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Local sensitivity functions∂Yi/∂pk of many chemical kinetic models exhibit three types of similarity: (i)
Local similarity: ratio λij ) (∂Yi/∂pk)/(∂Yj/∂pk) is the same for any parameterk. (ii) The scaling relation: ratio
λij is equal to (dYi/dz)/(dYj/dz). (iii) Global similarity: ratio (∂Yi/∂pk)/(∂Yi/∂pm) is constant in a range of the
independent variablez. It is shown that the existence of low-dimensional slow manifolds in chemical kinetic
systems may cause local similarity. The scaling relation is present if the dynamics of the system is controlled
by a one-dimensional slow manifold. The rank of the local sensitivity matrix is less than or equal to the
dimension of the slow manifold. Global similarity emerges if local similarity is present and the sensitivity
differential equations are pseudohomogeneous. Global similarity means that the effect of the simultaneous
change of several parameters can be fully compensatedfor all Variables, in a wide range of the independent
Variableby changing a single parameter. Therefore, the presence of global similarity has far-reaching practical
consequences for the “validation” of complex reaction mechanisms, for parameter estimation in chemical
kinetic systems, and in the explanation of the robustness of many self-regulating systems.

1. Introduction

Sensitivity analysis is an effective tool for the exploration of
the relation between the output of mathematical models and
the input data, which comprise the values of parameters as well
as the initial or boundary conditions. Dynamical mathematical
models include chemical kinetic models, and sensitivity analysis
has been widely used in reaction kinetics since the early eighties.
Local sensitivities are the partial derivatives of model output
with respect to the parameters and describe the effect of small
parameter perturbations. There is no a priori reason sensitivity
functions should be similar to each other in the case of a general
mathematical model.

Reuven et al.1 tested a new code for the calculation of local
sensitivities of two point boundary value problems. The sample
system was a 1D laminar flame with a symbolic reaction
mechanism containing three species, a reactant, an intermediate,
and a product. They found that the sensitivity-distance curves
were very similar to each other for all parameters. Reuven et
al. applied this code for the simulation of premixed flat
hydrogen-air2 and CO/H2/O2

3 flames, and again the sensitivity
functions were found to be similar. They also noticed that this
similarity disappeared if temperature was not calculated, but
the temperature profile was fixed to the previously calculated
values. Rabitz and Smooke4 provided an explanation of this
interesting result. They stated that a strong coupling between
the variables, like the calculated temperature in combustion
systems, implies two types of similarity between the sensitivity
functions. The first one is that the ratio of the sensitivities of
two variables with respect to the same parameter is equal for
any parameter and that it is also equal to the ratio of the gradients
of the corresponding variables with respect to the independent
variable. The second one is that the ratio of the sensitivities of
any variable with respect to any two parameters is equal at any

value of the independent variable (e.g. distance in the case of
stationary flames). Rabitz and Smooke4 called these similarity
features thescaling relationand self-similarity, respectively.
Vajda, Rabitz, and Yetter5 investigated several models of
hydrogen-air homogeneous explosions and laminar flames to
study the role of diffusion in the emergence of similarity. They
reported that similarity could not be observed in purely temporal
systems and concluded that diffusion was needed to render the
sensitivity functions similar. Vajda and Rabitz6 provided a
deeper theoretical insight into the origin of similarities, but this
derivation was valid only for the case of a single-step,
homogeneous, exothermic reaction.

In this work, statements of papers1-6 are reinvestigated and,
in some cases, different conclusions are drawn. We found that
the scaling relation is not related to the assumption that
temperature is a dominant variable in adiabatic combustion
systems and diffusion is not needed for the emergence of
similarity. Instead, we claim that the existence of one-
dimensional slow manifolds in chemical kinetic systems causes
the scaling relation and that diffusion decreases the level of
similarity.

In section 2, background information to the numerical
examples is provided. In the next section, sensitivity functions
are presented for models of stoichiometric hydrogen-air
explosions and premixed laminar flames, and the similarity of
the sensitivity functions is demonstrated by plotting the ap-
propriate ratios of sensitivity coefficients. The preceding sections
provide a framework in section 4 for the discussion of the
previous results on the similarity of sensitivities. It is unusual
to place the discussion of the literature after new results, but
the prior inspection of the numerical results makes the brief
literature review section much more understandable. In section
5, the emergence of the scaling relation is explained using the
low-dimensional manifold theory. In the next section, the origin
of the global similarity is discussed. In section 7, the importance* Corresponding author. E-mail: turanyi@garfield.chem.elte.hu.
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of the similarity of sensitivity functions is emphasized, showing
its consequences on model identification and parameter estima-
tion.

2. Background of the Numerical Examples

The numerical examples in this paper are related to the
combustion of hydrogen or methane. In the methane combustion
calculations, the Leeds methane oxidation mechanism7 was used,
which contained 37 species and 350 reactions. In the hydrogen
combustion calculations, a submechanism of the Leeds mech-
anism was applied that contained the hydrogen oxidation steps
only. This submechanism had 9 species and 46 reactions. Both
mechanisms can be downloaded from the Web.8

The numerical examples were elaborated by the programs
of the CHEMKIN-II package.9 Homogeneous explosions were
calculated by SENKIN,10 and premixed laminar flames were
simulated by PREMIX.11 The freely propagating laminar
premixed flames had cold boundary conditionsp ) 1 atm,Tc

) 298.15 K, and fuel-to-air ratioæ ) 1.0. At the hot boundary,
the gradients of concentrations and temperature were zero;
therefore, the hot boundary state was equal to the burnt
equilibrium state. Since it was an adiabatic flame, the cold and
hot boundary gas mixtures had to have the same enthalpy. For
numerical reasons, there was a small difference in enthalpies,
which could be decreased by applying more nodes in the hot
region and using lower error tolerances. We wanted to compare
the calculated concentrations and sensitivities of the homoge-
neous explosions to those of laminar flames; therefore, the initial
concentrations of homogeneous explosions were determined in
the following way. The enthalpy of the hot boundary mixture
was set to that of the cold boundary by slightly changing
temperature. The corrected hot boundary and the cold boundary
compositions were mixed. The resulting mixture had the same
composition of elements and the same enthalpy. The ratio of
the cold gas was gradually increased, and the mixture having
the lowest temperature but still able to explode within 10-3 s
was used as the initial composition in the homogeneous
explosion simulations. Figure 1 shows the concentration of some
selected species as a function of temperature during homoge-
neous adiabatic explosion of a stoichiometric hydrogen-air
mixture.

In the first series of homogeneous explosion calculations, the
temperature-time curves were calculated assumingadiabatic
conditions. This temperature-time function was recorded, and
in the second series of calculations, the concentration-time
curves were calculated while temperature was changed over time
according to the recorded data. Such calculations were called
constrained temperaturesimulations. In this case, all calculated
concentrations were identical to the adiabatic explosion results.
Similar constrained temperature calculations were carried out
for all flame simulations; in this case, the temperature-distance
functions were determined from adiabatic flame calculations.
This procedure is usually not used in combustion simulations,
because after much effort identical concentration profiles are
obtained. However, an important feature of the sensitivity
functions is that these are substantially different in the adiabatic
and constrained temperature models.

For the stationary simulation of freely propagating flames,
the coordinate system moves with the flame front and it is fixed
to a point of a given temperature flame. For numerical reasons,
this reference temperature has to be close to the cold boundary
temperature and the recommended value is about 100 K above
it. In our calculations, the reference temperature was always
400 K. For the case of burner-stabilized flames, the starting
point of the coordinate system is the burner-surface and the
shape of the flame is determined by the mass flow rate of the
fuel-air mixture. At low mass flow rates the flame front is close
to the burner surface and there is significant heat loss at the
surface. If the mass flow rate corresponds to the velocity of the
freely propagating flame, the heat loss becomes negligible, the
flame becomes adiabatic, and the temperature and concentration
profiles become similar to those of the freely propagating flames.
Figure 1 shows the calculated mass fractions of some selected
species as a function of temperature in adiabatic stoichiometric
freely propagating and burner-stabilized 1D hydrogen-air
flames. The concentration-temperature curves are almost
identical for these two types of flames. These concentration
curves are very similar to those of the adiabatic explosion above
about 1300 K. In adiabatic explosion calculations enthalpy is
preserved with high accuracy, unlike in the flame calculations,
which cause a small deviation in the burnt states.

To facilitate the comparison of simulation results for explo-
sions and flames, in all figures the results are plotted as a

Figure 1. Mass fractions of species H, OH, H2, and H2O as a function of temperature for adiabatic combustion of stoichiometric hydrogen-air
mixtures: (a) homogeneous explosion (solid lines); (b) freely propagating flame (dotted lines); (c) burner-stabilized flame (dashed lines). The
dotted and the dashed lines almost exactly coincide. The cold boundary conditions of the flames arep ) 1 atm andTc ) 298.15 K.
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function of temperature instead of time or distance. Since
temperature continuously increases with time and distance in
adiabatic homogeneous explosions and laminar flames, respec-
tively, this is an equivalent representation of data. Such figures
provide extra information, because the dominant processes in
the various temperature regions of hydrogen and methane flames
are known from the textbooks of combustion chemistry (see
e.g. ref 12).

In the original Leeds methane oxidation mechanism,7 for most
of the reactions only the Arrhenius parameters of the forward
reactions were given. During the simulations, the rates of the
forward reactions were calculated from these Arrhenius param-
eters while the rates of the backward reactions were determined
from the forward rates and the thermodynamic equilibrium
values. Reactions handled this way are called here “reversible
reactions”. Using the program MECHMOD,13 all reversible
reactions were converted to pairs of irreversible reactions by
calculating the Arrhenius parameters of the backward reactions.
This “irreversible only” mechanism resulted in concentration-
time curves almost identical to those of the original mechanism.
The sensitivities presented in this paper are with respect to the
pre-exponential factor of the reactions. All sensitivity curves
were calculated for both the “reversible only” and the “irrevers-
ible only” versions of the mechanisms. The similarity relations
were alike in the two series of sensitivity calculations, but the
similarity of the sensitivities of the burner-stabilized flames was
more clear for the “irreversible only” case; therefore, the
sensitivity results for the irreversible mechanisms are presented
here. Note that when perturbing the pre-exponential factor of a
reversible reaction, the thermodynamic equilibrium state remains
identical, since the perturbation affects the kinetic features only,
and the perturbation diminishes near the equilibrium. When
perturbing the pre-exponential factor of an irreversible reaction,
the point of equilibrium is dislocated and therefore the sensitivity
functions do not approach zero at the equilibrium.

3. Similarity of Sensitivity Functions

Changes of concentration and temperature in a constant-
pressure, spatially homogeneous reaction system can be de-
scribed by the following initial value problem:

whereT is temperature,t is time, w is the N-vector of mass
fractions,p is theM-vector of parameters, andT0 andw0 are
the initial values of temperature and mass fractions, respectively.
The solution of the initial value problem (eq 1) means the
calculation of concentration-time and temperature-time curves.
Let Y denote the vector of variables, that isY ) (w, T) and
accordinglyf ) (fw, fT). The parameter vectorp includes the
Arrhenius coefficients of reactions, the heat of formation of
species, and so forth.

Sensitivity analysis is the name of a family of mathematical
methods that studies the relationships between information
flowing in and out of models.14 Local sensitivity analysis is
now widely used in chemical kinetics.15-17 The local sensitivity
coefficientsik ) ∂Yi/∂pk gives information on the effect of the
small change of the parameterpk on model outputYi. The
sensitivity coefficients constitute the first-order local sensitivity
matrix S ) {∂Yi/∂pk}. This sensitivity matrix can be calculated
by solving the following initial value problem:

whereJ ) ∂f/∂Y is the Jacobian andF ) ∂f/∂p. Let si
T ) ∂Yi/

∂p denote the vector of theith row of the sensitivity matrix,
where the superscript T denotes the transpose of a vector. In
the general case, there is no functional dependence between the
sensitivity coefficient-time functions. However, in many
chemical kinetic simulations the calculated sensitivity functions
show remarkable similarities.

Figure 2 presents the sensitivity functions of temperature and
of the mass fractions of H and H2O with respect to the pre-
exponential parameters of all rate expressions for the adiabatic,
homogeneous explosion of a stoichiometric hydrogen-air
mixture. The sensitivity functions with respect to all parameters
are strikingly similar. This similarity is more emphasized if the
following ratio is derived:

Figure 3 shows the ratiossH,k/sH2O,k andsOH,k/sT,k as a function
of temperature. In this figure and in all subsequent figures that
illustrate ratios of sensitivities, only the significant sensitivity
functions are considered. A sensitivity function is considered
significant if the absolute value of it at any temperature reaches
5% of the peak absolute sensitivity of the most sensitive
parameter. The single lines between 900 and 2000 K demon-
strate the exact matching of 10 lines. The sensitivity functions
of the other 36 pre-exponential factors have very small values
at all temperatures. The calculated values of small sensitivity
elements have a large numerical error; therefore, the ratio (eq
3) for them does not agree with that of the other sensitivity
pairs. Some parameters may be ineffective, and therefore, the
corresponding sensitivity elements are exactly zero. These
sensitivities should be excluded from the comparisons, even if
the exact values of sensitivities were known.

Above about 900 K there is an autocatalytic increase of the
concentration of hydrogen atom (see also Figure 1). Figure 3
indicates that in the case of the explosion of hydrogen-air
mixtures, above this temperature the ratio of sensitivities for
two variables is independent of the parameter perturbed. Plotting
the sensitivity ratios of a “reversible only” mechanism, the lines
do not deviate above 2000 K, showing that the reason for the
high-temperature deviation of lines is the dislocation of the
equilibrium in the irreversible case.

The property of sensitivity functions that the ratio of them is
equal for any parameter will be called herelocal similarity,
because the ratioλij changes with time. Another depiction of
local similarity is that at a given time any row of the sensitivity
matrix can be obtained from any other row by multiplying it
by a scalar:

Let us now consider the ratio of the gradient of variables over
time:

Parts a and b of Figure 4 show the ratioλ′ for the variable pairs
wH, wH2O and wOH, T, respectively. The calculatedλ′ij-
temperature curves are exactly identical to the previously
calculatedλij-temperature curves in the temperature region

dw/dt ) fw(T,w,p), w(0) ) w0 (1a)

dT/dt ) fT(T,w,p), T(0) ) T0 (1b)

S4 ) JS + F, S(0) ) 0 (2)

λijk(t) )
sik(t)

sjk(t)
(3)

si
T(t) ) λij(t)sj

T(t) (4)

λ′ij(t) )

dYi

dt
(t)

dYj

dt
(t)

(5)
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900-2000 K. This identity was called thescaling relationof
local sensitivities by Rabitz et al.2,4 Combination of eqs 4 and
5 yields

Equation 6 shows that the scaling relation implies local
similarity. However, we will show later that in some systems
local similarity for some pairs of sensitivity coefficients may
exist without the occurrence of the scaling relation.

Let us now calculate another ratio of sensitivities:

Figure 2. Sensitivities as a function of temperature calculated for the adiabatic explosion of a stoichiometric hydrogen-air mixture. Note, that
seminormalized sensitivity coefficients, e.g., dwH/d ln Ak ) Ak(dwH/dAk), are drawn to make the sensitivities of comparable magnitude. Sensitivity
coefficients belonging to (a) T, (b) H, and (c) H2O are plotted.

si
T(t) )

dYi

dt
(t)

dYj

dt
(t)

sj
T(t) (6)

µikm(t) )
sik(t)

sim(t)
(7)
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Figure 5 shows that the ratioµikm is not dependent on time for
a very wide range of temperatures. Rabitz et al.2,4 had a similar
observation for the sensitivities of burner-stabilized flames, and
they called this propertyself-similarity.However, the term self-
similarity is widely used in another context in fractal theory;
therefore, this notion will be calledglobal similarity in this
paper. This new term emphasizes that the value ofµikm is
constant within a wide range of the independent variable.

Simultaneous existence of local and global similarities results
in other identities. Local similarity means that the ratio of the
sensitivities of two variables with respect to the same parameter
is equal for any parameter:

Rearranging it gives

That is, the ratioµkm is independent of the variable investigated
if local similarity is also valid.

In constrained temperature explosion simulations, the initial
value problem (eq 1a) was solved and the variables included

the mass fractions of species only. Since temperature was not
a variable in this case, no temperature sensitivity could be
calculated. Although the calculated concentration-time curves
were identical to the adiabatic explosion results, the sensitivities
were different. At adiabatic calculations, a changed rate coef-
ficient changed the heat release rate and therefore the calculated
temperature, which in turn changed the rate of all temperature-
dependent rate coefficients. If the temperature-time profile is
fixed, a changed parameter can modify the rate of other reactions
only via the altered concentrations. The temperature-time
profile of the perturbed system will be identical to that of the
unperturbed one, but because enthalpy is a function of temper-
ature and concentrations, the enthalpy-time profile will be
different.

Figure 6 shows the calculated sensitivities for the explosion
of stoichiometric hydrogen-air mixtures in a constrained
temperature simulation. The sensitivities of the mass fractions
of hydrogen and water are plotted. The perfect order of Figure
1b and c is not apparent in this figure. The curves show some
similarity, but plotting the ratio of them according to eq 3 reveals
(see Figure 7) that the level of similarity has decreased. The
sensitivity ratios for some of the parameters are nearly identical,
indicating local similarity of the sensitivities of these parameters.
Figure 7 also presents the ratio of the production rates of the
hydrogen atom and water. It is clear that the scaling relation is

Figure 3. Ratio of sensitivity functions for two variables with respect to the same parameters for the adiabatic explosion of a stoichiometric
hydrogen-air mixture. The single line between 900 and 2000 K shows the exact matching of 10 lines. (a) RatiosH,k/sH2O,k. (b) RatiosOH,k/sT,k.

sik(t)

sjk(t)
)

sim(t)

sjm(t)
(8)

sik(t)

sim(t)
)

sjk(t)

sjm(t)
) µkm(t) (9)
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valid for none of the sensitivity ratios in this case. Global
similarity was also checked for the constrained temperature
explosion simulations. Global similarity is not valid at any
temperature range for the sensitivities of the hydrogen atom
(Figure 8a). The ratios of water sensitivities are constant in the
temperature range 900-1400 K (Figure 8b), but the reason is
that the original sensitivities were also independent of temper-
ature in this region (see Figure 6b).

In most real-life chemical kinetic systems concentrations and
temperature are spatially inhomogeneous and the change of them
can be described by an appropriate system of partial differential
equations (PDEs). Probably the most frequently simulated 1D
reaction-diffusion systems are stationary premixed laminar
flames. It is possible to create and investigate suchflat flames
in the laboratory, and the measured temperature and concentra-
tion profiles can be compared with the simulation results. The
general form of the corresponding PDEs is given by

whereL is a second-order differential operator. The detailed
description of operatorL for laminar flames and the corre-
sponding boundary conditions can be found in many articles
(see e.g. refs 2, 5, and 11), and they are not reproduced here.

The sensitivity matrices can be calculated by solving the
following equation:

whereJh ) ∂L /∂Y andFh ) ∂L /∂p.
For the simulation of burner-stabilized flames, the temperature

profile has no fixed point, but the mass flow rate is fixed and
independent of parameters. For freely propagating flames, the
flame speed and therefore the mass flow rate changes with
parameters, but the location of the reference temperature point
is fixed. This is the reason the sensitivity functions are different
for these two types of flames, as is clear from the comparison
of parts a and b of Figures 9-11. Not only the shapes are
different, but also the sensitivities of the freely propagating
flames are much smaller than those of the burner-stabilized
flames. Local similarity and the scaling relation are shown in
parts a and b of Figure 12 for freely propagating and burner-
stabilized adiabatic flames, respectively. Neither similarity
appears in the case of freely propagating flames, but for burner-
stabilized flames for a group of parameters the scaling relation
(and therefore local similarity) is valid.

In constrained temperature flame simulations the calculated
species concentration profiles are identical to those of the

Figure 4. Ratio of the derivative of variables with respect to time as a function of temperature for adiabatic explosion of a hydrogen-air mixture.
(a) Ratio (dwH/dt)/(dwH2O/dt). (b) Ratio (dwOH/dt)/(dT/dt). The plotted ratio is identical in a wide range of temperature to the ratio of the corresponding
sensitivity coefficients (cf. Figure 3).

L (Y,p) ) 0 (10)

0 ) JhS + Fh (11)
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adiabatic flames, but the sensitivities are different for reasons
similar to those described for explosions. Figure 13 shows that
local similarity and the scaling relation are not valid for
constrained temperature freely propagating and burner-stabilized
flames. For adiabatic flames, global similarity is checked by
plotting the ratio of water sensitivities in parts a and b of Figures
14 for freely propagating and burner-stabilized flames, respec-
tively. Similar plots are provided in Figures 15 for constrained
temperature flames. Of these four cases, only adiabatic burner-
stabilized flames show global similarity for some parameters,
but only at temperatures below 1400 K.

The results of numerical experiments on models of hydrogen-
air combustion can be summarized in the following way: There
is perfect local similarity, scaling relation, and global similarity
for adiabatic explosions only. Constrained temperature explo-
sions show local similarity for some parameters. Scaling relation
is not valid even for these sensitivity coefficients. Adiabatic
burner-stabilized flames show all three types of similarity, but
only for some parameters. No similarity was found for any freely
propagating flames and for constrained temperature burner-
stabilized flames.

These similarity relations are not features of the hydrogen
combustion only. Figure 16 shows the values ofλij andµkm as
a function of temperature calculated for adiabatic methane-air

explosion. The plots demonstrate that local and global similarity
are also present in this model, although it has many more
variables and parameters.

4. Previous Results on the Similarity of Sensitivities

Reuven et al.1 developed a computer code for the calculation
of local sensitivities of stationary two-point boundary value
problems. They tested the code on a simple model of 1D laminar
flames for both burner-stabilized and freely propagating condi-
tions. The chemistry included two first-order steps and three
species: a reactant, an intermediate, and a product. The program
calculated temperature, the concentrations of the three species,
their local sensitivities, and also the elements of the Green’s
function matrix. The meaning of the Green’s function is to be
discussed in detail in section 6. In the burner-stabilized flame
calculations of Reuven et al.,1 the sensitivity curves of each
variable with respect to all parameters as a function of distance
were found to be very similar to each other. The Green’s
function elements changed little with the location of perturbation
x′ and were primarily determined by the temperature at position
x. Therefore, they concluded that “the effect of parameter
variations is channeled through the temperature in the present
model”, and this is the reason for the similarity of sensitivity-
distance functions. In accordance, in freely propagating flame

Figure 5. Ratio of sensitivity functions for the mass fractions of hydrogen and water with respect to two parameters as a function of temperature
for adiabatic explosion of a stoichiometric hydrogen-air mixture. Here and in all the subsequent figures,s′ indicates a seminormalized sensitivity
coefficient, e.g.,s′H,k ) dwH/d ln Ak ) Ak(dwH/dAk). (a) Ratios′H,k/s′H,31; (b) ratio s′H2O,k/s′H2O,31. Parameter 31 is the preexponential factor of reaction
H + HO2 f 2OH. In part a the small peaks appeared where both original sensitivity functions passed through zero.
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calculations not only was the sensitivity of calculated temper-
ature zero at the point of the reference temperature but also the
sensitivities of all other variables were also very small.

As a next step, Reuven et al.2 applied the code for the
calculation of sensitivities of premixed hydrogen-air flames.

They claimed that all results referred to freely propagating
flames (see p 296), but in a later publication they clarified (ref
5, p 273) that the calculated sensitivities had belonged to
adiabatic burner-stabilized flames. The temperature sensitivity-
distance curves for the rate and diffusion coefficients were very

Figure 6. Sensitivities as a function of temperature calculated for the constrained temperature hydrogen-air explosion calculations. Sensitivity
coefficients belonging to the mass fractions of (a) H and (b) H2O are plotted.

Figure 7. Ratio of sensitivity functionssH,k/sH2O,k for the constrained temperature explosion of a stoichiometric hydrogen-air mixture. Also, the
ratio of the corresponding production rates (dwH/dt)/(dwH2O/dt) is plotted using a dashed line.

Similarity of Sensitivity Functions J. Phys. Chem. A, Vol. 107, No. 13, 20032223



similar to each other. The similarity was also present but was
not so uniform for the HO2 sensitivity profiles. They also
calculated sensitivity functions for constrained temperature
flames and claimed that “such a constrained calculation disal-
lows the response of the species to parameter variations to be
controlled by the temperature”. These constrained temperature
calculations produced less similar HO2 sensitivity curves with
respect to all parameters. For further theoretical explanation on
similarity, they referred to the forthcoming Rabitz-Smooke
paper.4

An article about the application of the code3 for a CO/H2/O2

flame appeared in 1994, but most of the calculations seem to
be completed earlier (see reference (Mishra et al., 1986) in article
2 and refs 5 and 46 in articles 4 and 5, respectively). Mishra et
al. simulated a burner-stabilized wet carbon monoxide flame
and plotted the sensitivity of the CO mole fraction with respect
to the pre-exponential factors and the diffusion coefficients. The
figures demonstrated the global similarity of the curves. Mishra
et al. also reported the scaling relation to be valid. The
calculations were repeated with a constrained temperature
profile, and they concluded that “the loss of self-similarity
behavior and lessening of the sensitivity to the reactions ...
underscores the dominant role of temperature”. They also noted
that laboratory flames are simulated either with calculated
temperature profiles or using a fixed, experimentally measured
temperature profile, and they stated that, to avoid misinterpreta-

tion of the kinetic data, one has to keep in mind that in the two
cases different reactions are important for the reproduction of
experimental values.

The article of Rabitz and Smooke4 was the first theoretical
paper on the similarity of sensitivity functions. They claimed
that the onset of scaling relation and global similarity could be
explained by assuming that there is a singledominantVariable
in the system. A dominant variable has the following proper-
ties: changing the value of the dominant variable changes the
values of all other variables, but perturbation of the value of a
nondominant variable does not change directly the value of
another nondominant variable. However, such a perturbation
changes the value of the dominant variable and it changes the
values of other variables. For example, temperature is a
dominant variable in adiabatic combustion systems, because
temperature “enters the problem exponentially whereas all other
dependent variables (i.e., species) enter linearly or quadratically”
(ref 3, p 250).

According to Rabitz and Smooke,4 functional dependence
between the dominant variable and the other variables can be
described in the following way:

whereY1 is the dominant dependent variable,Fi is a function
which is not dependent directly onz and p, Yi is any other

Figure 8. Ratio of sensitivity functions for the mass fractions of hydrogen and water with respect to two parameters as a function of temperature
for constrained temperature explosion of a stoichiometric hydrogen-air mixture. (a) Ratios′H,k/s′H,3. (b) Ratios′H2O,k/s′H2O,9. Parameters 3 and 9 are
the pre-exponential factors of reactions H2 + OH f H2O + H and O2 + H f OH + O, respectively.

Yi(z,p) ) Fi(Y1(z,p)) (12)
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variable, andz is the single independent variable (time or
distance). In our opinion, eq 12is notrelated to the presence of
a dominant variable, because it contains no information about
the consequence of variable perturbations. It only states that
the value ofY1 defines the values of all other variables. On the
basis of eq 12, Rabitz and Smooke4 proved the validity of the
scaling relation for both the Green’s and the sensitivity functions.
Note, that Rabitz et al. published another article18 on the study
of the similarity of Green’s functions. Rabitz also discussed the
similarity of sensitivities in a review article on systems
analysis.19 He later demonstrated17 that the scaling relation of
sensitivity functions could be obtained without the prior
calculation of the Green’s function matrix. In the resulting
equations for the scaling relation, the variableY1 does not have
a unique role, which also questions the interpretation ofY1 as
a dominant variable in eq 12. We consider that the mathematical
proof of Rabitz and Smooke is valid, but an entirely different
interpretation of their derivation will be given in the next section.

In the remaining part of the Rabitz-Smooke paper, global
similarity was derived from the scaling relation by making
assumptions about the structure of the Green’s function. This
derivation implied that a condition of global similarity is the
existence of scaling relation. The numerical examples were taken
from articles 1-3, and the percentage error of the scaling
relation was calculated. The typical error was about 6%. Global
similarity was not demonstrated by plotting the ratio of eq 7,
but the authors stated (p 1117) that the ratios investigated were

“nearly invariant tox on significant flame range”. Interestingly,
the authors mentioned (p 1118) that the similarity of sensitivity
functions may be related to central manifold theory, but they
did not follow this path.

All numerical examples in article 4 were related to stationary
laminar flames, and this raises the question if sensitivity
functions calculated for models of homogeneous explosions
reveal similarity. Vajda et al.5 investigated this topic by
comparing sensitivity functions of models of adiabatic explo-
sions and laminar flames of stoichiometric hydrogen-air
mixtures. Temperature sensitivities of adiabatic explosions
exhibited some global similarity, but no similarity was observed
for the sensitivity of species. Existence of scaling relation was
not investigated. The global similarity of the sensitivity functions
of burner-stabilized laminar flames was reproduced. They
concluded that “though the temperature is known to be a
dominant variable in combustion processes, we show that only
the simultaneous effects of thermal and transport phenomena
change the form of the sensitivity functions significantly, leading
to their self-similarity” (p 271). Figures 2 and 5 of this paper
demonstrate that all sensitivity functions of models of the
adiabatic hydrogen-air explosion show perfect global similarity.
We repeated the calculations of Vajda et al.5 using their
mechanism and initial conditions; the calculated sensitivity
functions showed perfect global similarity. Most likely the
reason for the observed lack of similarity was having some
numerical difficulties in their calculations. However, as a

Figure 9. Sensitivities of temperature calculated for adiabatic stoichiometric hydrogen-air flames: (a) freely propagating and (b) burner-stabilized
laminar flames.
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consequence, until now nobody investigated the similarity of
sensitivity functions of homogeneous kinetic systems.

Vajda and Rabitz6 investigated thermal explosions modeled
by a single step,nth-order, exothermic reaction. The model had
two variables: temperature and the reactant concentration.
Sensitivities with respect to the model parameters were calcu-
lated, and global similarity was observed for parameter sets
where the model simulated thermal runaway. The authors stated
that the onset of global similarity could be explained if the model
has two properties: temperature is a dominant variable, and
the sensitivity equations are pseudohomogeneous in a time
window. The reasoning referred to their two-variable model,
and it will be investigated, extended, and modified in section 6
of this paper.

5. Origin of Scaling Relation and Local Similarity

Mathematical models usually describe the cooperation of
several physical processes, and these processes may have very
different time scales. In chemical kinetics, this property was
first met by Bodenstein,20 who applied the quasi-steady-state
approximation (QSSA) for the approximate analytical solution
of systems of kinetic differential equations. An account of the
history of the theoretical investigations of the QSSA was given
in ref 21. Applicability of the QSSA is related to the stiffness
of the kinetic ordinary differential equations (ODEs), which is
caused by the very different eigenvalues of the Jacobian. In

general, the local time scales of models can be identified by
the eigenvalue-eigenvector analysis of the Jacobian. This way
n modes are related to a model ofn variables and each mode
has a local time scale, which may be different at another point
of the variable space. If a mode is much slower than the time
scale of our interest, it appears to be frozen. If a mode is much
faster than our time scale, it causes algebraic relations among
the variables. Lam and Goussis22-24 built up a comprehensive
kinetic analysis method based on the eigenvalue-eigenvector
analysis of the Jacobian. They called the very slow modes
(characterized by small absolute values of eigenvalues)dormant
modesand the very fast modes (characterized by large negative
eigenvalues)exhausted modes. The classical simplification
procedures in chemical kinetics are examples of intuitive
applications of different time scales: the pool concentration
approximation is related to dormant modes, while fast equilib-
rium and quasi-steady-state approximations are related to the
exhausted modes. Roussel and Fraser25 investigated small
enzyme kinetic systems and stated that the existence of very
different time scales causes the trajectory of the solution to move
on slow manifolds. Approaching the equilibrium point, the
dimension of the manifold the trajectory moves on gradually
decreases. In a dynamical system ofn variables the degree of
freedom of movement is originallyn1 < n, after deducing the
conservation relations (like element conservations in closed
systems) and the extremely slow dormant modes. Therefore,

Figure 10. Sensitivities of H mass fraction calculated for adiabatic stoichiometric hydrogen-air flames: (a) freely propagating and (b) burner-
stabilized laminar flames.
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the trajectory originally moves on ann1-dimensional manifold,
but as time advances, more and more modes become exhausted
and finally the trajectory moves close to a two-dimensional
surface (curved plate), then moves close to a one-dimensional
curve, and finally arrives at the zero-dimensional equilibrium
point if it exists. If the model is not required to describe the
dynamics of the system at early times, a low-dimensional model
(that is a model having few variables) provides an accurate
description of the long-term dynamics. It is also possible that
of the many modes only one coincides with our time scale; all
other modes are either exhausted or dormant. In this case, the
many-variable model can be replaced by an appropriate model
having a single variable only.

Maas and Pope26-28 elaborated algorithms and computer
codes for the approximate numerical calculation of slow
manifolds. A recent comparison of the method of Maas and
Pope with that of Roussel and Fraser was given in ref 29. Maas
and Pope also studied the existence of manifolds in several
combustion models and generated reduced models having few
variables only. They found that, at the adiabatic explosion of a
CO-H2-air mixture in a closed adiabatic vessel, after a very
short time the trajectory moves close to a two-dimensional shell,
then approaches a curve, and finally ends up at the equilibrium
point. Eggels and de Goey30 studied hydrogen-air combustion
models and found that they could be described by a one-
dimensional manifold, if the element composition and the

enthalpy of the gas were fixed. Bu¨ki et al.31 also successfully
simulated hydrogen-air explosions assuming that the trajectory
moves close to a curved (1D) line.

In the description of slow manifolds, there are no distin-
guished variables: the manifolds can locally be parametrized
by any nonconstant variable; global parametrization is possible
by using continuously increasing variables, like water concen-
tration in most combustion systems. If the element composition
is fixed, the one-dimensional manifold (curve) belongs to a fixed
enthalpy and another enthalpy invokes another curve.

The scaling relationcan be explained on the basis of two
assumptions: (i) the dynamical behavior of the system is
controlled by a one-dimensional slow manifold in the space of
variables; (ii) an infinitesimal change of a parameter changes
the velocity of the movement on the manifold but negligibly
dislocates the manifold. The proof below uses the derivation
of Rabitz and Smooke,4,17but in the context of slow manifolds.

Let the one-dimensional manifold be defined by vector
function F.

Fi defines the value of any variableYi as a function of the
arbitrarily selected parametrizing variableY1. The letterzdenotes
the single independent variable (time or distance). The dif-
ferential equations of the kinetic system are autonomous;

Figure 11. Sensitivities of H2O mass fraction calculated for adiabatic stoichiometric hydrogen-air flames: (a) freely propagating and (b) burner-
stabilized laminar flames.

Yi(z,p) ) Fi(Y1(z,p)) (13)
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therefore,Fi does not depend directly onz. Also, it can be
assumed that a small change of parameters negligibly dislocates
the manifold; therefore, the functionFi does not depend directly
on p. Differentiating eq 13 with respect toz gives

while differentiating eq 13 with respect to any parameterpj

yields

Combining the two gives a scaling relation:

This equation is valid for both temporal and 1D stationary
systems and can easily be converted to other forms, given in
eqs 6 and 8, that do not contain the variableY1. This also
supports the claim that in eq 13 selection of the variableY1 is
not unique. Equation 16 means that all other rows of the

sensitivity matrix can be obtained from any single row.
Consequently, the rank of the sensitivity matrix is one.

In a similar way it can be shown that the dimension of the
slow manifold determines the rank of the sensitivity matrix. An
n-dimensional slow manifold can be parametrized byn variables
for all variablesi ) 1, ..., (N + 1).

Differentiating it with respect topj:

The multiplicative factors∂Fi/∂Y1, ∂Fi/∂Y2, ... are the same for
all parameters; therefore

Therefore, the existence of ann-dimensional slow manifold
invokes that the rank of the corresponding local sensitivity
matrix is not greater thann, if the location of the manifold
negligibly changes in the space of variables for small parameter
perturbations.

Figure 12. RatiossH,k/sH2O,k and (dwH/dx)/(dwH2O/dx) for adiabatic stoichiometric hydrogen-air flames: (a) freely propagating and (b) burner-
stabilized laminar flames.
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If local similarity exists for all pairs of sensitivity vectors,
then any sensitivity vector can be obtained by multiplying any
other nonzero sensitivity vector by a scalar (see eq 4). This is
equivalent to the statement that the rank of the sensitivity matrix
is one. If the rank of the sensitivity matrix isn, it might mean
that local similarity is valid for none of the pairs of the sensitivity
vectors. The other possible extreme is that eq 4 is valid for all
sensitivity vectors butn. This can be the reason why, for
example, for constrained temperature hydrogen explosions local
similarity is valid for some of the parameters.

Relation of the dimension of slow manifolds with the scaling
relation, local similarity, and the rank of the local sensitivity
matrix can be justified also on the basis a geometrical descrip-
tion. Figure 17a is a schematic representation of a one-
dimensional manifold. The space of variables is 10-dimensional
in the case of a hydrogen-air explosion (9 species and
temperature), but the schematic figure shows 3 axes only. Point
C represents the actual status of the system andE0 is the
equilibrium point that belongs to enthalpyh0. The system moves
with velocity vectorY4 in the variable space. Projections of the
velocity vector on the axes are the right-hand sides of eqs 1,
which correspond to the production rates in chemical kinetics.
The direction of the velocity vector is identical to the local
direction of the manifold. If parameterpk is changed infinitesi-
mally, it only negligibly shifts the location of the manifold.
However, since the location of the system at timet is obtained

by a long integration, the perturbed system will be close to point
C but at a differentC′ location on the manifold. The direction
of vectorCC′B is also along the manifold for any parameterpk

perturbed; only the length of the vector will be different. Also,
this direction will be identical for all sensitivity vectors∂Y/
∂pk. Projections of this vector onto the axes will be{∂Y1/∂pk,
∂Y2/∂pk, ..., ∂Yn/∂pk}. If the directions of two vectors of any
length are identical, the ratios of the projections to any two axes
will also be identical. This explains the observed scaling relation,
why any sensitivity vector can be obtained by multiplying any
other sensitivity vector by a scalar (eq 4), and why the ratio of
any pair of sensitivities is identical to the ratio of the corre-
sponding production rates (eq 6).

The enthalpy of the system is preserved during an adiabatic
simulation, even if the mechanism was modified by perturbing
a kinetic parameter. However, in the constrained temperature
simulations only the unperturbed system maintains the nominal
enthalpy. Assume that the enthalpy of the unperturbed system
is h0, but because the perturbation modifies the concentrations
but does not adjust the temperature accordingly, the perturbed
system has a slightly different enthalpy at timet. The perturbed
system will be at pointC′ on a different 1D manifold that
belongs to enthalpyh1. Perturbing another parameter will result
in another stateC′′, having yet another enthalpyh2 (see Figure
15c). The consequence is that constrained temperature calcula-

Figure 13. RatiossH,k/sH2O,k and (dwH/dx)/(dwH2O/dx) for constrained temperature stoichiometric hydrogen-air flames: (a) freely propagating and
(b) burner-stabilized laminar flames.
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tions result in sensitivities that cannot be characterized by scaling
relation.

If the dimension of the manifold is two, any rows of the
sensitivity matrix can be obtained as a linear combination of
two independent sensitivity vectors:

In this case, the velocity vector and the sensitivity vectors all
fit onto a plane (see part d of Figure 17).

The rank of a square matrix is equal to the number of its
nonzero eigenvalues, and the rank of a nonsquare matrixM is
equal to the number of nonzero eigenvalues of matrixMTM .
The sensitivity matrixes are calculated with numerical error;
therefore, only an approximate rank can be calculated. Figure
18 shows the eigenvalues of theSTS matrixes calculated for
adiabatic and constrained temperature hydrogen-air explosion.
In the case of the adiabatic explosion the sensitivity functions
are very similar; therefore, one of the eigenvalues is 104 to 107

times larger than the second largest, and the rank of the
sensitivity matrix is approximately one. In the case of con-
strained temperature hydrogen explosion there are six eigen-
values of similar magnitude, followed by a large gap. The rank
of this sensitivity matrix is approximately six in a wide range
of the independent variable.

Maas and Pope27 demonstrated that concentration-distance
profiles in laminar flames can be calculated by assuming that

these are basically controlled by the slow manifold, determined
by the chemical reactions, and perturbed by the diffusion of
species and heat. Consider the concentrations in a 1D laminar
flame as a curve in the space of variables, which is spanned
between the points of the cold and hot boundary states. This
curve practically coincides with the 1D manifold of hydrogen-
air combustion above the temperature where the effect of
chemical reactions is faster than that of diffusion, as is
demonstrated in Figure 1. As previously, assume that the
location of the curve in the space of variables does not change
significantly due to an infinitesimal parameter perturbation. Let
this curve be parametrized by physical distance. In burner-
stabilized flames, changing a parameter changes the distance
of the point of a given composition from the burner surface;
that is, it changes the parametrization of the curve with distance.
Then, reasoning similar to the case of homogeneous explosion
explains the existence of the local similarity and scaling relation
in burner-stabilized flames. However, due to the presence of
diffusion, the sensitivities of burner-stabilized flames are
expected to be less similar compared to those of the homoge-
neous explosions. In freely propagating flames, distance is
measured from a point of the flame having the reference
temperature. Perturbation changes the flame speed, and therefore
the distance between the point of reference temperature and the
other points of the flame does not change significantly. Conse-
quently, local similarity and scaling relation cannot be observed
among the sensitivity functions of freely propagating flames.

Figure 14. Ratio s′H2O,k/s′H2O,m for adiabatic stoichiometric hydrogen-air flames: (a) freely propagating and (b) burner-stabilized laminar flames.
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Note that initial value sensitivities cannot be used for the
investigation of manifolds. If an initial concentration is changed,
it changes the enthalpy of the mixture and the element
composition; therefore, the solution will run on a parallel
manifold that the original system can never access.

6. Origin of Global Similarity

Vajda and Rabitz6 have suggested that a necessary condition
of global similarity is the pseudohomogeneity of the sensitivity
differential equations and demonstrated it on the example of a
single reaction step model of thermal explosion having two
variables. Their derivation is extended and developed further
in this section.

Consider first a spatially homogeneous, purely temporal
system. The time history of the variables can be computed by
solving the initial value problem

whereY is the (N + 1)-vector of variables andp is theM-vector
of parameters. Local sensitivities with respect topk can be
calculated by solving the following initial value problem:

An alternative way is the calculation of the sensitivities via the
Green’s function matrix:

The Green’s functions can be obtained by solving the following
initial value problem:

whereI is the (N + 1) × (N + 1) unit matrix andG(t,t′) is the
(N + 1) × (N + 1) Green’s function matrix. An element of
this matrix shows how the perturbation ofYj at timet′ influences
Yi at time t.

Let us calculate now the sensitivity of variable vectorY
separately for time intervals (0,t1) and (t1, t) using identity

Figure 15. Ratio s′H2O,k/s′H2O,m for constrained temperature stoichiometric hydrogen-air flames: (a) freely propagating and (b) burner-stabilized
laminar flames.
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G(t,t′)) G(t,t1) G(t1,t′):

Assume that∂f/∂pk ≈ 0 in the time interval (t1, t) and therefore
the second term on the right-hand side of eq 26 can be neglected.
The existence of the term∂f/∂pk makes the sensitivity differential
equation (eq 22) inhomogeneous. If this vector is nearly zero,
then eq 22 is called pseudohomogeneous. MatrixG(t,t1) is not
a function of the variable of integrationt′; therefore, for any
t > t1

Accordingly, sensitivity of variablei with respect to parameter
k can be calculated by

If local similarity exists at timet1, then the ratio of the

sensitivities of any pair of variables is independent of the
parameter perturbed. Select an arbitrary variableh and substitute
the local similarity relation∂yj/∂pk ) λjh(∂yh/∂pk) into eq 28:

that is

Let us make a similar expression for another parameterm.

The right-hand sides of eqs 30 and 31 are equal, and the
combination of the two equations gives

Figure 16. Ratio of sensitivities as a function of temperature calculated for an adiabatic methane-air explosion indicating local and global similarity.
The initial conditions are a stoichiometric CH4-air mixture,p ) 1 bar, andT0 ) 1000 K.
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Equation 32 shows that the ratio of the two sensitivity
coefficients at any timet > t1 is independent of variablei and
time; that is, the sensitivity functions are globally similar. The
summary of eqs 26-32 is that if the system of sensitivity
differential equations is pseudohomogeneous in time interval
(t1, t2) and if local similarity exists at timet1, then the sensitivity
functions are globally similar in the time interval (t1, t2).

The reasoning above is different from the derivation of Vajda
and Rabitz.6 Their derivation, if generalized to arbitrary number
of variables, is identical until eq 28. Vajda and Rabitz then
assumed that one of the variables is dominant. Let variableh
be dominant, which means that on the right-hand side of eq 28

Consequently, all terms but that of the dominant variable can
be neglected in eq 28:

Applying it for another parameterm and combining the two
equations gives

That is, a result identical to that of the previous reasoning was
obtained. Ratioµkm is independent of variablei; therefore, eq
35 means not only the existence of global similarity but also
the existence of local similarity. Derivation of eqs 26-28 and
33-35 can be summarized that if the system of sensitivity
differential equations is pseudohomogeneous and if a single
dominant variable exists in the time interval (t1, t2), then the
sensitivity functions show both global and local similarity in
the time interval (t1, t2). Vajda and Rabitz6 demonstrated in their

Figure 17. (a) One-dimensional manifold (curved line) in the space of variables, belonging to enthalpyh0. Dot C represents the actual status of
the system, dotE0 is the equilibrium point, and vectorY4 is the velocity. Projections of the velocity vector on the axes are the RHS of the ODE
(production rates in chemical kinetics). (b) DotC represents the actual status of the system, and dotC′ is the status of the system when parameter
pi has been infinitesimally perturbed. Because movement is possible only on the locally linear 1D manifold, the directions of the vectorsY4 , CC′B,
and∂Y/∂pk are identical, and therefore the ratios of the coordinates of these vectors are identical for any pair of axesi andj and for any parameter
k. (c) Bunch of one-dimensional manifolds in the space of variables belonging to enthalpiesh0, h1, andh2. If the parameter perturbation changes
the enthalpy, the directions of vectors∂Y/∂pk are different for different parameterspk. (d) Two-dimensional manifold in the space of variables,
belonging to enthalpyh0. Dot C represents the actual status of the system, vectorY4 is the velocity of movement of the actual state, and dotsC and
C′ belong to perturbed parameter solutions with preserved enthalpy. The directions of the velocity and the sensitivity vectors no longer coincide,
but they all fit onto a plane.
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two-variable system that temperature is the dominant variable
over the fuel concentration.

Every assumption of both derivations was checked numeri-
cally on the example of adiabatic hydrogen-air explosion.

Figure 19 shows that, in the window of global similarity in the
system of sensitivity differential equations, the inhomogeneous
term is negligible besides the homogeneous term; therefore, eq
22 is pseudohomogeneous. This was a necessary condition in

Figure 18. Eigenvalues of theSTS matrix as a function of temperature calculated for the (a) adiabatic and (b) constrained temperature hydrogen-
air explosion calculations.

Figure 19. Inhomogeneous term is much smaller than the homogeneous term in the sensitivity differential equation during the adiabatic hydrogen-
air explosion.
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both derivations. Previously, the local sensitivities were calcu-
lated by the program SENKIN, which solves the sensitivity
differential equations (eqs 22). Using a purpose written code,
the Green’s function matrix was calculated, and the sensitivities
in temperature range 1000-2000 K were calculated in an
entirely different way, using eq 27. The sensitivities calculated
in the two ways agreed with good accuracy, which is not only
a validation of eq 27 but also a successful test of both the
sensitivity and Green’s function matrix calculations. Therefore,
all conditions of the first derivation were justified. In the next
step, validity of eq 33 was tested. In Figure 20, the terms of eq
28 are compared. At none of the conditions investigated was
the term belonging to temperature dominant over all other terms.
In general, the terms belonging to radical concentrations were
of similar importance to that of temperature. This indicates that
temperature is not a dominantVariable in the adiabatic
hydrogen-air explosion system in the sense of eq 33. Conse-
quently, the origin of global similarity cannot be explained by
assuming that temperature is a dominant variable in the
hydrogen combustion system. This statement is likely also valid
for other combustion systems.

The derivation of global similarity for spatially one-
dimensional stationary systems is similar, but not identical. Due
to causality, in temporal systems perturbations have an influence
on later events only. In 1D stationary systems, perturbation of
parameters or variables at any position may have an influence
on the values of variables at any other position due to the
presence of diffusion.

Let the system be described by the following system of partial
differential equations:

whereL is a second-order differential operator. The independent
variable spans the range [0,C]. Knowing the boundary condi-
tions, the spatial profiles of dependent variables can be calcu-
lated, and the sensitivity matrix functions are obtained by solving
the following equations:

An alternative way is the calculation of the sensitivities via the
Green’s function matrix:

The Green’s functions can be obtained by solving the following
initial value problem:

whereδ(x - x′) is the Dirac delta function,I is the (N + 1) ×
(N + 1) unit matrix, andG(x,x′) is the (N + 1) × (N + 1)
Green’s function matrix. An element of this matrix shows the
change of the value of variableYi at distancex if the flux δJj

perturbs the value ofYj at distancex′.

Let’s calculate now the sensitivities separately for intervals (0,
A), (A, B), and (B, C) and use the identitiesG(x,x′) ) G(x,A)
G(A,x′) andG(x,x′) ) G(x,B) G(B,x′) Assume that∂L /∂pk ≈ 0 in spatial interval (A, B).
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Figure 20. Comparison of the main terms of eq 28 in the calculation
of the sensitivity of (a) temperature, (b) water mass fraction, and (c)
mass fraction of hydrogen atom. Timest1 andt correspond to mixture
temperatures 1200 and 1400 K, respectively. The contribution denoted
by T belongs to the term calculated from temperature sensitivity. The
line denoted by Th represents the sum of all terms minus the term of
temperature sensitivity. The bars indicate that temperature is an
important variable, but not the single dominant variable for adiabatic
hydrogen-air explosions.
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As before,

If local similarity exists at distancesA and B, then∂yj/∂pk )
λjh(∂yh/∂pk) for any arbitrarily selected variableh.

Unlike in temporal systems, global similarity will not be noticed
if both neighboring regions have influence on the pseudohomo-
geneous region. In the case of flames, in the postflame region
the variables are not very sensitive to the perturbation of rate
parameters. Global similarity can be obtained if one of the terms
on the right-hand side of eq 46 is neglected. Steps similar to
the temporal case lead to

Equation 47 shows that the ratios of sensitivitiessik andsim are
independent of variablei and distance; therefore, the sensitivity
functions are globally and locally similar. The presence of
diffusion means that perturbation of parameters in both intervals
(0, A) and (B, C) may have an effect on the value of variables
in interval (A, B) and, therefore, weaken global similarity
compared to the purely temporal case. If the system of sensitivity
differential equations is pseudohomogeneous in distance interval
(A, B), if local similarity exists at any side of this interval, and
if the influence of parameter perturbation on the other side on
variables in interval (A, B) is negligible, then the sensitivity
functions in this interval become globally and locally similar.

7. Importance of the Similarity of Sensitivities

Global similarity of sensitivity functions means that the effect
of the simultaneous change of several parameters can be fully
compensatedfor all Variables, in a wide range of the indepen-
dent variable by changing a single parameter. Figure 21 shows
the result of a numerical experiment. First, concentration profiles
of H and H2O were calculated in adiabatic explosion of a
stoichiometric hydrogen-air mixture. Then, pre-exponential
factors of four reactions (O2 + H + M f HO2 + M, H + HO2

f H2 + O2, O2 + H f OH + O, and H2O + H f H2 + OH)
were increased by 1%, which changed the concentration profiles.

Due to the global similarity of sensitivities, changing a single
parameter can tune back all concentration profiles simulta-
neously. In this case the pre-exponential factor of the reaction
H + HO2 f 2OH was increased by 0.5%.

In the case of empirical models, the only task of the model
is to provide a good description of the observations. The
presence of global similarity means that different parameter sets
can provide the same simulation results. In the case of physical
models, all parameters are assumed to have a “true” value.
Perfect agreement between the experimental and the simulation
results for all variables in a wide range of time (distance) is
usually considered to be a proof that all used parameters are
correct. Existence of global similarity means that if the values
of some of the parameters are wrong, it can be fully masked by
other parameters being also incorrect. If a physical parameter
is determined in such a system by fitting to experimental data,
error in the fixed parameter values causes the determined
parameter to become erroneous. However, the fitted model
perfectly reproduces all the experimental data, even if the values
of several variables are measured at several time points
(distances).

In the case of chemical kinetic models, existence of the
similarity of sensitivity functions seems commonplace. This can
be the reason complex reaction mechanisms can reproduce all
available bulk experimental data by tuning only a few rate
parameters. Also, very different reaction mechanisms exist in
the literature that describe the same set of experimental data
with a similar level of accuracy. This observation has been noted
in the case of methane oxidation mechanisms7 and mechanisms
for NOx chemistry in flames.32

In this paper, similarity of sensitivities was discussed in
conjunction with chemical kinetic models. However, all deriva-
tions and statements are valid for any mathematical model,
described by differential equations.

Smith and Szathma´ry33 have called attention to the similarity
between flames and living organisms. Both consume food (fuel),
transform it, and emit the end products. Laminar flames and
living organisms both have complex self-stabilizing internal
structures. Living organisms have to be robust, which means
that even if some of the parameters (e.g. temperature, pH, salt
concentration) change, the destabilizing effect has to be
compensated in such a way that the values ofall critical
variables are restored simultaneouslyeVerywherein the spatial
domain of the living organism by changing a few internal
parameters only. The explanation of the origin of global
similarity in flames and other chemical kinetic systems may be
used for models of the regulatory systems of living organisms
to understand their remarkable robustness.

8. Conclusions

Most simulation programs in reaction kinetics calculate local
sensitivity coefficientssik(t) ) {∂Yi/∂pk}, which show the change
of model resultYi at time t if parameterpk has slightly been
changed. In the case of a general mathematical model, no
relation is expected between the rows and columns of the
sensitivity matrixS at any time. However, in some systems the
following similarities were observed: (i) Forlocal similarity,
the valueλij(t) ) sik(t)/sjk(t) depends on time and the model
resultsYi and Yj selected, but is independent of parameterpk

perturbed. (ii) Forscaling relation, the ratioẎi(t)/Ẏj(t) ) sik(t)/
sjk(t) holds at any time and for any parameterpk. The existence
of a scaling relation means the presence of local similarity, but
local similarity may exist without scaling relation. (iii) For
global similarity, the valueµkl ) sik(t)/sil(t) is independent of
time (within an interval) and the model output studied.

∂Y
∂pk

(x) ) ∫0

A
G(x,A) G(A,x′) ∂L

∂pk
(x′) dx′ +

∫B

C
G(x,B) G(B,x′) ∂L

∂pk
(x′) dx′ (42)
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The above types of similarities may exist in 1D stationary
reaction-diffusion systems, like stationary laminar flames. In
this case the independent variable is the distance, and in the
scaling relation equation, the ratio of concentration gradients
should be calculated.

One of the features of most chemical kinetic models is the
existence of a very wide range of time scales. As a result, the
dynamical dimension of the model is smaller than the number
of variables, which means that the dynamics of the model is
dictated by the low-dimensional manifold present. Assume now
that this manifold is negligibly dislocated due to a small change
of the parameter values. It has been demonstrated that if the
dynamics of the system is ruled by a one-dimensional slow
manifold, then scaling relation should be present. If the
dimension of the manifold isn, then the approximate rank of
the sensitivity matrix is not more thann. This latter may result
in local similarity relations for some of the parameters.

Perturbation of a parameter results in changes in the values
of some system variables, but the interdependence of the
variables induces further modifications of the variable values.
The second term on the right-hand side of the sensitivity
differential equations (eqs 2) refers to the direct effect of

parameter perturbations, and the first term is related to the
indirect effect. The sensitivity differential equations are called
pseudohomogeneous in a window of the independent variable,
if here the direct effect on the change of sensitivity coefficients
is negligible compared to the indirect effect. It has been shown
that the pseudohomogeneous property of sensitivity differential
equations and the presence of local similarity together imply
global similarity. Global similarity was observed at the adiabatic
explosions of hydrogen-air and methane-air mixtures, and
approximate global similarity was found in a distance window
in the burner-stabilized hydrogen-air flame.

Previously, scaling relation and global similarity were as-
sumed to be a consequence of the presence of a single dominant
variable in the system. For example, temperature was assumed
to be such a variable in adiabatic combustion models. In this
paper we have shown that these similarity features can be
deduced without using the notion of dominant variable. More-
over, comparison of the terms of eq 28 indicated that temper-
ature is not a single dominant variable in the case of the adiabatic
explosion of hydrogen-oxygen mixtures, but for example,
radical concentrations also have a high influence on the behavior
of the system.

Figure 21. Simulation of parameter estimation in a system having global similarity. Calculated mass fraction-time curves of species H and H2O
in adiabatic hydrogen-air explosion: continuous line, the original model; dashed line, modified mechanism when the pre-exponential factors of
four reactions are increased; dotted line (coincides with the continuous line), the same modified mechanism but the pre-exponential factor of a fifth
reaction is also modified (for details see text).
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The presence of local similarity, scaling relation, and global
similarity usually has not been investigated in the study of
chemical kinetic systems. Low-dimensional manifolds are
present in most chemical kinetic models; therefore, local
similarity of sensitivity functions is probably a general feature
of these models. Very little is known about what conditions
make the sensitivity equations become pseudohomogeneous. The
calculations of Vajda and Rabitz6 indicated that pseudohomo-
geneity might be present in thermal and autocatalytic runaway
systems. However, pseudohomogeneity and therefore global
similarity might appear also under other conditions. In some
publications, plots of sensitivity functions showing global
similarity appeared, although this property was not mentioned
there. Pastres et al.34 modeled the water quality in a lagoon of
Venice using a 1D reaction-diffusion model. The sensitivity
curves of the phytoplankton concentration showed some global
similarity. Mueller et al.35 modeled the behavior of H2/O2/NOx

and CO/H2O/O2/NOx reaction systems in a flow reactor, and
several sensitivity profiles showed global similarity (see Figures
9, 10, and 18 in ref 35). Sensitivity curves, showing global
similarity, appeared on the cover graphics of the book of Valko´
and Vajda,36 dealing with scientific computing methods. These
sensitivity curves were calculated by an enzyme kinetic model.

Existences of local and global similarities of sensitivities are
important features of mathematical models. Global similarity
means that if several parameters are changed in a model, the
effect can be fully compensated by changing a single effective
parameter. This way the values ofall variables can be restored
to the original value in awide rangeof time or distance. If
local similarity is present, the values ofall variables are restored
simultaneously, but only at a point of the independent variable.
In the case of empirical models, global similarity of sensitivities
results in that very different parameter sets can produce exactly
the same model results. If physical parameters are deduced by
fitting to experimental data, error in the fixed parameters of a
model having global similarity means that the determined values
will be wrong even if the agreement between the data and the
calculated values is excellent for all measured variables. Global
similarity could be used to explain why the values of all
variables in a wide spatial domain can be kept constant when
several parameters are changing by regulating a single parameter
only. This observation can be applied to the understanding of
some self-regulating systems, like living organisms.

Acknowledgment. The authors acknowledge helpful dis-
cussions with T. Perger, A. S. Tomlin, J. To´th, S. Vajda, and
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