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51 INTRODUCTION :
Mathematical models are widely used in various disciplines, and most of these modsls
are based on systems of algebraic and differential equations. A growth in the number of
variables and parameters of mathematical models has been observed over recent years.
The basic reason for this is that, in the course of refinement of physical insight, models
become more sophisticated, [n addition, since the capacity of computers has grown. models
that are more complex can be handled more easily. A common problem is that, in large
models, the rele of various parameters is not obvious. Usually it is not clear which are the
important parameters, what is the effect ol changing parameters, what is the uncertainty of
the model results. originating from the uncertainty of parameters, and so on. :
Local sensitivities provide the slope of the calculated model output in the parameter space
at a given set of values. In many applications. this is exactly the information needed. In other
areas, such as uncertainty analysis. local sensitivity analysis is a computationally efficient
technique that allows a rapid preliminary expleration of the model.
There have been a number of reviews of local methods: A comprehensive review ol sensi-
tivity analysis was given by Rabitz et al. (1983). This review dealt mainly with local methods.
and concentrated on distributed-parameter systems. Applications. mainly in chemical
kinetics and molecular dynamics. were presented there. The review of Turdnyi (199043
described both global and local methods, and provided an almost complete list of applica-
tions in chemical kinetics up to 1989, The review by Radhakrishnan (1990} dealt with
the numerical aspects of local sensitivity methods, with an emphasis on combustion
chemical modeling. The review by Tomlin ef al. {1997) discussed the applications of several
mathematical methods. including sensitivity analysis. to combustion kinetics.
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T 2000 John Wiley & Sons Lid
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Finally. we discuss some case studies that use 8B. The ecological case study mentioned at
the beginning of this section took 154 simulation runs to identify 2nd estimate the 13 most
important facters among the eriginal 281 factors. Some of these 15 factors surprised the
ecological experts. so SB may be a pawerful statistical {black box) technique. Notice that on
hindsight it turned out that there are no important intevactions between lactors, so only
154/2 =77 runs would have sufficed (no foldover).

Another case study is the building thermal deterministic simulation in De Wit (1997).
In his simulation. SB gave the 16 most impertant inputs among the 82 factors. after only
50 runs. He checked these results by applying Morris' screening technigue described in
Section 4.4 the latter technique took 328 runs.

4.8 CONCLUSIONS

In the initia! phase of 2 simulation. it ts often necessary to find out which factors amongst
the multitude of potential factors are really important, The goal is then to reduce the
number of factors to be further explored in the next phase.

Some designs {called supersaturated designs) require fewer runs than factorst In this
chapter. we have surveyed several types of design: onc-at-a-time (OAT) designs {including
Morris’s design), the systematic fractional replicate design proposed by Cotter. the iterated
fractional factorial destgn (IFFD), and Bettonvils sequential bifurcation (SB). Each type has
its own advantages and disadvantages.

QAT designs have as & major limitation the neglect of factor interactions. The advantage
is that OAT does not make simplif¥ing assumptions such as that only a few [actors have
important effects or that the inputjoutput (I/0) function is menotonic. Moreover. the
computational cost of OAT designs is [inear in the number of factors. However, OAT methods
provide unbiased estimators ol the eflects of each individuat factor. provided that these
effects are the same at different settings of the ather factors: that is. the factors act additively.
over the range of interest. Such an assumption, although advantageous to simplify the
problem. can be rarely accepted. In fact, interactions are usually relevant, and need to
be estimated by varying factors simultaneously. On the other hand, when the model is
expensive to run, and there are many factors, Morris’ method is both efficient and easy
to implement, The Morris'method is avaitable in the software package PREP-SPOP (SIMLAB)
{see the software Appendix).

The systematic fractional replicate design of Cotter (1979) is computattonally efficient and
does not require any prior assumption about interactions or few important factors. However,
the design lacks precision and cannot detect factors having effects that cancel each other cut.

IFED estimates the main effects, quadratic efiects. and two-factor interactions of the most
influential factors, with a number of runs that is small compared with the total number of
factors. However, for good results, the model output should be determined by only a few
highly influential factors. Andres’ IFFD is available in the package SAMPLE2 {see the
software Appendix).

Sequential bilurcation is simple, efficient. and effective fas several case studies have
illustrated). tts major limitations are that the signs of main effects must be known, and that
metamodels with only main effects and two-factor interactions must be adequate /O
approximations.

The screening designs described in this chapter are only a small subsct of the total
number available in the literature. We have presented only those designs that focus on the
problem of the identification of the few important factors in a model,
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5.2 FEATURES OF LOCAL SENSITIVITIES

Time-independent (stationary) systems can be characterized by the following system of
algebratc equations:

0="F(y k) (5-1)

where ¥ ls the n-vector of variables and k is the m-vector of parameters. The solution of
the implicit algebraic Equation (3.1) is denoted by y° The solution changes when the
values of parameters k are changed. and the new solution can be obtained from the
following equation:

m

yi(k + Ak) = yX{k) + Ak + (5.2)
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A chemical example of such a system is the concentration in a well-stirred (Le. spatially
homogeneous) stationary reactor.

Non-stationary systems can be described by differential or differential--algebraic systems
of equations, Consider the following initial-value problem:

T Ik, YO =y (5.3

Here again, y is the n-vector of variables and k is the m-vector of system parameters, and y°
is the array of initial values. Solution of the initial-value problem (5.1) provides the time
evolution of the system variables.

The effect of parameter change on the solution can be expressed through a Taylor series
expansion:

S yi aJ! -
¥tk + Ak) = Zla— ; 2zzak;ak,-‘°k’ﬂkf+"" (5.4)

In both the time-dependent and time-independent cases, the partial derivatives dy;/8%; are
called first-order local sensitivitics. 82y;/8k 8k are called second-order local sensitivities,
and so on. The first-order local sensitivities form the sensitivity matrix 8§ = {s;} = {9/ 0k }.

Global sensitivity coefficients depend on the assumed probability density function of
the parameters, and usually zlso on the method of calculation chosen. In contrast, local
sensitivity coefficients are defined exactly by Equations (5.2) and (54). There are several
numerical methods for the calculation of local sensttivities. but the calculated values should
be identical within the numerical accuracy of the methed used. Also, calculation of local
sensitivities is much faster than that of global sensitivities. However, local sensitivities have
some specia} limiting features that have to be kept in mind.

For all models of real systems, the values of the parameters are subject to some un-
certainty. [n most cases, such uncertainties can be very high, and sometimes when the
parameters are changed within the range of uncertainty. a qualitatively different model is
obtained. Unlike global sensitivities. local sensitivities are totally incapable of providing
information on the effect of significant parameter changes. Local sensitivities are really
local, and the information provided is related to 2 single point in the space of parameters.
The point investigated is usually the point of best parametric estimate, also called the
nominal value of parameters. Small variations in parameter values usually do not change
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the local sensitivities dramatically, but a significantly different parameter set may result in a
completely different sensitivity pattern.

Sensitivity analysis of time-dependent systems has another characteristic feature, [n
most cases, sensitivity analysis can be considered as probing the model using another set
of parameters. However, sensitivity analysis can also be used for the analysis of a model via
perturbation of the parameters. In the former case, the parameters are changed at simula-
tion time 2zero, and therefore the inittal time of sensitivity calculation is equal to the initial
time of simulation. In the general case, however. the initial times of the model and of the
sensitivities are different. Let the simulation be started at time O, let the parameters
be perturbed at time t), and let the effect of the perturbation be studied at time ¢,. The
perturbed solution ¥’ can be approximated from the original solution ¥ and sensitivity
matrix S:

y(e2) = y(t) + 8(tz, 1)) Ak,,. (5.5)

This means that the sensitivity matrix § has double time dependence in the general case.
and the time limits ¢, and t, provide a degree of [reedom in the analysis of models.

5.3 NUMERICAL METHODS FOR THE CALCULATION OF
LOCAL SENSITIVITIES

5.3.1 Finite-Difference Approximation

The simplest way to calculate local sensitivities is based on slightly changing one parameter
atatime and rerunning the model. Using the finite-difference approximation, elements of the
sensitivity matrix can be approximated by

Oy _ylk + Bk) — y(k)

3k, Ak v j=1..,m (5.6)

This procedure is also called the brute force method or the indirect method. The main
advantage of this method is that no medification to the original model or extensive extra
coding is needed. However, the brute force method is slower and less accurate than more
sophisticated methods.

Calcuiation: of local sensitivities in this way requires m + 1 stmulations of the original
model. If central differences are used. 2m simulations are required. The accuracies of
the sensitivities calculated depend on the parameter change Ak, In the case of nonltnear
models, parameter changes that are too large (e.g. >5%) would damage the assumption of
iocal linearity. If the parameter change is too small, the difference between the original
and perturbed solutions is too small and the round-off error is too high. In most cases, a
1% perturbation is a good practical choice. but finding the best (or acceptable) value is a
trial-and-error process.

53.2 Direct Method

Differentiation of Equation (5.3) with respect to k; gives the following system of sensitivity
differential equations;

day_ dy af

c-ﬁ-a—h— E{;‘i‘a—kj‘ {5.7)
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or, in matrix form,

$§=JS+F. (5.8)

Here J = {8/,/0u} is the derivative of the right-hand side of the differential equation with
respect to the system variables (called the Jacobian matrix) and F = {81/0k} is the deriva-
tive with respect to the parameters, sometimes called the parametric Jacobian. The initial
condition of the differential equation (5.7) is a zero vector.

Direct methods are based on the solution of the ODE (5.7). Numerical solution of Equation
{57) requires knowledge of the values of the matrices J and Fat each step of the ODE solver.
To evaluate these matrices, the actual values of the system variables have to be known,
and therefore a simultaneous or preceding solution of the GDE (5.3 is needed. In the Brst
realizations of the direct methed. Equations (3.3} and (5.7) were solved independently but
simultaneously. and the solution of Equation (5.3) was used for setting up Equation (5.7).
All variants of this algorithm were relatively slow.

Dunker (1981, 1984) was the first to show that a special relation between Equation {3.3)
and Equation (57) allows a numerical shorteut, and called this algorithm the decoupled
direct method or DDM. Equations (5.3) and {5.7) have the same Jacabian, and therefore a stiff
ODE solver selects the same step size and order of approximation for the solution of both
equations. In Dunkers method. the ODE solver decomposes the Jacobian only once, and then
takes a timestep solving Equation (3.3) and then solving Equation (5.7) with all parameters
cne after the other. Since the triangularization of the Jacobian is the most time-consuming
part of a stiff ODE solution, using the decoupled direct method, sensitivities can be calcu-
lated with relatively little extra cost.

Several implementations of the DDM exist, and the DDM has proved to be the best general
method for the numerical calculation of local sensitivities.

In the case of stationary systems, if the stationary point is asymptotically stable. the
stationary sensitivity coefficients are limits in time of the dynamic ones, and their time
derivatives tend to zero. Therefore, Equation {5.8) can be transformed to

58° = -J°'F. (5.9)

The matrix $° is the stationary sensitivity matrix and the matrices J and F are evaluated at
the variable values of the stationary point. Equation (5.9) can also be applied when the
original mode! is defined as a system of algebraic equations (5.1).

5.3.3 The Green Function Method

Differentiating Equation (3.3) with respect to the tnitial values ¥°, the lollowing equatton is
obtained;

d

d:K“‘ t1) = J(e}K(t, £} {5.10)

where ¢; and t are the time of perturbation and the time of observation, respectively. and K
is the initial value sensitivity matrix, that is

K{c,t1)={%}, Kit,,ed)=1 tz1.
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Equation (5.7} is a linear inhomogeneous system of differential equations, and therelore
it can be solved by first determining the homogeneous part (3.10) and then calculating the
particular solution:

S{I1,t3)=JQ K(Eg.S)FfS}dS. (SIU

Inthis equation, K is known as the Green Sunction or kernel, and the numerical method based
on the solution of Equation (311} is called the Green function method,

The Green function method also has several variants. The most developed of these
is called the analytically integrated Alagnus version of the Green function method
(GFM/AIM) (Kramer et al., 1981). In this version, the matrix K is approximated by a matrix
exponential;

I+ar

K(t—f—&t,t):exp“ J(s}dsJ. {5.12}

The GFM/AIM method is several times faster than other versions of the Green function
method.

Applying the direct method. the numerical effort increases linearly with the number
of parameters. In the case of Green function methods, the numerical effort js proportional
to the number of variables. In practice, however. the GFM is faster than the DDM only at a
very high ratio of the number of parameters to the number of variables, and the numerical
error is less easily controllable than in the case of the much simpier DDM algorithm.

534 Other Methods

Other methods have alsc been deseribed in the literature, but they are much less widespread.
It is frequently useful (Miller and Frenklach, 1983) to approximate the integrated solution
of the original model by an array of simpler empirical equations as a function of parameters
in a parameter region. Preparation of such an empirical model is very time-consuming,
and cannot be justified by only the sensitivity calculations. However, if such an empirical
function is available, differentiating it provides an estimate of the local sensitivities as a
by-product.

According to the polynomial approximation method (Hwang, 1983}, the solution of the
sensitivity differential equations (3.7} is approximated by Lagrange interpolation poly-
nomials. Although high computational speed and good numerical stability were demon-
strated. this method was never applied to real problems,

54 DERIVED SENSITIVITIES

Inthe case of models defined by the differential equations (5.3). not only the actual values of
variables are interesting but aiso their rates of change at a given time. The rates of change of
variables are given by the left-hand side of Equation {5.3). Since

d (Bu\ _ Hdy,/dv)
AT AT
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the sensitivities of the rates of change of variables can be calculated by Equation (5.7}, know-
ing the local sensitivity coefficients.

The rate sensitivity matrix §(t1. ;) also has double time dependence. If the two times
coincide (¢; = tz). the instantanecus effect of parameter change is obtained. It is clear [rom
Equation (5.8) that the matrix F = {8f;/8%} can be considered as an instantaneous rate
sensitivity matrix. Knowing the values ol variables at a given time. F can be calculated
analytically and therefore the solution of the sensitivity ODE {3.8) is not needed. It has been
shown (Turdnyi et al., 1989 that F can provide valuable information on the structures of
models.

Mathematical models may provide qualitative information. Such information can be
whether a model! oscillates, if a given variable reaches a threshold value during the time
interval inspected. and sc on. Sensitivity analysis cannot be used for the study of such
information. On the other hand, frequently the information desired is quantitative, but
may not be among the primary outputs of the maodel, although it can be deduced [rom the
time histories of variables. Such information might be the maximum value of a variable,
the time needed for a variable to reach a threshold value, or, in the case of periodic solutions,
the period time. Such quantitative information can be called a feature, and its sensitivity is
named feature sensitivity,

The brute force method offers a direct way to calculate feature sensitivities (Frenklach,
19843, A particular feature is evaluated from the original and perturbed solutions. and the
feature sensitivity is calculated using finite differences.

In many cases, the feature sensitivities can also be calculated [rom the local sensitivities
of variables. As an example, assurme that variable i has 2 maximunt {or minimum; at time t*.
This implies that the time derivative of the variable is zero:

gi{ks 'E)!(:[‘ =0. {513)

Differentiating Equation (5.13} with respect to the parameter &; the following equation
is pbtained {Rabitz et al.. 1983) for the calculation of the sensitivity of the location of the
maximum:

325,]({«)
o Ot Ok, -
—_——= - . 3.14
E ) (319
a7t

The numerator contains the appropriate rate sensitivity coefficient §;(0,t*}. while the
denominator can be calculated {rom the Jacobian and the right-hand side of the original
QDE:

8%y ¢ 1c
W-Jf{y). {5.15)

Another frequently applied feature sensitivity is the sensitivity of the period time of
periodic {oscillating) models. Period time sensitivities can also be calculated (Edelson and
Thomas, 1981) approximately from the local variable sensitivities:

3y;(t2) _ ayf(t; + 1'}
Or _Ok{n)  Ok(h) o
%~ G . {5.16}

dt
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55 INTERPRETATION OF SENSITIVITY INFORMATION

5.5.1 Effect of Changing One Parameter on a Single Vartable

The sensitivity coefficient B/ By is a linear estimate of the number of units change in the
variable y; as a result of a unit change ir: the parameter j. This also means that the sensitivity
result depends on the physical units of variables and parameters, and is meaningful only
when the units of the model are known. In the general case, the variables and the para-
meters each have different physical units, and therefore the sensitivity coefficients cannaot
be compared with each other.

To make the sensitivity results independent of the units of the model, usually normalized
sensitivity coefficients are applied. The normalized local sensitivity matrix is denoted by §

and is defined as
& _ & Oy
s- {bou) 517)

These coefficients represent a linear estimate of the percentage change In the variable U;
caused by a one percent change in the parameter k; The normalized sensitivity coefficients
are independent of the original units of the model, and are comparable with each other.

A practical difficulty in handling sensitivity matrices comes from their size, A reasonably
sized model may consist of 50 variables and 100 parameters, This results in a sensitivity
matrix of 5000 elements. In addition, if the sensitivities are studied at 20 time points then
10° numbers have to be compared and analyzed. It is inevitable that some methods have to
be used for summarizing the sensitivity information.

55.2 Effect of Changing one Parameter on Several Variables

In model optimization. the improvement of the fit is expressed by the change in a single num-
ber. This is achieved by introducing an objective function, which converts the multivariate
output of the model to a single value. As an example, such an objective function can be:

n * — yidts 2

where y,(t3} is the solution of the model at time £; at the nominal parameter set and wt. )
is the solution of the model at time t; using a parameter set perturbed at time t1. The weights
w; allow the expression of the relative tmpartance of the mode! variables according to the
modeller. For some variables, this weight can be zero. showing that the variable has to be
present in the mode! as an auxiliary variable, but its value is not interesting at all.

The sensitivity of the objective function above can be calculated from the local variable
sensitivities:

de _ - ) lcr)yl _
Fh{tlitZ)_zwr[aa_hf(tlstl}:[ . (.')19)

=1

Investigation of the sensitivity of objective functions significantly decreases the number of
sensitivities to be inspected. However, for a fixed time of perturbation ¢,. the sensitivities still
have to be studied at several time points {7 to get an impression of the change of sensitivities
in time,
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The next stage of information compression Is the application of time-integrated
sensitivities. The corresponding objective function is

N ty . y:(t .'t}_yj{tz) 2 )
L’—J{E ;“I[_—I_yf{fT__] dt (320}

The sensitivity of this objective function can be approximately calculated by

e ! u 14 i 2 -
5= ZZ\V‘. ;5%(:;,.:1}J . {5.21)
T 1 1

h=2 i=1

Sensitivities of objective functions, calculated from normalized sensitivities are called
overall sensitivities (Vajda et al., 1985). Selecting proper weights w,. the overall sensitivities
provide information on the importance of model parameters.

55.3 Effect of Simultaneously Changing Several Parameters on
Several Variables

The averall sensitivities give information o the change of single parameters only. However,
changing several parameters simultaneously can strengthen or weaken the effect of single
parameter changes. First-order local sensitivities always correspond to changing one para-
meter at a time’. and do not show the eflect of simultaneous parameter changes. Principal
coimponent analysis (Vajda et al., 1985: Vaida and Turédnyi. 1986) can, however, be used to
estimate the eflect of simultaneous parameter changes on several variables. based on local
sensitivities only.

Use the time-integrated objective function (5.20) to assess the effect of parameter changes
and replace the integral by a summation:

! ] * — 2
o) = Zz[yj(th) th.)fr“ﬁ}} .

(5.22)

h=2 i=1 il
Assuming that all parameters are positive, normalized parameters, «, defined as x = [n k.
can be used. II'some of the parameters are negative, a simple modificatton of the medel can
lead to all-positive parameters. For simplicity, let the weights now be either 1 or 0. Weight 0
deletes the corresponding row from the sensitivity matrix. The local change of the objective
function above around the nominal values of parameters & can be approximated by the
loca! sensitivity matrix:

e(x) = {Ax)T§TS(Ax), (3.23)

where Ax = a — 2", and the matrix § has been composed from a series of local sensitivity
matrices, belonging to times (t,, ta), ..., (fy. 4}

o e
-

o
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1
[ud
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Equation (5.23) is a quadratic approximation to the real shape of the objective [unction. Any
cross-section of this approximate objective function is a byperellipsoid. defined by the
matrix 7 8. The arientation of the eilipsoid with respect to the parameter axes is defined
by the eigenvectors of the matrix T8, while the relative iengths of the axes of the ellipsoid
are revealed by the eigenvalues of this matrix.

I{the axes ol the ellipsoid are parallel to the axes of the parameter space, there is no syner-
gistic effect among the parameters, and the relative lengths of the axes define the relative
importance of parameters. However, il. say, the direction of the longest axis of the ellipsoid
is at 43° on the plane of two of the parameter axes, this means that the effect on all variables
by changing ane parameter can be well corrected by also changing another parameter.

A similar interpretation can be given using the term principal component. A principal com-
porent is a new parameter, obtained via a linear combination of the original parameters. Let
matrix U denote the matrix of normalized eigenvectors of §TS. Principal components are
defined as

¥ =t"a, (5.25)

and. using principal components, the objective function (5.23) can be given in a simpler
form:

e= z MAY)?, (5.26)
=1

where AY = UTAx and 4 is the vector of eigenvalues. Equation (5.26) provides another
explanation of why the eigenvectors of matrix $T§ reveal the related parameters and why
the corresponding eigenvalues show the relative weights of these parameter groups,

From a practical point of view, principal component analysis is an inexpensive post-
processing technique that extracts otherwise-unavailable information from the local
sensitivity matrices.

56 INITIAL SENSITIVITIES

The solution of the initial-value problem (5.3} depends on the values of the parameters, but
also on the initial values of the variables. Calculation of the initial-value sensitivity matrix
has been introduced as a first step in the caleulation of local sensitivitias, according to the
Green function methed. It has been shown in Section 5.3.3 that the tnitial-value sensitivity
matrix K{t, 6} = {d¢(t}/8cP(t))} can be obtained as the solution of the [ollowing initial-
value problem (Equation (5.10}

i K([. f } = J(f}K[I, 19 )
dt
The initial value of K is a unit matrix. The initial-value sensitivities can be considered
as if a unit perturbation were applied to the tnilial values, one-by-one. and the fate of this
perturbation were monitored.

Initial-value scnsitivities are interesting because they are related to time scales of models,
If the time scales are well separated, variables can be categorized as fast or slow. The
slow variabies respond very slowly to a perturbation, since the perturbation puts them on
atrajectory almost parallel 1o their original one, and thereflore the Initial value sensitivity of
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a slow variable (i.e. the diagonal element belonging to a slow variable) remains close to unity
for a long time. Fast variables quickly return to their original trajectory after the perturba-
tion. and therefore their initial-value sensitivities decay to zero quickly. If the initial-value
sensitivity of a variable exceeds the unit value instead of remaining close te unity or decay-
ing this indicates that a slight increase in the variable increases its production rate. Such
behavior is called auforatalysis in chemical kinetics.

The point of the quasi-steady-state approximation (QSSA) is that the values of slow vari-
ables determine the values of fast variables (Turdnyi et al.. 1993). This means that it is
enough to solve a systern of diflerential equations for the slow variables, and the values of
fast variables can be calculated from the values of the slow ones using algebraic equations.
The critical step in the application of the quasi-steady-state approximation is appropriste
division of variables into fast and slow ones. Initial-variable sensitivities can da the job, but
there are other approximate techniques, which provide similar information in 2 computa-
tionally less expensive way.

During the solution of initial-value problem (5.10), the values of variables change, and
therefore the elements of the matrix J are continususly changing, On fixing the elements
of Jal the starting time, Equation {5.10) becomes a homogeneous linear system of differential
equations with constant parameters. The solution of such a system is

K' = exp{J{t,}1]. . {5.27)

It has been shown that the Jacobians of chemical kinetic differential equations can fre-
quently be rearranged to approximately lower triangular form (Turdnyi et al., 1993). It is
possible that a similar observation holds for many models in other disciplines. Consequently,
for most chemical kinetic systems, the eigenvalues of the Jacobian are close to the diagonal
eiements of the Jacobian, A; = ji, where j; is the ith diagonal element of the Jacobian. Since
the lifetime can be defined as r, = —1/j;. this relation supports the traditional observation
that short-lifetime variables decay rapidly after perturbation and behave as fast variables.
This also means that the time history of the diagonal of the initial-value sensitivity matrix
can be approximated as

ki(t) =~ exp{jit). (5.28)

A more sophisticated handling of timescales takes into account that eigenvectors of the
Jacobian define variable groups. The time scale separation is better if variable groups. not
single variables, are considered and thercfore a more accurate quasi-steady-state approxi-
mation with fewer variables can be applied. The corresponding numerical techniques
{Lam and Goussis, 1988; Maas and Pope. 1992} represent a further development of the
classical QSSA.

So far, only the interpretation of the diagonal elements of the initial-value sensitivity
matrix has been discussed. The ofi-diagonal elements of the matrix K also contain important
dynamic information, but their interpretation depends on the actual physical model. In
general, the off-diagonal elements show the displacement of the trajectory of all other
variables. in response to perturbing a given variable slightly. As an example, a large off-
diagonal element indicates strong coupling between a fast and a slow variable, introducing
large error into the Q8SA calculation (Turanyi ef al., 1993).

The whole initial-value sensitivity matrix can also be approximated based on an eigen-
vector—eigenvalue analysis of J{f; } (Maas and Pope. 1994). Let ¢, be the time of observation
of the initial-value sensitivity calculation and let ¥ and ¥ denote the matrices of right- and
left-eigenvectors of J{¢, ), respectively. The matrices ¥y and \?f are truncated arrays, obtained
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by deleting the columns and rows. respectively, belonging to the eigenvalues of the Jacobian
larger than —1/(t, — t:}. This means that the matrices V; and V; have dimensions n x y
and ry x n, respectively, and belong to the n; fast eigenvectars of the Jacobian. The initial-
value sensitivity matrix can now be approximated by

Kiti t) =P =1~V V. (5.29)

5.7 FUNCTIONAL SENSITIVITIES

Many physical models contain tnput functions k = &(r, t),i =1,2..... that depend on
spatial coordinates r and/or time !, All of the same general questions about parametric
sensitivity carry over to this function case, where the system output g is a functional of the
inputs. Thus, Equations {5.2) and (5.4) have functional analogs at any order. For exampie. to

first order, we have

_ by -
Sy = 2Jm6k,(r, Hdrde, {5.30}

and the functional sensitivity density is given by Si(r, t) = 8y/8k{r, t) Keeping in mind that
the mede! output y can also have position and/or time dependence, it is evident that the
functional sensitivities provide a detailed input—gutput map. The analogy with parametric
sensitivities extends beyond those defined in Equation (5.30), to include the full family of
derived sensitivities for various applications.

Input functions k = k(r,t),i = 1,2,..., can arise in many physical circumstances, but
the most cornmon case occurs in atemic and molecular physics, where the input involves
fundamental intermolecular interactions between the atoms and molecules, and the goal
Is to reveal how these input functions influence the observable chemical and physical prop-
erties. In turn, the sensitivity of these properties to the input functions provides a basis for
attempting to extract these functions from suitable observed laboratory output data. The
basis for such inversions is rocted in Equation {5.30), where 8y is the deviation between the
observed value and that of the current theotetical model, with é#,(r, t) being the deviation of
the tnput function from its true value. Such inverse problems are typically ill-posed, calling
for suitable regularization, and a number of inversions along these lines have been carried
out {Ho and Rabitz, 1993).

58 SCALING AND SELF-SIMILARITY RELATIONS

Substantial effort can be involved in calculating sensitivity coefficients. The recognition of
any patteras of behavior amongst these coefficients would be of considerable significance.
not only for simplilying the sensitivity information, but also for the fundamental insight
gained about the intimate workings of the system. There is certainly no a prieri reason
to expect the existence of particular patterns or relationships amengst the numerous sensi-
tivity coefficients in a system. since this would imply the presence of hidden dynamical
couplings between the system dependent and independent variables. However, such rela-
tionships amongst sensitivity coefficients have been identified through patterns of similar
behavior in & variety of sensitivity calculations arising Irom problems in chemical kinetics,
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especially of a combustion nature (Rabitz and Smooke, 1988). Such connections have been
referred to as scaling and self-similarity relations, and the possibility of their existence has
poteatially important implications for model analysis, as well as system simplification. To
be specific. the discussion here will be confined to the treatment of one-dimensional
steady problems described by reaction—diffusion equations. often arising, for example, in
combustion problems.

In typical case studies, the system ditferential equations are strongly coupled, and, even
more importantly. it is generally possible to identify a distinct and deminant member of the
dependent variable set. denoted without loss of generality as y;. The assumed role of i, is to
provide the strong coupling linkage between all of the N differential equations or dependent
variables. A typical example of this behavior in combustion might be the identification of
y; as the temperature or the concentration of some particularly important chemical
species. This dominance is asserted to imply total coordinate and parametric entrainment
such that

Yalx, &) = Poly {x, @)}, (5.31)

whete F,, is an appropriate non-determined function. Clearly, this relation is an approxima-
tion, and we take it as a working anstatz to explore its consequences. Simple differentiation
of Equation (5.31) with respect to the system parameter a;. as well as to x, will lead to

Qynlx) 5‘91(*)%(6_9_1)_1_ (3.32)

30:]: - 60:; dx dx
Equation {5.32} is referred to as a scaling relation in that the sensitivity of the nth dependent
variable is prescribed in terms of the sensitivity of the first member and relevant slope
information. Also, note that these relations are independent of the unknown function F,.

Although the result in Equation (5.32} is based on the hypothesis in Equation (5.31) that
#1{x,2) is dominant, it is a simple matter to show that the scaling relations are in fact fully
symmetrical with regard to all of the dependent vartables. Consideration of Equation
(5.32). along with the same equation for the n'th dependent variable immediately leads to
the following result:

Bun(x) _ Oyw(x) By, (6.’9'"')_1 (5.33)

doy  Ba; Ox \ Ox
forall nand v’ strongly coupled dependent variables. This implies that Equation (5.31) may be
used as reciprocal relations such thal the special role provided by y; may be inverted
and replaced by any member of the strongly coupled dependent variable set. In cases of
non-monotonic coordinate dependence, this inversion has to be done on a piecewisce
basis. Similarly. singular points where 9y;/8x = 0,/=1...., indicate changes in the
monotonicity of the dependent variables, and it ts clear from Equation (5.32) that the scaling
relattons can exhibit singularities at these points (corrections to the scaling relations may be
especially significant near these points).

The scaling relations have been shown to be remarkably accurate in a number of numer-
ical calculations. The actual presence of scaling was only identified subsequent to finding
evidence for the more powerful self-similarity conditions. The arguments leading to seit-
similarity involve a number of operations with the system dynamical equations and the
use of the Green function analog of Equation {5.32). The net result is the identification of the
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approximate similarity relationship

-1
—) Ax)a;. (5.34)

The term A(x} is a function and o, is & constant. with bath being characteristic of the parti-
cular dynamic system. The self-similarity condition in Equation (534} has a surprisingiy
simple structure that states that, under its conditions of valtdity. all system sensitivities
reduce to knowledge of a scalar function A{x). the dependent variable spatial slopes, and
a vector of characteristic constants ¢. The vector « has the same length as the parameter
vector; however, its components are generally complicated functions of all the system para-
Meers.

The simple form of Equation (5.34), upen substitution into Equation (5.31). leads to the
prediction

L gy/ay. (5.35)

This equation states that the sensitivity of a given dependent variable. with respect to a
sequence of parameters, may be approximately described by & self-similar set of curves in
(coordinate) space. all related by constants in the vector o. The scaling behavior suggested
by Equation (5.33) is often seen to be valid {Rabitz and Smooke, 1988) for at least a subset
{i.e. the strongly coupled subset of dependent variables).

The essential assumption underlying the sell-similarity and scaling results in Equations
{3.32) and (5.35} is the basic entrainment conditions in Equation (5.31). A growing body of
numerical results has justified these relations at least qualitatively. and even quantitatively
in some cases. The consequences of scaling and sell-similarity behavior go beyond mere
simplification of the sensitivity coefficients, The existence of this behavior suggests that the
physical system itsell may be simplified,

The basic implication behind the existence of dominant variable dependence is that
strongly coupled systems, in fact, may behave in a simpler fashion than was at first believed.
[tis curious that this behavior appears likely to be more valid in problemns that are inherently
nonlinear and normally thought of as having mare complex behavior than arising in linear
problems. In a sense, the strong mixing often found in nonlinear systems can lead to an
unusual level of parametric simplicity under appropriate conditions.

59 APPLICATIONS OF LOCAL SENSITIVITIES

591 Uncertainty Analysis Bascd on Local Sensitivities

In some cases. many measurements are available for model parameters, and therefore the
probability density functions or at least the variances of the parameters are known. The task
ol uncertainty analysts is to determine the probability density function (pdfy of the model
output at a given time, if the pdfs ol the parameters are known, A less ambitious task is the
calculation of the variance of the model cutput, knowing the vartance of parameters.

Capability for uncertainty analysis is one of the major features of global sensitivity analy-
sis methods. However, a first estimate can also be made, based on local sensitivities
{Atherton ¢t al., 1973),
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Using the equations for the propagation ol error, a linear estimate can be given for the
variance of mode{ output & *{x;):

N2
iy = (-g%) 8 k). (3.36)
oy} = Zaf(yf)- (5.37)

72(y;) is the sum of the contributions of the uncertatnties of each parameter k; to model
output ;. denoted by uf {y,). The partial variances §%; give the percentage contribution of
the uncertainty of parameter j to the total uncertainty of model output

Uf(yi)
o4 {y:)

Uncertainty analysis using local sensitivities is not & substitute for the better-based global
methods, like FAST. but may provide an order-of-magnitude estimation.

One of the applications of uncertainty analysis is the determination of strategies for the
improvement of a model. The most uncertain parameters should be studied in more detail
for the most eliective improvement ol madel reliability.

59.2 Global Parametric Mapping

The predictions of local sensitivity analysis are best in the neighborhood of the reference
operating point in parameter space. Nevertheless, there is interest in extracting as much
information from the analysis as possible, particularly regarding parameter behavior over
larger domains. Short of employing techniques attempting to fully explore this issue, local
gradient analysis has some special contributions to make. First, if a sufficient number of
derivatives are available in Equations (5.2) or {5.4) then the results may often be extended
by Pad¢ approximates. In addition, power-law or other types of scaling relations may also
be postulated to exist over the parameter space.

Feature sensitivity analysis {(Kramer et al.. 1984) provides a systematic means of non-
linearly probing a region of parameter space. As an explicit illustration of this procedure,
consider y(r,t, @) as the objective of interest, where the parameter dependence is explicitly
indicated. By an examination of the r and ¢ dependence of this observaticn, it is assumed
that meaninglul characteristic features may be identified and an explicit functional form

i(r,t, 3) chosen that contains the leature parameters 3|, 3;, . ... By implication, the two
forms of the observation are equivalent:
u(r.t.a) = gir, t, 8e)). (5.39)

Equation {5.39) implies a relationship between 3 and a. In practice, we shall only know a
solution of the model equations and the sensitivities at & reference point o" in parameter
space. This information will not be sufficient to determine the functional relation § = 3(n);
however, we may determine 3" = 3(a") at the system reference point znd the cerrespond-
ing sensitivity coefficients (83;/8cy) 0. In order to achieve this goal, the feature parameters
in Equation {%.39) must be adjusted consistently with that relation. One technigue is to
employ minimization of the least-squares functional

R= ”drdc;y(r, t, o) — gl . 8))%. (540}



Applications of local sensitivities 95

Minimization of R with respect to the feature parameters will yield the equation

L

g—; = derdz[y(r, L) — glr e 3) %(r, t.3H =0 (3.41)
The derivative in the integrand of Equation (5.41) may be explicitly evaluated by recalling
that i has a known functional form with respect to its variables. Equation (5.41) implies
the existence of the refationship 3 = 8{a”). but again it must be recalled that ulr.t,a®
is assumed known only at the parameter reference point. Therefore, differentiation of
Equation (5.41) with respect to one of the input parameters will yield an equation that may
be solved for the desired feature sensitivity coefficients (@3;/8ay), 0. In carrying out this
last differentiation. it is evident that the system sensitivity coefficients 8y(r.t, a}/Bey;
{or, if appropriate, their functional analog) will enter, The impiementation of this overall
procedure of feature sensitivity analysis is quite straightforward, and. in practice, it is only
limited by one’ ingenuity in choosing simple but flexible functional forms gr e 8.

The technique of feature sensitivity analysis embedied by the relation in Equation {3.39)
has an immediate spin-off application to global parameter mapping. Equation (3.39). lor the
present purposes, may be recast into the following form:

4(r, fa + Aa) = et (o + Aa)). {5.42)

This equivalence cannot be directly applied. since we do not have full knowledge about the
relation between 3 and & However, the feature sensitivity analysis based on Equation (5.39)
leads to knowledge of % and the sensitivities of 3 about the nominal operating point. There-
fore, we may consider the expansion
a3

Bla+ Aa) == Ba) + E}EAQ' {543}
Substitution of Equation (3.43) into Equation {5.42) will yield a nontinear scaling expression
with respect to the parameters Ac. This feature parameter scaling approach is both compu-
tationally practical as well as likely to give acceptable results over an extended neighbor-
hood arcund the system operating point. A clear example of this situation arises in the
singular perturbation problem ol parameter dependence in oscillating flames. In those
cases where the parameters influence the system frequency (Kramer et al., 1984), a local
sensitivity analysis will produce secular growth. In contrast. a feature analysis on the
system frequency should be stable.

59.3 Parameter Estimation

Some parameter estimation methods, such as the simplex method. do not use local sensitiv-
ities. However, in most cases, calculation of the slope of the objective function in the space of
parameters is a part of the parameter estimation algorithm. Strangely, while much work was
devoted to finding better algorithms for the calculation of local sensitivittes, this knowledge
was not recycled to the parameter estimation programs. Most parameter estimation
programs. even nowadays, use the brute force method for calenlation of the slope of the
objective function. The inaccurate calculation of the slope usually does not spoil the final
result of parameter estimation, but may slow the procedure. Application of the decoupled
direct method (Section 5.3.2) and the conversion of variable sensitivities to the sensitivity of
the objective function (Equation (5.21)) should be used to improve the numerical efficiency of
most programs lor the estimation of parameters of ordinary differential equations.
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All parameter estimation procedures [ail if an ill-conditioned problem is encountered.
An ill-conditioned problem means that the data do not carry encugh inflormation to provide
an estimate of all parameters fitted, Usually the only sign of this is that the parameter
estimation algorithm fails to converge. Local sensitivities and principal component analysis
(Turdnyt, 19904} may help to avoid this problem in the following way.

In the case of parameter estimation. the normalized sensitivity matrix. to be investigated,
is defined as

_kohoy
“h 3y 3k’

e o 1]

(5.44)

where h(y) is the instrumental [unction, which converts the calculated variables to the
calculated observable quantities (e.g. signals of the experimental apparatus). The matrix P
corresponds to the matrix $'$ of Equation (5.23)

P =3 R"(t)W)(t)R(1) (5.45)

The matrix W is the weight matrix. [n general. it is the inverse of the covariance matrix. If
the covariances are not known or assumed to be zero, W is diagonal, where the diagonal
elements are the inverses of the variances. In the unweighted case, W is the identity matrix.

Eigenvector—eigenvalue analysis of the matrix P reveals which parameters can be deter-
mined from a given experiment. Parameters that are not related to large eigenvector
clements of large eigenvalues cannot be determined. Parameters that are not coupled to
other parameters and are linked to large eigenvalues can be fitted easily. A typical situation
is when several parameters are strongly coupled, for example when ouly the ratio of two
parameters has an influence on the objective function. In this case, the correspending
eigenvector has the form {2, v2,0,0,..., 0}. [f both parameters are fitted simultaneously,
the result is a deep-valley-like objective function, and the fitting procedure fails. To avoid this
problem, one of the parameters should be fixed at a nomina! value, and only the other
parameter has to be fitted. However. the result of fitting is always the ratio of the two
parameters and not the individual values of parameters. Individual values can be obtained
from independent experiments ar other sources.

The matrix P has been calculated as the first guess of the parameter values. During the
parameter eslimation procedure. improved estimates of the parameters become available. A
substantially different parameter set may provide a qualitatively different picture, and there-
fore Lhe analysis should be repeated at every stage of the parameter estimation. Carrying out
a principal component analysis at the beginning and during the parameter estimation
helps to avoid many problems. and should always be encouraged.

594 Experimental Design

Experimental design is a branch of mathematical statistics where the aim is to find experi-
mental conditions that provide the most information for the determination of some para-
meters in & model. Most experimental design algorithms are applicable only for linear
madels. The above procedurc. based on eigenvector—cigenvalue analysis of the matrix P,
can be used also for experimental design in the case of any nonlinear model. By selecting
the method of measurement {the function k). and the times of measurernent t, the informa-
tion content of the experiment for the determination of a given parameter can be optimized.
Note. however. that this eptimization is based on an a priori assumption of the parameters
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and of the model structure. The experimental design, experiment, and parameter estimation
cycle has to be repeated several times until a satisfactory result is obtained.

595 Stability Analysis

A common concern is the stability of dynamical systems to disturbances, either in the oper-
ating parameters or the state of the system during its evolution. An analysis of the system
Green function in Equation (5.10) addresses both of these issues. This is evident. since
Kif(t, ;) = 8C,(£)/C}(¢,). The Green function dictates the response to all parameter dis-
turbances, as is evident in Equation (3.11). Since Egquation (5.10} for the Green function is
a linear differential equation driven by the Jacobian, its eigenvalue analysis can reveal the
stability of the dynamics. Any eigenvalues with positive real parts indicate growth behavior
with respect to time, and. hence. instability with regard to disturbances. These eigenvalues
raay also be expressed in terms of Lyapunov stability numbers. A complete analysis would
also include the general case where the Jacobian is. time-dependent. Cases of this type
have been explored (Hedges and Rabitz, 1985} for explosive chemical kinetics, limit-cycle
oscillatiens, and classical dynamics.

59.6 Investigation of Models

Local sensitivity analysis can be considered as a perturbation study of models. In the case of
time-dependent models. the change ol a parameter value influences first the values of those
variables that contain that parameter in their rate expression. This effect spreads further to
other variables. By inspecting this spread, much new information can be gathered on the
structure and behavior of the model. As has been shown in Section 5.2, the local sensitivity
matrix S{f1, {;} depend on both the time of perturbation, t,, and the time of observation of
the effect, t. Selection of these times provides a wide range of opportunities {(Hwang, 1988)
for the study of models.

59.7 Reduction of Models

Reduction of models means that the same phenomenon is described by a smaller, simpler
model, derived from the larger model. The derived model can be entirely different from the
original cne. e.g. when a dynamical system is modeled by a system of difference equations
instead of a system of differential equations (see e.g. Turdnyi. 1994). Another way of reduc-
tion is variable lumping (see e.g. Tomlin et al.. 1994), when the atray of variables is replaced
by a smaller set of variables and the new and old set of variables are related to each other by
linear or nonlinear functions. Also, effective model reduction can be based on the time scale
separation of madels {see e.g, Maas and Pope, 1992; Turanyi et al.. 1993; Tomlin et al.. 1997}

In this section, a more restrictive meaning of model reduction is used. The reduced model
is obtained from the original model by setting some of its parameters to zero. This might
mean that some of the variables are also cut out lrom the model.

Detection of redundant variables should be the first step in model reduction. In the case
of most models. the user is interested in only some of the variables and their effect on the
model output. These variables can be called important variables. In most models. there are
also auxiliary variables. They should be there for making the model work. bul their actual
value is not interesting for the modeler. Such variables are termed here necessary variables,
Also, in most models, there are redundant variables as well, which can be deleted without any
change of the model output.
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Two methods have been proposed {Turdnyi, 1990b) for the detection of redundant
variables in reaction kinetic models. The first methed is based on the preparation and
simulatton of a series of reduced models, [f all parameters related to a given variable are set
to zero and the calculated model output for the important variables is practically tidentical to
that of the original model, then this variable and the corresponding parameters can be
eliminated from the model. However, in many cases, the elimination of a smaller number of
parameters provides a more accurate reduced model. An algorithm was given to find
the minimal number of parameters to be eliminated in this step, but it exploits the special
structure of the kinetic differential equations. and therefore cannot be applied to any model,

The second method is based on the investigation of the Jacobian, and is more general,
although it provides a suggestion only. which has to be checked by the preparation of
the appropriate reduced model. The Jacobian J = {8/} can also he considered as a
sensitivity matrix. It indicates the sensitivity of the calculated variable rates to perturbing
the values of variubles, According to the ideas described in Sections 5.5.1 and 3.5.2. further
processing of this matrix makes the information more readily available. Application of the
normalized Jacobian = {(y,/f;) afi/3y;} makes the information independent of the units
of variables, and the corresponding overall sensitivity shows the effect of variable periurba-
tion on a group of N variables:

N 2
R
B,—;(ﬁ ag,-) : (5.46)

B; shows the instantaneous or direct effect of changing variable i on the values of N other
variables. Variable i influences the rate of variable j directly, if variable i is present in the
rate term of variable fon the right-hand side of the ODE. Of course, an indirect eflect is also
possible. when variable f influences the rate of variable & while k controls the rate of j. The
Jacobian shows the direct eflects only.

Redundant variables can be detected by using the following algorithm; Consider first the
Nimportant variables only. and calculate B, which expresses the strengths of direct effect of
each variable on the important variables. The variables most closely connected directly to
the important variables are added to the group of N variables ta be investigated. and the
procedure is repeated. The algorithm usually converges in a few steps. and the group now
contains the important vartables and all variables that have a strong influence on their rate.
directly or indirectly. The variables left out are the redundant variables.

This algorithm is local in time, and therefore has 1o be repeated at several time points.
Alsa. it is based on a local linear approximation, and therefore its findings have to be con-
firmed by triat calculation of appropriate reduced models. Having eliminated the redundant
variables from the model. it contains important and necessary variables only. The next
step is the identification of redundant parameters.

It is generally assumed, wrongly. that if the sensitivity of & parameter is small for all
important variables, then this parameter can be eliminated from the model. However,
the local sensitivilies show only the effect of small changes of parameters (which may
be called ‘parameter tuning’). The order of importance of parameters deduced from the
sensitivity of important variables can be called tuning importance. Considering a group
of important variables, the order ol tuning importance can be deduced from the overall
sensitivity values (3.21).

Setting a parameter te zero is a drastic effect. and such a change may alter significantly
the calculated value of an important variable even if the corresponding local sensitivity is
smail. The reason is the indirect effect again: setting a parameter to zero may significantly
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influence the value of a necessary variable. and this effect extends to the important variable.
However. strong influence on a necessary variable can usually be detected at the nominal
point of parameters, and such a parameter has high sensitivity for some of the necessary
variables. A rule of thumb is that a parameter can be eliminated (i.e. can be set to zero) ina
model. if the sensitivity of all important and necessary variables of the corresponding para-
meter is small at any time during the interval considered (Hwang, 1982). it is important to
scan the whole time interval, because if a parameter is influential only at the beginning and
its value does not effect the location of the stationary point. then the calculated sensitivity
goes to zero as time advances. Overall sensitivities, as defined in Equation (5.21), provide a
good guess for reduction importance, if the summation has been extended to all important
and necessary variables. Using principal component analysis. parameters of high reduction
importance all appear with large eigenvector elements of large eigenvalues, if again all
important and necessary variables are considered.

An alternative method for model reduction is based on the study of the normalized rate
sensitivity matrix F = {{k /f} 3fi/@k;}. This matrix shows the instantaneous effect of chan-
ging a parameter on the rate of variables. Principal component analysis of F, considering
the important and necessary variables, reveals ail parameters that can be eliminated from
the model without significant changes in the values of important parameters (Turdnyi et al.,
1989}. Since F can be calculated easily in an algebraic way, this technique s fast and simple.
However, studying the effect of parameters on the rates instead of the model output is a less
direct approach, and the reduced model that is found has to be validated by comparing its
solution with that of the full model.

5.10 CONCLUSIONS

All modelling work includes the following steps: collection of information on the parameters
and on the mode! structure, setting up the model, and validation of the model against experi-
mental or observation data. The next step should be an analysis of the model, which includes
the assessment of the importance of parameters and reduction of the model by eliminating
the redundant parts.

Global sensitivity analysis methods have been designed to study the modelin a wide range
of parameters. However, in the case of large models, calculation ol global sensitivities is com-
putationally prohibitive, but local sensitivities can provide useful infarmation on the beha-
vior of the medel near the nominal values of parameters.

A general purpose program package. called KINAIL (Turdnyi. 1990c¢) is available for
manipulating and processing the local sensitivity matrix in many ways discussed in this
chapter. KINAL and a specific program. called KINALC, for the analysis of combustion and
gas Kinetic problems are available through the World Wide Weh. The functionality of KINAL
and KINALC are briefty described in the software Appendix.
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