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Abstract-Recent methods for mechanism reduction convert large detailed chemical reaction mechanisms 
into small systems of differential or differential-algebraic equations. A possible further step is the 
parameterization of reaction mechanisms, i.e. the description of chemical kinetics by explicit functions, 
obtained by numerical fitting to the numerical solution of differential equations. A new parameterization 
procedure, based on orthonormal polynomials, is described which is well applicable for fitting high-order 
polynomials having few effective parameters. A program is provided for the generation of multivariate 
Homer equations. The method is illustrated by the parameterization of a recent version of the Oregonator, 
a skeleton model of the oscillating Belousov-Zhabotinsky reaction. 

1. INTRODUCTION 

Nowadays, the fine details of kinetics are known for 
numerous important chemical processes. Reaction 
mechanisms, comprising several hundred elementary 
reactions, can he constructed and these mechanisms 
can often reproduce experimental data with sufficient 
accuracy. The simulation of spatially homogeneous 
(zero spatial dimensional) systems has caused no 
problems since the seventies. Recently, software tools 
and fast-enough hardware has become available for 
the simulation of spatially one-dimensional systems 
with detailed reaction mechanisms. 

Investigation of several practical and academic 
problems requires the simulation of spatially two- 
and three-dimensional systems. The simulation of 
such systems with detailed reaction mechanisms 
is impossible or requires several hundred hours of 
SuPercomputer CPU time. 

The demand for two- and three-dimensional simu- 
lations was one of the motivations behind the devel- 
opment of methods for mechanism reduction. In the 
process of mechanism reduction two main stages can 
be distinguished. Usually the starting detailed mech- 
anism (typically 80 species and 500 reactions) is 
reduced to a “short mechanism” (20 species and 50 
reactions). This short mechanism reproduces the 
main features of the process and the concentration 
profiles of the important species with an accuracy of 
a few percent. The short mechanism is a subset of the 
complete mechanism. A systematic procedure for the 
generation of a short mechanism from a detailed 
mechanism was published by TurPnyi (1990). 

The next step is the application of a series of kinetic 
approximations, such as the quasi-steady-state ap- 
proximation, fast equilibrium approximation, rate 
limiting step approximation etc. A procedure was 

recently suggested for the calculation of the error of 
the QSSA and for the selection of QSSA species 
(TurPnyi et al., 1993b). Species lumping has been 
used for several decades, in the hydrocarbon chem- 
istry and in atmospheric chemistry, without strict 
mathematical justification. The concentration of 
lumped species is a sum, a weighted sum, or a 
non-linear function of the concentration of a group 
of real species. Recently, a mathematical theory 
of lumping is being developed (Li & Rabitz, 1991; Li 
et al., 1993). 

The result of the application of all these approxi- 
mations is a skeleton model with typically 2-8 vari- 
ables. Unlike the short mechanism, the skeleton 
model is not a subset of the detailed mechanism. 
Reactions of the skeleton model are combinations of 
the original reactions and also the species of the 
skeleton model are frequently lumped species. 
Usually the skeleton model is not a mass-action 
kinetics model, but it is rather a chemical kinetics 
related small system of differential or differential- 
algebraic equations. 

Alternative methods were also elaborated for the 
generation of skeleton models, which do not use the 
quasi-steady-state approximation directly, but which 
are also based on the existence of very different time 
scales in kinetic models. These methods are the 
computational singular perturbation (Lam & Gous- 
sis, 1988) and the low-dimensional manifold method 
(Maas & Pope, 1992). 

Although the end of the line of a mechanism 
simplification procedure is a skeleton model, it is 
frequently still not applicable for two- or three- 
dimensional calculations. The solution of a coupled 
set of differential or differential-algebraic equations in 
several thousand points of space in each time step 
requires too much computer time, and the demand on 
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CPU time is on the edge of, or beyond the capabilities 
of recent computer hardware. 

A promising solution seems to be the description of 
the information for chemical processes not by differ- 
ential or differential-algebraic equations, but by ex- 
plicit algebraic equations. Analytical solution of 
differential equations provides such explicit func- 
tions, but analytical solution of coupled non-linear 
kinetic differential equations is possible very rarely. 
However, explicit algebraic equations can always be 
obtained by numerical jitting of functions to the 
numerical solution of dflerential equations. This tech- 
nique is called the purameteriza~ion of a reaction 
mechanisms and is a special case of a general pro- 
cedure called repro-modelling. 

The paper is structured as follows. In Section 2 the 
basic ideas of repro-modelling and the possible fields 
of application in chemical kinetics are described. Very 
few articles have been published about the parameter- 
ization of kinetic mechanisms, but all these papers, 
enumerated in Section 3, include significant develop- 
ments. In Section 4, a new method for the parameter- 
ization of kinetic models is proposed which is 
computationally efficient, includes all the achieve- 
ments of the previous techniques, and is theoretically 
better established. An algorithm is given in Section 5 
for the generation of multivariate Horner equations 
for the efficient calculation of high-order poly- 
nomials. In Section 6, these methods are applied 
to the parameterization of a recent version of 
the Oregonator, a skeleton model of the oscillating 
Belousov-Zhabotinsky reaction. 

2. APPLICATlON OF REPRO-MODELLING lN 
CHEMICAL KINETICS 

The notion of repro-modelling was introduced by 
Meisel & Collins (1973). Repro-modelling means the 
approximation of a sophisticated and time consum- 
ing computational model by a simple empirical 
model, consisting of one or several explicit functions. 
The repro-model has to reproduce the output of the 
complex model with high accuracy for any feasible 
input. The creation of a repro-model requires extra 
effort, but when it is frequently used, the savings in 
computer time can be tremendous since the evalu- 
ation of these explicit functions is very fast. 

There are two main fields of application of repro- 
modelling in chemical kinetics related simulations. 

(i) Chemical kinetic mechanisms are frequently 
used as submodels in a range of complex models, 
including air quality models, combustion models, and 
models of chemical plants. The chemical box is 
usually well separable from the rest of the model, and 
the chemical kinetic calculations consume the over- 
whelming part of computer time. These calculations 
may result in concentration-time profiles or a time 
independent solution. 

(ii) Simulation of the kinetics of spatially inhomo- 
geneous systems means the calculation of the time 

history or stationary profiles of concentrations in 
several points of space, determined by chemical reac- 
tions, and transport of mass and energy. Here, 
the chemical calculations can also be separated from 
the calculation of transport and therefore the chemi- 
cal kinetic calculations can be made by a repro- 
model. 

The input of a repro-model has to include the 
concentrations of all the species, with influence on the 
concentration of important species or on the import- 
ant features. These species will be called basic species. 
The problem of selection of basic species deserves a 
closer investigation, but as a first approach the 
species of the skeleton model can be applied as basic 
species. In case of a given model, the result is 
determined not only by the initial concentration of 
basic species but also by some variable parameters. 
Such variable parameters are for example, the photon 
flux or the initial temperature. The basic species and 
these variable parameters together will be called basis 
variables. The smaller the number of basic variables, 
the simpler and/or more accurate the approximating 
function is. However, the presence of non-effective 
species or variables among the assumed basic vari- 
ables does not spoil the repro-model. On the other 
hand, the input of the repro-model must include all 
the basic variables. 

Assume that the chemical kinetic model is a part of 
a complex model and the task of the chemical box is 
to provide the concentrations of the important 
species at a fixed time later. Inputs of the repro-model 
are the values of the basic variables at time 1, and the 
output is the concentration of important species at a 
fixed AZ time later. In fact, the flow of differential 
equations of a model (see e.g. Hirsch & Smale, 1974) 
and not literally the solution of the differential 
equations is approached by the repro-model. If the 
requirement is the calculation of a concentration 
profile, the output has to include the basic variables 
as well. In this way the repro-model can be called 
consecutively and provides a series of concentration 
values belonging to equidistant time steps. Between 
each call of the repro-model the values of basic 
variables can be modified. This allows, for example, 
in an air pollution model the consideration of the 
effect of variable intensity of sunshine or the effect of 
emission. 

Results of chemical kinetic calculations cannot 
only be concentration profiles, but also time-inde- 
pendent results like stationary state concentrations, 
maximum concentrations, time-average concen- 
trations or a feature of a reaction. Such a feature can 
be the length of an oscillating reaction or the maxi- 
mum temperature of a combustion reaction. In this 
case the inputs are the values of basic variables and 
the output is the value of this time-independent 
solution. 

The repro-model, which relates k results of the 
kinetic model to the values of m basic variables is an 
W’-*R“ funciton. This function is equivalent to k 
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R’QW functions. Handling of the letter is technically 
much simpler and therefore the repro-model will 
always be considered a set of scalar valued vector 
functions. 

3. LlTER4TlJRF OF REPRO-MODELLJNG 

The basic article of repro-modelling by Meisel & 
Collins (1973) described the general philosophy of 
repro-modelling and gave three non-chemical 
examples. These authors applied continuous piece- 
wise linear functions in the repro-model. 

Dunker (1986) was the first to apply repro- 
modelling for chemical kinetic simulations when he 
parameter&d a smog mechanism. Dunker proposed 
to represent the m-dimensional domain of basic 
variables as a set of rectangular cells, and to approxi- 
mate the outputs in each cell with a second-order 
Taylor expansion about the centre of the cell by the 
application of initial concentration sensitivities. The 
Taylor expansions gave an exact value at the ccntrc 
of the cell and larger errors toward the boundaries. 

Marsden et al. (1987), independently from Dunker, 
also applied repro-modelling for a smog model. They 
replaced the photochemical model with a single 
quadratic polynomial obtained as a least squares fit 
to the model results using standard regression analy- 
sis. Marsden et al. selected the input data also 
according to a lattice applying a complete factorial 
design at two levels. 

Recently Spivakovsky et al. (199Oa) developed a 
sophisticated procedure for the calculation of the 
coefficients of higher-order polynomials by least 
squares fit. They warned that when the input data 
form a lattice, it is impossible to apply high-order 
polynomials in the repro-model and also some of the 
input combinations are unrealistic. In this case, the 
repro-model includes information also for unrealistic 
situations, but the accuracy of the description of most 
frequent situations is lower. According to the pro- 
cedure of Spivakovsky et al., the joint probability 
density functions (pdf-s) of the inputs of the chemical 
box have to bc determined. Typical input data are 
selected randomly according to their pdf-s. There 

must he about 10 times more date than parameters of 
the repro-model. These data are fitted by a least- 
squares approximation for high-order polynomials of 
m variables. A high-order polynomial of several 
variables has a high number of coefficients. For 
example, a general fourth-order polynomial of 
10 variables has 1001 coefhcients. According to 
Spivakovsky et al., the polynomial has to include the 
effective coefficients only. Selection and determi- 
nation of a small number of effective coefficients 
among several hundred possible coefficients of an 
approximating function, fitted to several thousand 
data, is numerically very difficult. The procedure, 
applied by Spivakovsky et al., was to fit the par- 
ameters in groups of three hundred by applying 
the method of Housholder triangularixation. This 
method determines the more influential coeflicients 
first. In each turn, the ineffective parameters were 
discarded and the effective parameters were refitted 
together with a new group of coefficients. The reason 
For this uncomfortable procedure was that it was 
impossible to determine the coefiIcients of a poly- 
nomial independently from the other coefficients, and 
the determination of all coefficients simultaneously 
would have required unrealistic computer memory 
and time. The procedure applied by them selects the 
effective coefficients first and then makes a final 
determination of the value of these coefficients. 
Although this procedure worked well in several cases, 
there are two possible objections against it. Not only 
the exact value of coefficients depends on the value of 
other coefficients, but also the imluential nature of 
them. It is possible, that a coefficient is judged to be 
uninfluential based on the investigation of one group 
of coefficients and the same coefficient would be 
found influential based on the investigation of 
another group. Also, the procedure requires the 
recalculation of the infhtential parameters in each 
turn and therefore much of the computational effort 
is wasted. 

We completely agree with Spivakovsky et al. 
(199Oa,b) that the approximating function of the 
repro-model has to bc a high-order polynomial 
having only few effective coefficients, determined 

Table I. Comparison of the applications-to-date of repro-modelling to chemical kinetics 
Author T&X Function Number of basic Gain in computer 

variables time 
M&cl& Collins -Freeway on.ramp Continuous piecewise 2,X 3, lo’, IV, I50 times. 

(1973) control linear functions respectively respectively 
-Effect of traffic 

policies on air 
pollution 

-Radar ~KW.S-section 
mock1 

Dunker (1986) Urban smog model 20736 second-order 10 300 times 
polynomials 

Mar&n ef al. Urban smog model One wand-order 15 NIA 
(1987) polynomial 

Spivakovsky ef ul. Average [OH] in the 30 Hi&order 13 6cKJtimes 
ww atmosphere polynomials 

Turknyi (this study) Belousov-Zhabotinsky Fifth to eighth-or&r 3 60 limes 
reaction polynomials 
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by a least-squares approximation from a highly 
over-determined set of data. Two modifications to 
the procedure given by Spivakovsky et al. are 
suggested: 

(i) The joint probability density function of 
basic variables is available (sometimes) for 
problems of atmospheric chemistry, but it is 
not available in general. An alternative ap- 
proach is if tbe original complex model, which 
includes the “chemical box”, is simulated using 
many representative input values. From these 
simulations a set of typical input and output of 
the chemical box is obtained and these consti- 
tute the input data of the fitting procedure. 
(ii) The above problems of the fitting procedure 
of Spivakovsky et al. can be solved if orthonor- 
ma1 polynomials are used instead of “usual” 
polynomials. Coefficients of orthonormal poly- 
nomials can be determined independently from 
each other and in this way a simpler and more 
effective fitting procedure, described in the next 
section, can be utilized. 

4. APPLICATION OF ORTHONORMAL 
POLYNOMIALS FOR PARAMETERIZATION 

Letx’=(x:,xi ,,.,, x:),i=l,..,, ndenoteaset 
of data. Let qJ, j= 1,. . . ,1 be a set of W”+R 
functions. A scalar product of functions (D/ and pk is 
given by 

(‘pJ3 Vk) a i wiVj(x')Vk(x')- (1) 
i=L 

This scalar product belongs to the set of data xi and 
non-negative weights wi, i = 1,. . . , n. Functions ‘p, 
and pPk are said to be orthonormal with respect to this 
scalar product if and only if 

b,, pk) = 
0 ifj#k 
1 ifj =k. (2) 

Any function F: W”+R can be approximated using 
an orthonormal set of functions (qj, j = 1, . . . , I) by 
an orthonormal (Fourier) expansion: 

where )I 11 denotes the Euclidean norm. For any 
I c n the approximation has a minimum property 

The deviation between function F and the 

in such a way that 

approximating function can be characterized by 
the root-mean-square error r: 

r= F-i(F,Pj)Vj 
II II 

(4) 
j-l 

II I 

r’$ F-_CajCpl II 
II I-1 II 

where the ai, j = 1, . , I coefficients are arbitrary 
numbers. 

Equation (3) indicates that if a set of orthouormal 
functions is available, the construction of the ap 
proximating function is easy. The critical step is the 
construction of an orthonormal set of functions to a 
given data set. 

Letf;,j=l,..., 1 be a set of linearly independent 
functions. Using the Gram-Schmidt process, a set of 
orthonormal functions SPJ can be constructed as linear 
combinations of functions 4. 

cp1 = CI If, 

P2 = 41 fi + c22f2 

9% = c3 ,h + cafi + c33h 

The Gram-Schmidt orthnormalization can be 
described by the following recursive equations: 

cp; =fi; Q4 = cp;lllP; II 
rp; =x - (cpl J2h; 472=(P;/II~;II 

I-I 

+i =f, - C (Wjpi,f,)rP,; rp,= cp;/llv; Il. (6) 
j=l 

Accordingly, the coefficients are 

Cl1 = llllrp; II 

CZI = -(~,AcIIIIl~P;II 

c22= vllrp;II 

Ii 
11~; II 

0) 
Evaluation of the approximating function has to be 

as fast as possible and therefore the most practical 
choice is if the linearly independent set of functions 
required are monomials of a general m-variable 
polynomial. For example, in case of three variables 
and a second-order polynomial, these monomials are: 

Monomials can be represented by following general 
form: 

Mj= fi xi;, /A; E (0, 1,2, . . . ) I}. (8) 
k=l 

The order of monomial Mj is defined as Z;l, , pf, The 
order of a polynomial is equal to the order of its 
highest order monomial term. 

Davies & Rabinowitz (1954) were the first to 
apply orthonormal polynomials, generated by 
Gram-Schmidt orthonormalization, for the numeri- 
cal approximation of single variable functions. Appli- 
cation of a three-term recurrence (Householder, 
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1953) instead of the Gram-Schmidt orthonormal- 
i&ion is a much faster way for the generation 
of orthonotmal polynomials. The review article of 
Forsythe (1957) described the approximation of 
single variable functions using this recurrence 
equation and made this method very popular. 

Weisfeld (1959) generalized the Householder’s 
method for orthonormalizing real polynomials in 
several variables. The efficiency of this method can 
be further improved (see Bartels t Jezioranski, 
1985) using a more strict ordering of monomials, 
because in this case some of the coefficients are 
identical. 

Application of the recurrence formulas is superior 
to the original Gram-Schmidt orthonormalization if 
the monomials, applied for the construction of orth- 
normal polynomials, are ordered and if all the mono- 
mials are used. The Gram-Schmidt process does not 
have any requirement for the order of independent 
functions 4. Our task was to construct a good 
approximation to function F, using as few as possible 
coefficients of the multivariate polynomial, and there- 
fore a new version of the approximation procedure 
was applied. 

Orthonormal polynomials were generated using 
the Gram-Schmidt process as described by equations 
(6) and (7). The data have to be approximated with 
the same percentage accuracy for both high and 
low concentrations and therefore a relative weight- 
ing was applied. Accordingly, weights wi = l/Fz(xi) 
were used. 

As a first step a constant value (fi = 1) was fitted 
to the data and an error of approximation (r.m.s.) 
was calculated. Then an orthononnal polynomial 
was generated using the next monomial and a new 
r.m.s. was calculated using equation (4). Using one 
more monomial, the approximation was always 
improved but this improvement could be large or 
small depending on the new monomial applied. If the 
deviation between the new and old r.m.s. was greater 
than a given tolerance, the monomial was accepted 
and the new orthnonnal polynomial was preserved. If 
the decrease of r.m.s. was below the tolerance limit, 
the monomial and the last orthonormal polynomial 
was rejected. In both cases, another monomial was 
tested in a similar way in the next step. Thus all the 
first-order monomials were investigated, then all the 
second-order monomials, up to all the Zth order 
monomials. This procedure has two degrees of free- 
dom: the tolerance limit and the maximal order of 
monomials investigated. The method enabled the 
selection of the most effective monomials from the 
several thousand possible monomials of a high-order 
multivariate polynomial. 

Finally, the orthonormal polynomials were con- 
verted into “usual” polynomials having the same 
monomials: 

Fzii, aJPJ=,~,aJh~,cJhMh=j~,b,Mi (9) 
_ = 

where 

and 

4 = (F, pj) 

bj= f: a,c,j. (10) 

This procedure has several advantageous features 
over other methods of least-squares fitting. The com- 
putational cost is proportional to the square of the 
number of accepted monomials and depends only 
linearly on the number of monomials rejected. As an 
example, the required CPU time was 14min on an 
IBM RISC 6000/340 workstation, for the selection 
and determination of 52 effective coefficients out of 
the 3003 possible coefficients of a general tenth-order 
polynomial of five variables, when fitted to 8400 data 
points. The average deviation between the original 
and the fitted functions was 0.1%. The program was 
rather simple and no kind of numerical problems 
were encountered. 

5. HORNER EQUATIONS 

The result of the fitting procedure is the vector of 
coefficients bj, j = 1, . , f and the indices of mono- 
mials p$, k=l,..., m andj=l,..., Z. Then the 
polynomial can easily be evaluated via equations (8) 
and (9). It is well known that this “direct” calculation 
of polynomials requires a high number of unnecess- 
ary multiplications, which can be avoided by appro- 
priate factorization, i.e. using Horner equations. 
Spivakovsky er al. (1990a) also recommended the 
application of Homer equations but unfortunately 
they revealed neither the program nor the algorithm 
for the creation of the Horner equations. 

Creation of one-dimensional Horner equations is 
easy. In case of several variables and high-order 
polynomials there is an enormous number of possible 
arrangements of parentheses. The search for a mini- 
mal number of multiplications leads to an incon- 
venient optimization task in a discrete space. The 
algorithm used here does not ensure an optimal 
solution, but the result is close to optimal. 

First, the variables were ordered according to 
decreasing Ik = $:,!=, p$ values. A higher Z, value 
means that variable k is involved in more multipli- 
cations. Index k, belongs to the variable having the 
highest Z,, xx2 has the second highest Zk etc. 

Then, the monomials were reordered in the increas- 
ing order of pkl. In case of identical exponents ~‘1, the 
order was determined by the value of exponents p**, 
pk3, etc. Now variable x,, or the powers of variable 
x,, were factored out of the monomials. As the 
cross-application of parentheses for different vari- 
ables was prohibited, the factoring of xkl was possible 
only within the parentheses set by the factoring of x,, . 
This procedure was repeated for each variable and 
possibilities for the factoring of a variable were 



Fig. 1. A typical computer written FORTRAN function. This function calculates the concentration of 
Br- at I + 0. I s if the input array y contains the concentration of Br-, HBrO,, and Ce’” at time I at the 

d[Br])dt & 0, d[HBrO,]/dt < 0, d[CP]/dr z= 0 segment of the component space. 

investigated only within the parentheses set in the 
previous steps. 

The algorithm above was programmed in FOR- 
TRAN. This program finally creates a FORTRAN 
function for the calculation of the value of the 
polynomial. A sample result of this program is given 
in Fig. 1. 

6. PARAMETERIZATION 
OF THE ORECONATOR MODEL 

The most intensively studied oscillating reaction 
is the Belousov-Zbabotinsky reaction (Belousov, 
1958; Zhabotinsky, 1964). Although the basic fea- 
tures of its chemistry have been understood for some 
time (Field et a& 1972) and a skeleton model called 
the Oregonator was constructed (Field & Noyes, 
1974), the fine details of the chemistry are still 
unknown. In the last decade a series of systematic 
experimental investigations, carried out by Field, 
F&-sterling, Kiiriis, Noszticzius, Noyes, Ruoff and 
their coworkers, gave new insight into the main 
chemical pathways and provided the value of many 
rate coefficients. Based on this information, a new 
detailed reaction mechanism, consisting of 80 reac- 
tions and 25 species, was set up by Gyijrgyi et al. 
(1990). Using a systematic procedure, this mechanism 
was reduced to a short mechanism (42 reactions and 
22 species) and to two skeleton models (TurBnyi 
er al., 1993a). The skeleton models have three vari- 
ables and six reactions and can be considered 
new versions of the Oregonator. Unlike the original 
Oregonator, these skeleton models reproduce the 
period and amplitude of the concentration oscil- 
lations of species HBrO,, Br-, and Ce” with good 

accuracy during the sustained oscillation period of 
batch experiments. 

One of the new skeleton models, denoted as model 
F in the article of Turhnyi et al. (1993a), was selected 
for parameterization. In the present calculations the 
concentration of malonic acid, sulphuric acid, Ce”‘, 
and BrO, was identical to Case 1 in the article of 
Turirnyi et al. (1993a). 

The input of the repro-model, consisting of poly- 
nomials, was the concentration of HBrO,, Br-, and 
Ce”’ at time 1, and the output of the repro-model was 
the same concentrations at t + At. A time step of 
At = 0.1 s was used. Consecutive calculation of the 
concentrations by the polynomials resulted in a series 
of concentration values and thus gave concen- 
tration-time curves. 

The data set to be approximated by polynomials 
was constructed in the following way. The Oregona- 
tor model was solved by a stiff ODE solver using the 
above time step At. The simulation was started from 
near the limit cycle. When the trajectory reached the 
limit cycle, each of the three concentrations was 
multiplied by a different random number, having a 
uniform distribution in the [ - 10, + 101 range. The 
perturbed solution then approached the limit cycle 
and when it reached the limit cycle, it was perturbed 
again. In each step, the actual concentrations and the 
concentrations belonging to a time Ar later were 
saved in a disk file. In each fitting about n = 20000 
data vectors were used. 

The data were approximated by a series of poly- 
nomials having tenth to fourth orders. The aver- 
age deviation between the original data and the 
polynomial fit was in the order of 0.3% for tenth- 
order polynomials and 2% for the fourth-order 
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Fig. 2. Bromide ion concentration-time curves calculated from the skeleton model using a stiff ODE 
solver (solid line) and from a repro-model comprising eighth-order polynomials (dots). Each dot 
corresponds to a concentration set calculated by the repro-model. Calculation of the dotted line required 

60 times less computer time. 

polynomials. Trajectories, calculated from the tenth- low-order polynomials in the repro-model. As a trade 
order polynomials, were in excellent agreement with off between polynomial simplicity and accuracy, the 
the solution of the skeleton model. Using lower and eighth-order polynomials were selected for presen- 
lower order polynomials, the agreement became tation. The [Br-J-time curves, obtained by the simu- 
worse and worse. Using low-order polynomials, the lation the skeleton model and by using the 
period time was shorter and the amplitude of the repro-model, are compared in Fig. 2. The agreement 
oscillation was smaller than that of the skeleton between the two solutions is quite good, both for the 
model. However, the limit cycle nature and the shape period of the oscillations and the amplitude of con- 
of the oscillations were preserved even in case of using centration changes. Figure 3 demonstrates that the 
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Fig. 3. Comparison of the trajectories in the log[Br-l_log[Ce(IV)] phase plane calculated from the skeleton 
model using a stiff ODE solver (solid line) and from a repro-model comprising eighth-order polynomials 

(dots). 
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Fig. 4. Bromide ion concentration-time curves calculated from the skeleton model using a stiff ODE 
solver (solid line) and from a repro-model comprising eight sets of fifth order polynomials (dots), 

repro-model mimics the skeleton model well, not only 
on the limit cycle, but also in a wide concentration 
range near the limit cycle. 

The ratio of CPU time required for simulations 
applying the polynomials with the Homer arrange- 
ment, without the Homer arrangement, and by the 
ODE solution of the skeleton model was 1:90:60, 
respectively. This means that the application of the 
polynomial approach using Homer equations re- 
sulted in a 60 times gain in the computer time 
compared to the simulation of the skeleton model by 

an ODE solver. It is also clear that the application of 
the Homer arrangement is very important in practice 
as the “direct” calculation of the polynomials was 1.5 
times slower than the solution of the ODES. 

A possible way for increasing the accuracy and 
decreasing the CPU time requirement is the appli- 
cation of several smaller polynomials instead of a 
single large polynomial in the repro-model. The input 
space of the repro-model has to be divided into 
segments, The segmentation is effective if, in each 
segment, the local repro-model is simple and different 

I I I 1 

JO-7 2 3 4 1 o-6 ’ ’ 4 l()-5 2 3 4 1 o-4 

log [Br-1 

Fig. 5. Comparison of the trajectories in the lopEEr_l_lo~Ce(IV)] phase plane calculated from the skeleton 
model using a stiff ODE solver (solid line) and from a repro-model comprising eight sets of fifth-order 

polynomials (dots). 
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from the repro-models of the other segments. In case 
of kinetic models, the kinetic processes are usually 
similar in those segments of the component space 
where the production rate of each species has the 
same sign. Therefore, it was expected that the original 
ODE could be approached by a simple polynomial 
within each of these segments. 

In case of our calculations, the component space 
was divided into eight segments according to the sign 
of d[Br-]/dt, d[HBrO,]/dt, and d[Ce’“]/dt. In each of 
the eight segments the data for the three variables 
were approached by three fifth-order polynomials. In 
case of the calculation of the concentration of HBrO, 
in one of the segments the fifth-order polynomial did 
not give a good approximation and a sixth-order 
polynomial was applied. 

During the application of the repro-model, the 
input concentrations were related to one of the 
segments based on the production rates of species. 
The output was calculated by the corresponding 
fifth-order polynomials. Rather unexpectedly, in 
some cases this method failed when the trajectory 
approached the border of two segments. A possible 
reason for this is that the approximation was very 
good inside the segments and less accurate near the 
edges. In these cases, the fifth-order polynomials 
provided unrealistic concentrations near the border 
for a few steps. This situation was easily recognized 
by the program, the results were canceled and these 
steps were calculated by the global eighth-order 
polynomial. 

The [Br-l-time curve, obtained by the ODE sol- 
ution of the skeleton model and by using this eight- 
segment repro-model, is shown in Fig. 4. Again, the 
agreement between the two solutions is very good. 
Figure 5 shows that the eight-segment repro-model 
approaches the skeleton model better than the global 
repro-model. 

In case of the segmented repro-model, the ratio 
of the CPU time required for simulations by apply- 
ing the polynomials with the Homer arrangement, 
without the Homer arrangement, and by the ODE 
solution of the skeleton model was 1:46:50, respect- 
ively. Application of the polynomial approach using 
the Homer equations resulted in a factor of 50 gain 
in the computer time compared to the simulation of 
the skeleton model using an ODE solver. In this case 
the application of the repro-model was slightly more 
economical even when the polynomials were cal- 
culated in a “direct way”. Very surprisingly, the 
application of the segmented repro-model required 
somewhat more computer time than that of the 
global repro-model. The reason is that the calcu- 
lation of the production rates in skeleton model F 
is very involved as it requires the calculation of 
the quasi-steady-state concentration of radical BrOz. 
In skeleton model G, the explicit calculation of 
[BrO,.] was avoided and therefore this model is 
expected to be better applicable in segmented 
repro-models. It has to be noted that these results 

were not optimized for computer time savings. If 
less accuracy is tolerated or if a different At is 
used, the computer time economy can be further 
improved. 

The purpose of this example was to demonstrate 
that the repro-modelling approach may result in 
considerable savings in computer time even in case 
of very small systems of algebraic-differential 
equations. Skeleton models of the Belousov- 
Zhabotinsky reaction are frequently used in two- 
and three-dimensional chemical wave simulations. 
However, the three-variable Oregonator is too stiff 
for such calculations and therefore simplified, less 
stiff and less realistic two-variable models are 
always applied. This example shows that using the 
parameterized form of the Oregonator model, a 
very realistic three-variable model can be utilized 
in numerical simulations of the chemical waves 
of the Belousov-Zhabotinsky reaction. 

7. CONCLUSION 

Kinetics of complex chemical processes is described 
by large reaction mechanisms in several important 
fields of chemistry, such as atmospheric chemistry, 
combustion chemistry or chemistry of exotic reac- 
tions. These mechanisms are equivalent to large 
systems of differential equations having several dozen 
variables. It has been shown that, using systematic 
methods, these large systems of ODES can be con- 
verted into small systems of differential-algebraic 
equations. These skeleton models have few variables 
(usually < 10) and give a good approximation to the 
original model. 

Repro-modelling, the approximation of computer 
time demanding complex models by simple explicit 
functions, has been used in air pollution modelling. In 
this article repro-modelling is recommended as a final 
step of any mechanism reduction process. 

Repro-modelling can be done via the following 
steps: 

l A “chemical box” has to be separated within 
a complex model. The chemical box has to 
be simplified in such a way that a minimal 
number of input variables of the box are found. 
Ideally, these variables are all effective and 
there is no functional dependence between 
them. 
l The complex model, which includes the 
chemical box, is simulated using many typical 
initial data. Several thousand input vectors and 
the corresponding outputs of the chemical box 
are collected. 
l These data are approximated by high-order 
polynomials. This approximation can be made 
comfortably by fitting the data using orthonor- 
mal polynomials in several variables. If necess- 
ary, the chemical box can be approached by 
several polynomials, which cover different 
regions of the input. 



l The polynomials are utilized in the form 
of computer written multivariate Homer 
equations. 

This article includes a detailed description of the 
fitting procedure via orthonormal polynomials and 
an algorithm for the generation of Warner equations. 
It is demonstrated that the parameterization of the 
Oregonator model results in a 60 times gain in 
computer time, while the concentration-time curves, 
calculated from polynomials, are very close to the 
solution of differential equations. 

Program uuufiability-The code for the creation of multi- 
variate Homer equations is available from the author on 
request. 
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