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Abstract 

 
A consistent set of rate rules for the reactions of large alkanes involving primary and secondary carbons is 
optimized based on n- and neopentane, n- and neohexane, and n-heptane chemistry. The initial mechanism of these 
fuels is autogenerated by a suitably modified version of MAMOX++ based on the central Arrhenius curve of their 
prior uncertainty range, which was determined by a review of theoretical studies of alkanes. The Reduction 
Assisted Parameter Optimization and Mechanism Development (RAPOD) approach was used to accelerate the 
optimization, so an accurate reduced mechanism was developed using the DRGEP method, by which the number 
of species and reactions were reduced from 4432 species and 16778 reactions to 1754 and 8380, respectively. The 
GalwayMech1.0 served as a core mechanism, and the thermodynamic data were taken from a high-level calculation 
study, in case of unavailability, the group additivity method trained on the previously published data was employed 
for the estimation. As optimization targets, we collected 68, 57, and 166 measurements of these target fuels in 
shock tubes, rapid compression machines, and jet-stirred reactors, respectively. 116 important rate rules out of 187 
rate rules were identified by the PCA-SUE method, and their A, n, E Arrhenius parameters were optimized within 
their prior uncertainty range using the Optima++ code. In addition, the thermodynamic data (heat of formation and 
entropy) of RH, Ṙ, RȮ2, Q̇OOH, and Ȯ2QOOH were optimized within a carefully evaluated uncertainty range of 
each species. The two-step optimization reveals a generally good performance for these target fuels compared to 
the other mechanism. As a validation of the optimized rate rules, mechanisms were generated for 2,2- and 3,3-
dimethyl pentane, n-octane, n-nonane and n-decane fuels and tested against experiments. The optimized rate rules 
provide a significantly improved description of the ignition delays of these fuels compared to the initial rate rules, 
demonstrating their universality and transferability. 
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1. Introduction 1 

The large alkanes are important components in 2 

practical fuels and are usually used as surrogate fuels  3 

[1]. Therefore, it is important to build a model 4 

including various large alkanes for mixture 5 

simulation, which helps explore advanced fuels and 6 

develop advanced combustion strategies and devices. 7 

The performance of the large-alkanes mechanism is 8 

affected by the thermochemistry and core mechanism 9 

(C0–C4). The core mechanism was recently developed 10 

as part of the C3MechV4.0 mechanism [2], in which 11 

the C0–C4 sub-mechanisms were comprehensively 12 

refined based on literature experiments. The 13 

thermochemistry data of combustion intermediates of 14 

alkanes (e.g. alkyl radicals, alkyl-peroxy radicals, etc) 15 

have also been updated recently by Elliot et al. [3, 4] 16 

using a very high-level theory and sophisticated error 17 

cancellation strategies. Based on the results of these 18 

accurate calculations, Ghosh et al. [5, 6] improved the 19 

group additivity values for thermochemistry data by 20 

refining the values of the main groups and by adding 21 

some new correction terms. The thermochemistry 22 

estimated based on the improved group additivity 23 

values was shown to be more accurate relative to the 24 

high-level accuracy calculations compared to the 25 

group additivity estimates by the RMG [7] and Burke 26 

et al. [8]. 27 

The fuel-specific sub-model is usually developed 28 

using rate rules in which the rate constant of each 29 

reaction class with certain types of reaction is 30 

determined. Bugler et al. [8] established alkane rate 31 

rules targeting three pentane isomers and built a 32 

pentane mechanism with a global good performance 33 

on ignition delay times (IDTs). Zhang et al. [9] further 34 

updated the alkane rate rules by considering five 35 

hexane isomers with more complex structures. Cai et 36 

al. [10] established a consistent set of rate rules for 37 

linear alkanes from C7 to C11. Due to the updated core 38 

chemistry and the accurate thermochemistry data, 39 

these rate rules for large alkanes need to be updated to 40 

improve the quality of the constructed mechanisms. 41 

Wang et al. [11] and Heng et al. [12] updated the rate 42 

rules of alkanes by targeting the extended 43 

experimental data of iso-octane and its isomers with 44 

the latest core chemistry and thermochemistry data. 45 

However, due to the limited diversity of the structures, 46 

their rate rules are still not accurate enough to employ 47 

them reliably to the other alkanes. 48 

Due to the diversity and commonality of chemical 49 

environments and chemical pathways for large 50 

alkanes, it is necessary to consider multiple fuels 51 

simultaneously in rate rule development studies to get 52 

a universally applicable, consistent set of rate rules. 53 

For example, pentane isomers, hexane isomers, n-54 

heptane, iso-octane, and the larger n-alkanes should 55 

be investigated at once. Due to the large size of the 56 

models for such large alkanes, the construction and 57 

parameter tuning of these models cannot be done 58 

manually without errors in a reasonable time. 59 

MAMOX++ [13-15] code is an effective tool for auto-60 

generating combustion kinetic mechanisms based on 61 

a set of rate rules. Optima++ [16-18] is a highly 62 

effective, robust kinetic model optimization software 63 

which has been recently extended to the rate rule 64 

optimization, and was employed to successfully 65 

optimize a reaction mechanism autogenerated for 66 

pentane isomers by MAMOX++ [19]. The optimized 67 

model showed a significant and comprehensive 68 

improvement compared to Bugler’s model [20]. The 69 

combined application of MAMOX++ and Optima++ 70 

has been proven to be an efficient way of model 71 

development based on rate rules. 72 

In this work, as the first part of our comprehensive 73 

studies of alkane rate rules, we focus only on primary 74 

and secondary carbon rate rules, that is classes of 75 

reactions that take place on or between primary and 76 

secondary carbon atoms. To establish these rate rules, 77 

we generated mechanisms for n-pentane, neopentane, 78 

n-hexane, neohexane, and n-heptane, reduced them 79 

using DRGEP, and after merging, we optimized them 80 

using Optima++. Subsequently, as a validation of the 81 

optimized rate rules, mechanisms for 2,2-dimethyl 82 

pentane (22DMP), 3,3-dimethyl pentane (33DMP), n-83 

octane, n-nonane, and n-decane were generated using 84 

MAMOX++, which then were tested against 85 

experiments. Due to the experimental studies of 86 

22DMP and 33DMP being rare, IDTs of them were 87 

measured in a rapid compression machine (RCM), 88 

providing essential experimental data for validating 89 

alkane rate rules involving quaternary carbons. 90 

Additionally, to evaluate the reactivity trend of n-91 

pentane, n-hexane, and n-heptane, this study extends 92 

ignition delay time measurements for n-hexane using 93 

a shock tube (ST). 94 

 95 

2. New experiments and literature data 96 

In the present study, ignition delay times of 97 

22DMP, 33DMP and n-hexane are measured in ST 98 

and RCM at the University of Galway. Both facilities 99 

are introduced in detail in our previous studies [21, 100 

22]. The uncertainty of reflected shock temperature in 101 

the ST and compression temperature in RCM are ±20 102 

K and ±15 K, which lead to approximately ±20% 103 

uncertainty in ignition delay times in both facilities, 104 

as discussed in Li et al. [23]. Table 1 summarizes the 105 

experimental conditions used in the present study. The 106 

IDTs of 22DMP and 33DMP were measured in RCM 107 

at  = 0.5 and p = 20 atm, while n-hexane experiments 108 

were conducted in ST at  = 1.0 and p = 30 atm. These 109 

experiments were done in air and covered the negative 110 

temperature coefficient (NTC) regime of the three 111 

fuels. 112 

Table 1 

Condition of present experiments 

fuel T (K) p (atm) φ 
x (mol%) facility 

fuel O2 N2  

n-hexane 700–1300 30.0 1.0 2.16 20.6 77.3 HPST 

22DMP 680–955 20.0 0.5 1.87 20.6 77.5 RCM 

33DMP 680–960 20.0 0.5 1.87 20.6 77.5 RCM 



3 
 

Several experimental and modelling studies of n-1 

pentane, neopentane, n-hexane, neohexane, and n-2 

heptane have been conducted over the past decades. 3 

Based on a literature survey, we have collected 1489 4 

experimental measurements altogether including our 5 

present measurements. To accelerate the optimization 6 

task, a carefully selected subset containing only 157 7 

measurements was utilized. The selected experiments 8 

were chosen to ensure coverage of a wide range of 9 

temperatures, pressures, and equivalence ratios, 10 

providing a comprehensive dataset for optimization. 11 

For instance, from each data series, at least one IDT 12 

experiment was selected in the low-, the intermediate-13 

, and the high-temperature regimes, while jet-stirred 14 

reactor (JSR) experiments were selected to capture 15 

inflection points in species concentration curves. The 16 

covered conditions and literature references are 17 

shown on the poster. 18 

 19 

3. Methodology 20 

The flow chart is shown in Error! Reference 21 

source not found.. In the present work, the optimized 22 

thermodynamic data, updated core chemistry, and 23 

initial rate rules were employed in MAMOX++ to 24 

generate an initial mechanism. The initial rate rules in 25 

the present work were taken by the central rate 26 

constant of the prior uncertainty range which was 27 

determined by reviewing the literature studies 28 

following the same procedure presented in Wang et 29 

al. [19] based on the theory proposed by Nagy et al. 30 

[24, 25]. The mechanism generated for n- and 31 

neopentane, n- and neohexane, and n-heptane 32 

combustion, contained 5743 species and 18761 33 

reactions, which is too large for direct optimization 34 

even if well-scaling solvers, Zero-RK [26, 27] is used 35 

within Optima++. To accelerate the optimization of 36 

large combustion mechanisms, Nagy and coworkers 37 

proposed the Reduction-Assisted Parameter 38 

Optimization and Mechanism Development 39 

(RAPOD) procedure [28]. We employed the RAPOD 40 

approach using DRGEP mechanism reduction method 41 

[29, 30] to reduce the autogenerated detailed model, 42 

which thereby could be reduced to 2000 species and 43 

9167 reactions and made the optimization task 44 

feasible. Then, the rate constants in rate rules format 45 

from the reduced mechanism are optimized within 46 

their determined uncertainty range using Optima++ 47 

and Zero-RK solver [26, 27] on the selected 157 48 

RCM, ST, and JSR experiments. As a validation, the 49 

optimized rate rules were employed to generate 50 

mechanisms of n-octane, n-nonane, n-decane, 51 

22DMP, and 33DMP, which were tested against 52 

experiments to test the transferability and universality 53 

of alkane rate rules. Chemkin-Pro [31] is used for 54 

simulating these data. 55 

The performance of a combustion kinetic model 56 

can be characterized by an error function, which 57 

quantifies the deviation of the simulation results from 58 

the experimental data. In Optima++ the following 59 

experimental uncertainty normalized mean square 60 

error function is used: 61 

𝐸(𝑃) =
1

𝑁
∑ ∑

𝑤𝑓𝑠

𝑁𝑓𝑠𝑑

∑ (
𝑌𝑓𝑠𝑑

𝑠𝑖𝑚(𝑃) − 𝑌𝑓𝑠𝑑
𝑒𝑥𝑝

𝜎(𝑌𝑓𝑠𝑑
𝑒𝑥𝑝

)
)

2𝑁𝑓𝑠𝑑

𝑑=1

𝑁𝑓𝑠

𝑠=1

𝑁𝑓

𝑓=1

. (1) 

Parameters N, Nf , Nfs, Nfsd are the number of data 62 

series in all data files, the number of files, the number 63 

of series in the fth file, the number of data in the sth 64 

series of the fth
 file, respectively. 𝑌𝑓𝑠𝑑

exp
 and 𝜎(𝑌fsd

exp
) 65 

are the dth experimental data in the sth series of the fth
 66 

file and its one standard deviation uncertainty, 67 

respectively. 𝑌𝑓𝑠𝑑
sim(𝑃) is the corresponding simulated 68 

value with the investigated kinetic model at parameter 69 

values P. For ignition delays, transformation Y=ln 70 

IDT was applied, and relative error was interpreted as 71 

an absolute error in natural logarithmic scale. The 72 

Optima++ code minimizes this error function by using 73 

the very robust FOCTOPUS algorithm [32]. The error 74 

function can be evaluated only for a part of the data 75 

collection, for example only for IDT or concentrations 76 

measured in JSR. The value of the error function has 77 

an absolute meaning, as √𝐸 measures the uncertainty 78 

normalized root-mean-square deviation (RMSD) 79 

between the model and the experimental results, thus 80 

for the perfect model √𝐸≤1, and if  √𝐸~2 is usually 81 

considered as a great model, and we typically 82 

considered a model satisfactorily predictive if √𝐸<3. 83 

In the following, we analyse performance 84 

improvements in terms RMSD error. 85 

Uncertainty limits of rate coefficients were 86 

determined by considering all previous theoretical and 87 

experimental determination for a given rate rule and 88 

assuming a factor 2 uncertainty around them. The 89 

average curve of the upper and lower boundaries of 90 

the unified uncertainty band is fitted with the 91 

Arrhenius equation and taken as the central rate rule 92 

and was used for the generation of the initial kinetic 93 

Fig. 1. Flow chart of rate rule optimization 
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model. The symmetrized boundaries around this 1 

central curve were stored in the form of covariance 2 

matrix [24]. The Arrhenius curve of each important 3 

rate rule was optimized within this uncertainty band 4 

(checked within 500–2500 K). As the uncertainty 5 

ranges determined by this procedure are usually wide, 6 

they allow significant, even unphysical changes in the 7 

shape (E: slope and n: curvature and slope) of the 8 

Arrhenius curves. Therefore, in addition to the 9 

constraints in the rate coefficients, we introduced ±1 10 

kcal/mol and ±1 constraints for the E and n Arrhenius 11 

parameters, respectively to preserve the physical 12 

character of the initial central Arrhenius curve during 13 

optimization. In the case of PLOG reactions and rate 14 

rules that are defined with varying E and n values (i.e. 15 

depending on the heat of reactions), the Arrhenius 16 

curves were modified by a common tuning factor with 17 

Arrhenius type temperature dependence to maintain 18 

their consistency during optimization [19]. 19 

The important kinetic parameters of the model, 20 

called active parameters, were identified using the 21 

PCA-SUE method [33], which is based on the 22 

principal component analysis of the experimental data 23 

uncertainty normalized and parameter uncertainty 24 

scaled  local sensitivity matrix.  25 

Significant developments have been made to the 26 

Optima++ code with this study, as now it allows 27 

optimization of thermodynamic data, more 28 

specifically the a6 and a7 NASA polynomial 29 

coefficients, through which thermodynamic 30 

functions: enthalpy H(T) and entropy S(T), 31 

respectively, can be shifted. These changes affect two 32 

things in the model: the reaction enthalpies and the 33 

reaction free energies can be changed, the latter of 34 

which is used (together with the forward rate 35 

coefficient) to calculate the rate coefficient of the 36 

backward reaction. Therefore, this development 37 

allows the tuning of the backward rate coefficients of 38 

important reactions independently from the forward 39 

rate coefficients. The molecular size dependent 40 

uncertainty ranges of NASA polynomial coefficients 41 

a6 and a7 of relevant species: RH, Ṙ, RȮ2, Q̇OOH, and 42 

Ȯ2QOOH were determined with carefully evaluation 43 

of the error analysis of the STAR-1D protocol [3, 4] 44 

and the group additivity (GA) based estimations 45 

thermodynamic data estimate [5, 6]. The following 46 

Table  summarizes the molecular size dependence of 47 

the uncertainties of a6 and a7 coefficients separately 48 

for the STAR-1D method, the GA fit to the STAR-1D 49 

results, and the total GA based estimations. 50 

 51 

The NASA polynomial coefficients were 52 

optimized within ±2𝜎 uncertainty range. It is expected 53 

that the errors of the estimated thermodynamic data of 54 

isomers, and thereby those of the a6 and a7 parameters 55 

are strongly correlated, therefore, similarly to the rate 56 

rules the a6 and a7 parameters of different isomers 57 

were shifted together during optimization.  58 

However, simultaneous optimization of rate rules 59 

alongside thermodynamic data makes the rate rules 60 

non-universal as the tuned thermodynamic data is 61 

specific to species of the training system and non-62 

transferable to other fuels. Consequently, we carried 63 

out the optimization in two steps: first only the rate 64 

rules were optimized, thus they are expected to be 65 

transferable; second, the beside the optimized rate 66 

rules, the a6 and a7 coefficients were optimized to 67 

develop an even more accurate mechanism for the 68 

investigated species. 69 

 70 

4. Results 71 

4.1 Evaluation of the optimized models 72 

 73 

Figure 2 illustrates the improvements of species 74 

concentration achieved by optimizing either only rate 75 

constants or both rate constants and thermodynamic 76 

data. Optimizing only the rate constants generally 77 

enhances the model, although some error values 78 

remain notably high (>3), such as C6H10OOH2-4, 79 

C7H14-1, and C7H14-2. The most significant 80 

improvements are observed in cyclic ethers. For 81 

instance, the RMSD error value of C6H12OOH2-3 82 

concentration has decreased significantly from 12.3 to 83 

Table 2 

Molecular size dependent 2 uncertainties of NASA polynomial coefficients 

Coeff. STAR-1D (S1D) [3, 4] Group additivity fit [5, 6] Total uncertainty for GA values 

𝑎6 2𝜎6 = (61.27 +
𝑀

0.7617
g

mol

) 𝐾 2𝜎6 = (−417.8 +
𝑀

0.1255
g

mol

) 𝐾 
𝜎6,tot = √𝜎6,𝑆1𝐷

2 + 𝜎6,𝐺𝐴
2   

𝑎7 2𝜎7 = 0.2697 +
𝑀

348.1
g

mol

 2𝜎7 = −0.5050 +
𝑀

79.30
g

mol

 𝜎7,tot = √𝜎7,S1𝐷
2 + 𝜎7,GA

2  

Fig. 2. Improvement in the experimental uncertainty-
normalized RMSD error for species concentrations between 

the initial mechanism and after optimization of the rate rules, 

and subsequent thermodynamic data optimization. 
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1.57 upon optimization. However, concentration 1 

errors of olefins, such as C5H10-1, C7H14-1, and 2 

C7H14-2 showed limited improvement. 3 

Figure 3 shows the improvements in 1st-stage and 4 

total ignition delay times. The model optimized for 5 

rate constants alone shows substantial overall 6 

enhancement but performs worse for the 1st-stage 7 

ignition of compounds like neopentane and n-heptane. 8 

This is likely because most reactions influencing the 9 

1st-stage ignition also affect the total ignition, 10 

indicating that optimizing rate constants alone cannot 11 

resolve the compromise issue.  12 

In addition to optimizing rate constants, this work 13 

further refines thermodynamic data. Fig. 2 14 

demonstrate that the additional optimization of 15 

thermochemistry significantly improved the 16 

concentration predictions for species, such as 17 

C6H12O2-4, C7H14-1, and C7H14-2, which showed 18 

only minor error reduction by rate rule optimization 19 

alone. Moreover, thermodynamic data optimization 20 

significantly improved the prediction of 1st-stage 21 

IDTs, and also provided slight improvements in total 22 

stage IDTs. Fig. 4 presents the validation of the 23 

optimized model against ignition delay times 24 

measured in ST and RCM for n-pentane, n-hexane, 25 

and n-heptane at p = 30 atm and  = 1.0. An evident 26 

trend is observed in reactivity: n-pentane < n-hexane 27 

< n-heptane. However, no clear trend emerges for the 28 

1st-stage IDT. The 1st-stage ignition of n-pentane is 29 

noticeably slower than that of n-hexane, which closely 30 

resembles the 1st-stage IDT of n-heptane. The present 31 

model exhibits slightly too fast reactivity in the NTC 32 

region for n-hexane, nevertheless, it effectively 33 

predicts both total and 1st-stage IDT for these fuels.  34 

Fig. 5 provides a comprehensive comparison 35 

between the present optimized model and 13 literature 36 

models. The error values are calculated based on 37 

selected data points. For IDTs, the error values of the 38 

present model are all below 3, indicating that it can 39 

predict IDTs within the error bars on average. While 40 

the present model shows slightly higher error values 41 

for JSR concentrations in the case of n-pentane, n-42 

hexane, and neohexane, its performance is still 43 

superior to other models. 44 

For n-pentane and neopentane, the most recently 45 

updated model by Wang et al. [19] (Wang_2024) 46 

exhibits IDT RMSD error values around 3 in shock 47 

tube and RCM experiments, while its JSR RMSD 48 

Fig. 3. Improvement in experimental uncertainty-normalized 

RMSD error for the 1st-stage and final-stage ignition delay 

times between the initial mechanism, after optimization of 
the rate rules, and subsequent thermodynamic data 

optimization. 

Fig. 4. Validation of the optimized model against the IDTs 
of n-pentane, n-hexane, and n-heptane. Experimental data 

were obtained from Refs. [20, 34] and the present study. 

Fig. 5. Experimental uncertainty-scaled RMSD errors of ignition delays of the initial mechanism, the rate 

rule + thermodynamic data optimized model and 13 literature models. 
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error values are higher (5.3 for n-pentane and 4.3 for 1 

neopentane). By optimizing the thermodynamic data, 2 

the present study achieves improved results, reducing 3 

IDT RMSD errors for n-pentane and neopentane to 4 

approximately 2. For n-hexane and neohexane, 5 

Zhang’s model [35] (Zhang_2019) was initially 6 

developed for five hexane isomers and later updated 7 

in C3MechV3.3 [36] and C3MechV4.0 [2]. The IDT 8 

error values for these models are comparable to those 9 

of the optimized model; however, our model 10 

demonstrates better performance in predicting the JSR 11 

data for neohexane. For n-heptane, most models 12 

accurately predict IDTs in shock tube experiments. 13 

However, only the present model, along with 14 

C3MechV3.3 and C3MechV4.0, can capture the 15 

RCM data reliably. Chang et al.’s model [37] 16 

(Chang_2022), which is a skeletal mechanism, is 17 

noteworthy for its ability to predict IDTs from shock 18 

tube and JSR experiments for n-pentane, n-hexane, 19 

and n-heptane, which is relatively rare. Figures 6-9 20 

show the validation of the present model against the 21 

literature data over a wide range of conditions. The 22 

present model basically predicts the experiments well. 23 

 24 

4.2 Application of optimized rate rules to 25 

mechanism generation for other alkanes 26 

The current rate rules were developed using n-27 

pentane, neopentane, n-hexane, neohexane, and n-28 

heptane. In this section, these rate rules are applied to 29 

generate combustion kinetic models for 22DMP, 30 

33DMP, n-octane, n-nonane, and n-decane using 31 

MAMOX++. As shown in Fig. 10, the initial rate rules 32 

generally underestimated the IDTs of these fuels in 33 

the NTC region. Using the optimized rate rules, a 34 

Fig. 7. Validation against 
neopentane ignition delay time 

from Bugler et al.  [20]. 

Fig. 6. Validation against n-
pentane ignition delay times 

from Bugler et al.  [20]. 

Fig. 8. Validation against n-
hexane and neohexane 

ignition delay times from 

Chen et al. [38] and Zhang et 

al. [9], respectively 

Fig. 9. Validation against 
n-heptane ignition delay 

times from refs. [34, 35, 

39-41]. 

Fig. 10. Validating optimized rate rules in other alkanes: 22DMP, 33DMP, n-octane, n-nonane, and n-

decane. The experiments are taken from the present study and refs. [42-44]. 
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significantly improved description is obtained both 1 

qualitatively and quantitatively.  2 

 3 

5. Conclusion 4 

The primary and secondary alkane rate rules in 5 

mechanisms (autogenerated by MAMOX++ and 6 

reduced by DRGEP) were optimized using the 7 

Optima++ code to fit experimental data from n-8 

pentane, neopentane, n-hexane, neohexane, and n-9 

heptane IDT and JSR concentration measurements. 10 

After the optimization of Arrhenius parameters, 11 

thermodynamic data of important species were 12 

optimized (via a6 and a7 NASA coefficients). Both 13 

optimizations enhanced model performance greatly. 14 

Using MAMOX++, the optimized rate rules were 15 

utilized to generate mechanisms for other large 16 

alkanes: 22DMP, 33DMP, n-octane, n-nonane, and n-17 

decane. To address gaps in experimental data, ignition 18 

delay times for n-hexane, 22DMP, and 33DMP were 19 

measured in the shock tube and RCM, covering the 20 

NTC temperature regime. The auto-generated models 21 

accurately predicted the experimental results, 22 

demonstrating of the universality and transferability 23 

of the optimized rate rules for reactions taking place 24 

on primary and secondary carbons in the combustion 25 

of larger alkanes. 26 

 27 

Acknowledgements 28 

The authors at the University of Galway 29 

acknowledge computational resources provided by 30 

the Irish Centre for High-End Computing (ICHEC), 31 

and the funding from the Computational Chemistry 32 

Consortium and Science Foundation Ireland via grant 33 

number 12_RC_2302. T. Nagy and T. Turányi thank 34 

the Hungarian National Research, Development, and 35 

Innovation Office for the funding (FK134332 and 36 

K147024). The authors at KAUST thank the Office of 37 

Sponsored Research (OSR) (Grant URF/1/4351-01-38 

01 (CRG 2020), M. Sarathy) and the Al-Khwarizmi 39 

KAUST Fellowship (S. Brunialti).  40 

 41 

References 42 

[1] Zhen X, Wang Y, Liu D. An overview of the 43 

chemical reaction mechanisms for gasoline 44 

surrogate fuels Appl Therm Eng 124: 1257-68 45 

(2017). 46 

[2] Maffei LP, Langer R, Murakami Y, Wagnon SW, 47 

Wang P, Liu J, et al. Modeling combustion 48 

chemistry using C3MechV4.0: An extension to 49 

mixtures of hydrogen, ammonia, alkanes, and 50 

cycloalkanes Appl Energy Combust Sci (not 51 

published) (2025). 52 

[3] Elliott SN, Keçeli M, Ghosh MK, Somers KP, 53 

Curran HJ, Klippenstein SJ. High-accuracy heats of 54 

formation for alkane oxidation: From small to large 55 

via the automated CBH-ANL method J Phys Chem 56 

A 127: 1512-31 (2023). 57 

[4] Elliott SN, Moore KB, Copan AV, Georgievskii 58 

Y, Keçeli M, Somers KP, et al. Systematically 59 

derived thermodynamic properties for alkane 60 

oxidation Combust Flame 257: 112487 (2023). 61 

[5] Ghosh MK, Elliott SN, Somers KP, Klippenstein 62 

SJ, Curran HJ. Group additivity values for the heat 63 

of formation of C2–C8 alkanes, alkyl 64 

hydroperoxides, and their radicals Combust Flame 65 

257: 112492 (2023). 66 

[6] Ghosh MK, Elliott SN, Somers KP, Klippenstein 67 

SJ, Curran HJ. Group additivity values for entropy 68 

and heat capacities of C2–C8 alkanes, alkyl 69 

hydroperoxides, and their radicals Combust Flame 70 

257: 112706 (2023). 71 

[7] Liu M, Grinberg Dana A, Johnson MS, Goldman 72 

MJ, Jocher A, Payne AM, et al. Reaction 73 

mechanism generator v3.0: Advances in automatic 74 

mechanism generation J Chem Inf Model 61: 2686-75 

96 (2021). 76 

[8] Bugler J, Somers KP, Silke EJ, Curran HJ. 77 

Revisiting the kinetics and thermodynamics of the 78 

low-temperature oxidation pathways of alkanes: A 79 

case study of the three pentane isomers J Phys Chem 80 

A 119: 7510-27 (2015). 81 

[9] Zhang K, Banyon C, Burke U, Kukkadapu G, 82 

Wagnon SW, Mehl M, et al. An experimental and 83 

kinetic modeling study of the oxidation of hexane 84 

isomers: Developing consistent reaction rate rules 85 

for alkanes Combust Flame 206: 123-37 (2019). 86 

[10] Cai L, Pitsch H, Mohamed SY, Raman V, Bugler 87 

J, Curran H, et al. Optimized reaction mechanism 88 

rate rules for ignition of normal alkanes Combust 89 

Flame 173: 468-82 (2016). 90 

[11] P. Wang, G. Kenny, Y. Heng, S. Dong, M. K. 91 

Ghosh, Curran HJ. An experimental and chemical 92 

kinetic modeling study of octane isomer oxidation. 93 

Part 2: 223- and 224-trimethylpentane Combust 94 

Flame 263: 113341 (2023). 95 

[12] Heng Y, Kenny G, Wang P, Dong S, Ghosh MK, 96 

Li G, et al. An experimental and chemical kinetic 97 

modeling study of octane isomer oxidation. Part 1: 98 

2,3,4-trimethyl pentane Combust Flame 263: 99 

113226 (2023). 100 

[13] Brunialti S, Zhang X, Faravelli T, Frassoldati A, 101 

Sarathy SM. Automatically generated detailed and 102 

lumped reaction mechanisms for low- and high-103 

temperature oxidation of alkanes Proc Combust Inst 104 

39: 335-44 (2023). 105 

[14] Ranzi E, Faravelli T, Gaffuri P, Sogaro A. Low-106 

temperature combustion: Automatic generation of 107 

primary oxidation reactions and lumping 108 

procedures Combust Flame 102: 179-92 (1995). 109 

[15] Ranzi E, Frassoldati A, Granata S, Faravelli T. 110 

Wide-range kinetic modeling study of the pyrolysis, 111 

partial oxidation, and combustion of heavy n-112 

alkanes Ind Eng Chem Res 44: 5170-83 (2005). 113 

[16] Goitom SK, Papp M, Kovács M, Nagy T, Zsély 114 

IG, Turányi T, et al. Efficient numerical methods for 115 

the optimisation of large kinetic reaction 116 

mechanisms Combust Theory Model 26: 1071-97 117 

(2022). 118 



8 
 

[17] Papp M. https://respecth.hu (2024-11-24)  1 

[18] Turányi T, Nagy T, Zsély IG, Cserháti M, Varga 2 

T, Szabó BT, et al. Determination of rate parameters 3 

based on both direct and indirect measurements Int 4 

J Chem Kinet 44: 284-302 (2012). 5 

[19] Wang P, Brunialti S, Papp M, Sarathy SM, 6 

Turányi T, Curran HJ, et al. Mechanism 7 

development for larger alkanes by auto-generation 8 

and rate rule optimization: A case study of the 9 

pentane isomers Proc Combust Inst 40: 105408 10 

(2024). 11 

[20] Bugler J, Marks B, Mathieu O, Archuleta R, 12 

Camou A, Grégoire C, et al. An ignition delay time 13 

and chemical kinetic modeling study of the pentane 14 

isomers Combust Flame 163: 138-56 (2016). 15 

[21] Darcy D, Nakamura H, Tobin CJ, Mehl M, 16 

Metcalfe WK, Pitz WJ, et al. A high-pressure rapid 17 

compression machine study of n-propylbenzene 18 

ignition Combust Flame 161: 65-74 (2014). 19 

[22] Darcy D, Tobin CJ, Yasunaga K, Simmie JM, 20 

Würmel J, Metcalfe WK, et al. A high pressure 21 

shock tube study of n-propylbenzene oxidation and 22 

its comparison with n-butylbenzene Combust Flame 23 

159: 2219-32 (2012). 24 

[23] Li Y, Zhou C-W, Curran HJ. An extensive 25 

experimental and modeling study of 1-butene 26 

oxidation Combust Flame 181: 198-213 (2017). 27 

[24] Nagy T, Turányi T. Uncertainty of arrhenius 28 

parameters 43: 359-78 (2011). 29 

[25] Nagy T, Valkó É, Sedyó I, Zsély IG, Pilling MJ, 30 

Turányi TJC, et al. Uncertainty of the rate 31 

parameters of several important elementary 32 

reactions of the h2 and syngas combustion systems 33 

162: 2059-76 (2015). 34 

[26] McNenly MJ, Whitesides RA, Flowers DL. 35 

Faster solvers for large kinetic mechanisms using 36 

adaptive preconditioners Proc Combust Inst 35: 37 

581-7 (2015). 38 

[27] Cheng S, Kang D, Fridlyand A, Goldsborough 39 

SS, Saggese C, Wagnon S, et al. Autoignition 40 

behavior of gasoline/ethanol blends at engine-41 

relevant conditions Combust Flame 216: 369-84 42 

(2020). 43 

[28] Horváth L, Dong S, Saggese C, Papp M, Curran 44 

HJ, Pitz WJ, et al. Mechanism reduction-assisted 45 

kinetic parameter optimization for the n-pentanol 46 

chemistry of the NUIGMech multifuel combustion 47 

mechanism, European Combustion Meeting, 2023  48 

[29] Lu T, Law CK. A directed relation graph method 49 

for mechanism reduction Proc Combust Inst 30: 50 

1333-41 (2005). 51 

[30] Lu T, Law CK. Linear time reduction of large 52 

kinetic mechanisms with directed relation graph: N-53 

heptane and iso-octane Combust Flame 144: 24-36 54 

(2006). 55 

[31] 18.2 A. Chemkin-Pro Input Manual, ANSYS, Inc: 56 

San Diego, 2017  57 

[32] Goitom SK, Papp M, Kovács M, Nagy T, Zsély 58 

IG, Turányi T, et al. Efficient numerical methods for 59 

the optimisation of large kinetic reaction 60 

mechanisms 26: 1071-97 (2022). 61 

[33] Kovács M, Papp M, Turány. A novel active 62 

parameter selection strategy for the efficient 63 

optimization of combustion mechanisms Proc 64 

Combust Inst 39: 5259-67 (2023). 65 

[34] Wu Y, Panigrahy S, Sahu AB, Bariki C, 66 

Beeckmann J, Liang J, et al. Understanding the 67 

antagonistic effect of methanol as a component in 68 

surrogate fuel models: A case study of methanol/n-69 

heptane mixtures Combust Flame 226: 229-42 70 

(2021). 71 

[35] Zhang K, Banyon C, Bugler J, Curran HJ, 72 

Rodriguez A, Herbinet O, et al. An updated 73 

experimental and kinetic modeling study of n-74 

heptane oxidation Combust Flame 172: 116-35 75 

(2016). 76 

[36] Dong S, Wagnon SW, Pratali Maffei L, 77 

Kukkadapu G, Nobili A, Mao Q, et al. A new 78 

detailed kinetic model for surrogate fuels: 79 

C3MechV3.3 Appl Energy Combust Sci 9: 100043 80 

(2022). 81 

[37] Chang Y, Jia M, Wang P, Niu B, Liu J. 82 

Construction and derivation of a series of skeletal 83 

chemical mechanisms for n-alkanes with uniform 84 

and decoupling structure based on reaction rate 85 

rules Combust Flame 236: 111785 (2022). 86 

[38] Chen J-T, Mohamed AAE-S, Liu J, Zhou S, Qi 87 

Z, Saraee HS, et al. An experimental and kinetic 88 

modeling study of ethyl tert-butyl ether. Ii: 89 

Intermediate and low temperature oxidation 90 

chemistry Mediterranrean Combustion Symposium 91 

(2025). 92 

[39] Heufer K, Olivier H. Determination of ignition 93 

delay times of different hydrocarbons in a new high 94 

pressure shock tube Shock Waves 20: 307-16 95 

(2010). 96 

[40] Gauthier BM, Davidson DF, Hanson RK. Shock 97 

tube determination of ignition delay times in full-98 

blend and surrogate fuel mixtures Combust Flame 99 

139: 300-11 (2004). 100 

[41] Campbell MF, Wang S, Goldenstein CS, 101 

Spearrin RM, Tulgestke AM, Zaczek LT, et al. 102 

Constrained reaction volume shock tube study of n-103 

heptane oxidation: Ignition delay times and time-104 

histories of multiple species and temperature Proc 105 

Combust Inst 35: 231-9 (2015). 106 

[42] Liu J, Zhou S, Wang P, Murakami Y, Mohamed 107 

AAE-S, Raza M, et al. An experimental and kinetic 108 

modeling study of the ignition of methane/n-decane 109 

blends Combust Flame 272: 113884 (2025). 110 

[43] Yong K, He J, Zhang W, Xian L, Zhang C, Li P, 111 

et al. Shock tube study of n-nonane/air ignition over 112 

a wide range of temperatures Fuel 188: 567-74 113 

(2017). 114 

[44] Sarathy SM, Westbrook CK, Mehl M, Pitz WJ, 115 

Togbe C, Dagaut P, et al. Comprehensive chemical 116 

kinetic modeling of the oxidation of 2-117 

methylalkanes from C7 to C20 Combust Flame 158: 118 

2338-57 (2011). 119 

 120 


