Atmos Environ 2005;39:2805–17.

[13] Curtis AR, Sweetenham WP. Facsimile/checkmat user’s manual.

Computer Science and Sytems Division, Harwell Laboratories,

Oxfordshire, 1987.

[14] Warnatz J. Resolution of gas phase and surface combustion

chemistry into elementary reactions. Proc Combust Inst 1992;24:

553–79.

[15] Bromly JH, Barnes FJ, Muris S, You X, Haynes BS. Kinetic and

thermodynamic sensitivity analysis of the NO-sensitised oxidation of

methane. Combust Sci Technol 1996;115(4-6):259–96.

http://ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics
http://ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics


ARTICLE IN PRESS
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