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ABSTRACT

Two techniques, Artificial Neural Network {ANN) and Repro-Modelling (RM), are successfully used to
represent the chemistry in turbulent combustion simulations. This is a novel application of both methods
which show satisfactory accuracy in representing the chemical source term. and good ability in capturing
the general behaviour of chemical reactions. The ANN model, however exhibits better generalisation
features over those of the RM approach. In terms of computational performance, the memory demand
for handling the chemistry term is practically negligible for both methods. The total Central Processing
Unit (CPU) time for Monte Carlo simulation of turbulent jet diffusion flame, which is dictated mainly
by the time required to resolve the chemical reactions, is smaller if the RM method is used to represent
the chemistry, in comparison to the time required by the ANN model. The potential and capabilities of
these techniques are extendable to handle the chemistry of diflerent fuels, and more complex chemical
mechanisms.

1. Introduction

The adequate representation of chemistry in reacting systems is one of the outstanding problems in turbu-
lent combustion. This is mainly due to the complexity and highly non-linear nature of high temperature
chemical reactions. A proper kinetic mechanism to describe the chemistry of a simple fuel like hydrogen,
for example. may contain several tens of reactions and more than ten species. Although the systematic
reduction of chemical kinetic sets to a manageable size of about 3-5 global reactions is possible [1}, the
numerical simulation of turbulent combustion remains computationally prohibitive. If look-up tables are
used to store the changes in composition due to chemical reaction over specified time intervals, then the
computer memory (storage) requirements would become extremely large. Alternatively, the computatio-
nal run time would increase dramatically if the Ordinary Differential Equations {(ODEs) representing the
production rates of species are directly integrated during the simulation.

The objective of this paper is to outline a novel approach for representing cheimnical reactions in turbulent
combustion simulations with a modest requirement of memory storage and CPU time. The principle
is to produce mathematical equations which describe the chemical behaviour of a system given a set of
compositions and reaction time scales. Two methods are used to describe such formulation: Artificial
Neural Networks (ANN) and Repro-Modelling (RM). This is yet another genuine application of ANN
whiclh are widely used in many aspects of science and engineering. The intrinsic capability of ANN in
approximating non-linear systems {2. 3] is essential for representing chemical reactions which are highly
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non-linear functions of temperature and species concentrations. The Repro-Modeling approach establis-
hes functional relations in the form of high-order nultivariare polynomials between a set of inputs and
outputs. This method has recently been used for combustion sunulation by Turanyi [4]. Both ANN and
RM methods use a training set of inputs and outputs which is generated separately and corresponds 1o
chemical compositions that are accessible during 1he actual simulation. Since the problem is geared to-
ward accounting for chemical reactions in turbulent combustion simulations. the training set 1s generated
from the chemical system of Ho/C'02/04 mixtures using a three-step reduced chemical mechanism [3]. A
representative set of values for four scalars (mixture fraction. and molar abundance of CO», H, and H20)
are used here as input and the output represents the change in composition of the reactive scalars; COa,
H. and H.O: over a certain reaction time. Although a specific fuel and chemical kinetic schieme is used
here, the method can be extended to other fuel mixtures and more complex chemical kinetic mechanisms,

2. Artificial Neural Network Training

The neural network architecture used for this study is a multi-layer perceptron (MLP) that consists of
an input layer, an output layer, and two intermediate (hidden) lavers. A hyperbolic-tangent function is
used as a transfer (activation) function. An equal number of neurons in each hidden layer is used as it
proved {by trial and error experiments) that it is easier to train MLP network if the number of neurons
in the internal lavers are balanced. Significant differences in the number of neurons causes a ‘bottleneck’
junction of information that severely affect the convergence of the algorithm [7}. Similar ebservations

- T v T v v T

QOyigihalsamples

iy

-

+

A

Normalised amplitude

Error 1!

| i A . . 1 i PR L " . L

250 500 750 1600
Sample number

Figure 1: A typical neural network prediction {in normalised units) showing the training subser, the original
samples. and the associated errors.

have been reported by deVilliers and Bernard [6]. The learning algorithm used is the backpropagation
scheme with an individual adaptive learning rate factors for the weight matrices and bias vectors. A con-
stant value for the momentum term factor is used. The details of the optimisation process and sensitivity
analysis of the architecture and topology of the network are described by Christo et al. {7].

In order to reduce the possibility of being trapped in local minima, the training of the ANN is carried

912



out using a subset of the onginal training samples. The traimmng subset is generated randomly during
the learning process. To achieve smooth behaviour of the algorithm. the size of the subset should be
T0%%-80% of the size of the training set {see Fig. 1). This continuous {(dynamic) randomisation of the
subset of the training samples is found to give superior performance. in terms of convergence rate. over
using a fixed set of preselected training samples.

Figure 2 shows the actual and the associated errors of the ANN model in approximating the incremen-
tal changes Alco, (kmol/kg) of the reactive scalar. CO- over reaction time Af = 1.56ps. ‘The small
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Figure 2: Neural network and Repro-modelling approximation of composition changes of Carbon dioxide, ATco,,
over reaction time of 1.56 xs. and the associated absclute errors {for clarity, the errors distributions are shifted

by a fixed interval}.

magnitude of the errors and their uniform distribution implies that satisfaclory convergence of the ANN
algorithm is achieved over the entire range of the training sct, and 1s not confined only to the subset

domain.
3. Repro-Modelling Training

Repro-modelling {RM) means the apptoximation of a sophisticated, time consuming computational mo
del by a simple empirical model consisting of one or several explicit functions. In the special case of
the RM approach called ‘parameterisation’ technique, an explicit algebraic formulation is obtained by
numerical fitting of functions to the numerical solution of the differential equations which describe the
chemical reaction. The input-output samples are fitted by a least-square approximation with high order
multivariate orthonormal polynomial using the Gram-Schmidt algorithm [8]. To reduce the computati-
onal cost in evalnating the multivariate polynoimials due to unnecessary multiplications, an appropriate
factorisation, i.¢. Horner equation, is used. The algorithm used does not ensure an optimal factorisation.
but the result is close to optimal.

The accuracy of the RM functions in representing the compositional changes ATco, (kmol/kg) over
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reaction time of & 1.36ps is shown in Fig. 2. The figure clearly shows good approximation indicated by

small and uniformly distributed errors across the entire samples space.

4. Discussion

To examine the generalisation capabilities of both methods, the ANN model and RM functions are then
used to approximate a set of compositions that are collected from a Monte Carle (MC) simulation of
a turbulent diffusion flame of Ha/CO2 fuel using the probability density function approach [7, 9]. The
absolute errors obtained in approximating AT¢o, for a reaction time of 12,5 ps using ANN and RM
methods are shown in Figs. 3(a) and 3(b). respectiveiy. Reasonable accuracy is obtained except for a few
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Figure 3: The absolute errors distribution in modelling the composition changes of Carbon dioxide. Al cq, over
reaction time 12.5 ps: {a} neural network model. (b) repro-modelling function.

samples which constitute less than 10% of the sample space. The overall generalisation performance, me-
asured in terms of the error function E, !, of both methods are very good. However, it is better (smaller
error function) for the ANN model { E, = 10~7) than that obtained by the RM technique (Ej = 10-9).
It is also observed that both methods suffer some degradation in accuracy if the modelled compositions
are far enough outside the working range of the model. This result highlights the tmportance of selecting
training samples that are adequately represents the input/output combinations over a broad dynamic
range. The appropriate selection of training set is currently an iterative trial and error procedure and

VB, = E:\_;l (d; — 1;)?. represents the difference between the network's outputs, y, and the desired cutputs d;, over the
N troining samples.
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the temperature (T) and mass fractions (Y) of H2O and CO. obtained by MC simulation with ANN
method compared favorably with experimental results. Whilst the current article 1s concerned with the

application of ANN and RM to approximate chemical reactions in turbulent combustion siimulations. the

utilisation of these methods can be extended to applications for other non-linear system identification

processes. such as the dynamics and control of a robotics arm

5. Conclusions

L 2

Artificial neural network and Repro-Modelling approaches are successfully used to represent the
chemistry of B2/C0-/0> mixture, accurately and efficiently.

In general, both methods show good generalisation features, but the ANN approach exhibits better
generalization capabilities than the RM functions. However, some degradation in the performance
of both methiods become noticeable once the modelled samples deviate significantly from the model’s
dynamic range.

Both methods require a modest amount of computer memory. The computational cost of the RM
approach is less than that of the ANN modelling. however the generalization of this observation is
not, conclusive. and require further investigation. The computation cost of both methods 1s much
Jess in comparison to the CPU time of the direct integration approach. The storage requirement 18
also negligible compared with the storage demand of look-up tables.

Acknowledgments

The University of Sydney group acknowledges the support of the Australian Research Council. Dr. T.
Turanyi wishes to thank the support of HISF, OTKA grant No. F014481.

8. References

(1}

2}
(3}
[4]

(5}

(8]

&

Peters, N., in: “ Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air
Flames 7, {Mitchetl D. Smooke , Ed.), Springer-Verlag, Vol. 384, 1991, pp. 48-67.

Beale, R., and Jackson. T., Neural Computing: An Introduction, IOP Publishing, 1590.
Wu, Jian-Kang, Neural Networks and Simulalion Methods, Marcel Dekker, Inc., 1994,

Turanyi. T., * Application of Repro-Modeling for the Reduction of Combustion Mechanisms ™,
Twenly-Fifth Symposium (Internaitonal) on Combustion, The Combustion Institute, Pitisburgh.
1985, pp. 948-935.

Rogg, B., and Williams, F. A..* Structures of Wet CO Flames with Full and Reduced Kinetic Me-
chanisms ", Twenty-Second Symposium (International) on Combustion, The Combustion Institute.
Pittsburgh, 1988, pp. 1441-1451.

deVilliers, J., and Barnard. E.. * Backpropagation Neural Nets with One and Two Hidden Layers™,
IEEE Trans. on Newural Networks Vol. 4., No, 1., Jan. 1992,

Christo, F. C.. Masri. A. R.. and Nebot, E. M., Artificial Neural Network Implementation of
Chemistry With PDF Simulation of H2/CO» Flames *, Combust. Flame . submitied (1995).

Turanyi. T.. = Parameterization of Reaction Mechanisms Using Orthonormal Polynomials ", Com-
puters Chem. Vol.18. No.1, pp. 45-54, 1994,

Nguyen, T. V.. and Pope S. B., " Monte Carlo Calculation of Turbulent Diffusion Flames ~
Combust. Sci. Tech., 42:13-45 {1984).

916



