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Abstract 
 
Ammonia (NH3) has been considered a potential fuel for energy production to achieve zero carbon emissions. 
However, several challenges must be addressed to ensure its widespread use and safety. The current work focuses 
on developing a kinetic reaction mechanism that not only accurately predicts laminar flame speeds and the 
emissions from NH3 and NH3/H2 flames across various conditions but also ensures seamless applicability in 
Computational Fluid Dynamics (CFD) simulations, particularly in scenarios involving turbulent flows, such as 
swirl burners or complex engine chamber conditions. Using code Optima++, the rate parameters of the San Diego 
NH3 mechanism (only 21 species and 64 reactions) were optimised against a large collection of laminar burning 
velocity data, and concentration data measured in jet-stirred reactors and burner-stabilised stagnation flame 
experiments to develop a compact, yet robust model for CFD simulations. Due to its small size, the mechanism 
lacks important chemical pathways, so the requirement for physically realistic rate coefficients had to be sacrificed 
in order to achieve the best possible predictivity for practical applications. The mechanism has been tested for 
70/30 vol% NH3/H2 mixtures in CFD simulations of a general swirl burner against experimentally measured 
concentrations. Its predictions demonstrated good qualitative and often quantitative agreement with the 
experimental data for NO, N2O, and NO2 emissions, and NH3 slip in the whole equivalence ratio range, while 
allowing accelerated simulations compared to other leading mechanisms. 
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1. Introduction 1 

Rising concerns over oil depletion and CO₂ 2 

emissions highlight the need for alternative fuels. 3 

Hydrogen (H₂) is promising but has safety risks [1], 4 

whereas ammonia (NH₃) is gaining attention as a 5 

carbon-free fuel with easier storage and transport than 6 

H₂, thanks to existing infrastructure and lower 7 

reactivity, and easy liquefaction  [2–4]. However, NH₃ 8 

combustion faces challenges, including hazardous 9 

NOₓ emissions under fuel-lean conditions [5,6], low 10 

burning velocity, and high ignition temperature. 11 

Blending with H₂ improves efficiency, but in fuel-rich 12 

mixtures unburned NH₃ slip remains a concern due to 13 

its toxicity and environmental impact [7].  14 

Developing efficient, low-emission combustion 15 

systems requires accurate kinetic models. Many 16 

studies [8–28] build on the Miller and Bowman 17 

mechanism [29], refining NH₃ models by 18 

incorporating new reaction pathways, pressure 19 

dependence, and optimized rate parameters. Despite 20 

progress, discrepancies persist. Chemical models rely 21 

on quantum chemistry and statistical rate theory, 22 

validated against experimental data such as ignition 23 

delay times (IDT), laminar burning velocities (LBV), 24 

and concentrations in jet-stirred reactors (JSR), flow 25 

reactors (FR), and burner stabilised flames (BSF). 26 

While 0D/1D models suffice for basic simulations, 27 

complex combustion devices require Computational 28 

Fluid Dynamics (CFD) simulations, which demand 29 

compact mechanisms due to computational 30 

constraints. Simplifying kinetic models by retaining 31 

only essential species and reactions helps reduce 32 

simulation costs [30–34].  33 

Pioneers like Frenklach et al [35,36], Sheen and 34 

Wang [37,38], Turányi et al. [39], and Pitsch and 35 

coworkers [40] advanced kinetic parameter 36 

optimization, leading to tools like the ReSpecTh 37 

information system and the Optima++ code assisting 38 

combustion model development. This work aims to 39 

develop a compact NH₃/H₂ reaction mechanism with 40 

high predictive accuracy for CFD simulations, 41 

optimizing the San Diego kinetic model [35] (21 42 

species, 64 reactions) due to its small size and 43 

satisfactory predictive performance across various 44 

conditions, based on the findings of Szanthoffer et al. 45 

[41]. 46 

 47 

2. Methods – Kinetic model optimization 48 

Turányi et al. proposed the following experimental 49 

uncertainty normalised mean square error function 50 

[39], and implemented into code Optima++ 51 

[39,42,43] for performance evaluation and parameter 52 

optimization of combustion kinetic models: 53 
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N, Nf , Nfs, Nfsd  are the number of data series in all 54 

RKD data files, the number of files, the number of 55 

data series in the f th file, and the number of data in the 56 

sth data series of the f th
 file, respectively. 𝑌𝑓𝑠𝑑

exp
and 57 

𝜎(𝑌𝑓𝑠𝑑
exp

) are the d th experimental data in the sth data 58 

series of the f th
 file and its one standard deviation 59 

uncertainty, respectively. 𝑌𝑓𝑠𝑑
sim(𝐏) is the 60 

corresponding value simulated by the investigated 61 

kinetic model at vector of model parameter values P. 62 

Non-unit 𝑤𝑓𝑠 weights can correct biases arising from 63 

highly imbalanced data quantities. 64 

The Optima++ code utilises the robust 65 

FOCTOPUS global optimization algorithm [44,45] to 66 

fit the model predictions to experimental data. The 67 

value of the error function has an absolute meaning, 68 

as √𝐸 measures the uncertainty normalised root-69 

mean-square deviation (“RMSD error”) between the 70 

model and the experimental results, thus for the 71 

“perfect” model √𝐸 ≤ 1, if  √𝐸 ≈ 2 the model is 72 

usually considered a great model, and a model is 73 

considered satisfactorily predictive if √𝐸 < 3. The 74 

error function can also be evaluated also for each type 75 

of measurements. 76 

The influential reactions are usually identified by 77 

local sensitivity analysis of the simulation results with 78 

respect to the rate coefficients (e.g. Aj pre-exponential 79 

factors) [46], which ranks reactions based on their 80 

log-normalised local sensitivity coefficient: 81 

𝑆𝑓𝑠𝑑,𝑗  =
𝜕 ln 𝑌𝑓𝑠𝑑

sim

𝜕 ln 𝑃𝑗
. (2) 

There are more advanced methods, such as the 82 

PCALIN method [47] which inherently also accounts 83 

for the uncertainty of the rate coefficients and 84 

experimental data while also incorporating all 85 

normalization and weighting within the error 86 

function.  87 

Due to the small size of the San Diego 2018 88 

mechanism, it inevitably misses important chemical 89 

pathways. Consequently, even if its rate parameters 90 

had the physically exact values, its performance 91 

would be suboptimal. Therefore, a non-physical, ±1 92 

order of magnitude uncertainty range was defined 93 

around the initial rate coefficient curves in the 94 

temperature range of 500–2500 K, to allow maximum 95 

compensation of the missing mechanistic details. 96 

During optimization, this uncertainty range was 97 

sampled uniformly in lnA, n and E/R transformed 98 

Arrhenius parameters as proposed by Nagy et al. [45]. 99 

It is important to note that all the kinetic mechanisms 100 

poorly describe ammonia’s strong collider properties, 101 

which results in unusually large (e.g. 5–20 relative to 102 

N2 or Ar) temperature-dependent third-body 103 

efficiencies [48–50]. Thus, their good accuracy is 104 

often achieved through off-tuned rate coefficients that 105 

compensate for these gaps. 106 

Finally, the performance of the improved San 107 

Diego 2018 reaction mechanism developed in this 108 

study was evaluated by assessing its accuracy against 109 

21 reaction mechanisms from the literature [8–28].  110 
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3. Experimental data and its uncertainty 1 

 To develop an improved model with robust 2 

performance for different burner designs, a large 3 

collection of NH3/H2 LBV, and concentration data 4 

measured in JSRs and burner-stabilised stagnation 5 

flames (BSSF) were considered as optimisation 6 

targets. All JSR data and a large part of the LBV data 7 

have been collected and previously used for model 8 

performance evaluation by Szanthoffer et al. [41,77], 9 

encoded into RKD format data files [78], and stored 10 

in the ReSpecTh database [79]. The newly collected 11 

data (LBV and BSSF) has also been encoded into 12 

RKD files and are available in the ReSpecTh database 13 

with the publication. The total number of RKD files 14 

(Nfiles), experiments (Nexp), data series (Nseries), and 15 

data points (Ndata) and the covered ranges of 16 

conditions are shown in Table 1.  17 

Regarding BSSF measurements, only a single data 18 

series for 70/30 vol% NH3/H2 mixtures was used, as 19 

measured by Hayakawa et al. [75]. This ratio 20 

optimises combustion by combining ammonia's high 21 

energy density and carbon-free nature with 22 

hydrogen's fast flame speed and wide flammability 23 

range. Due to the significant disagreement in the 24 

measured concentration values for combustion of pure 25 

NH₃ fuel in JSR experiments of different laboratories, 26 

only data for NH3/H2 mixtures, measured by Zhang et 27 

al. [23] and Osipova et al. [76], were considered. LBV 28 

measurements available from 26 publications are 29 

listed in Table 2 together with the applied method.  30 

A method for the a posteriori assessment of 31 

statistical noise in a data series (𝜎𝑓𝑠,stat for the sth data 32 

series in fth RKD file) was carried out using the 33 

Minimal Spline Fit code [80]. This value was 34 

combined with the reported experimental uncertainty 35 

(𝜎𝑓𝑠𝑑,exp) using the formula of Olm et al. [81] to give 36 

a more conservative estimate for the uncertainty: 37 

𝜎(𝑌𝑓𝑠𝑑
exp

) = √𝜎𝑓𝑠,stat
2 + 𝜎𝑓𝑠𝑑,exp

2   . (3) 

This procedure was followed by Szanthoffer et al. 38 

[41] and also in this work for the previously and newly 39 

collected experimental data, respectively. 40 

 41 

4. Methods – Accelerated flame simulations 42 

Model optimization involving many active 43 

parameters, require numerous repeated simulations 44 

using the same mechanism with modified parameters. 45 

A comprehensive database of numerical simulation 46 

results is established in Optima++ using Cantera 2.6 47 

solver [82] to reduce the computational overhead of 48 

Table 2  

Laminar burning velocity measurement considered in the current study 

# Publication Ref. Methoda Nfiles Ndata xH2%  p/atm Tu/K 

1 Lee et al. 2009 [51] OPF 5 10 10-50 0.6-1.67 1.0 298 

2 Lee et al. 2010 [52] OPF 3 15 69-100 0.6-1.67 1.0 298 

3 Hayakawa et al. 2015 [53] OPF 3 13 0 0.8-1.2 1.0-4.9 298 

4 Ichikawa et al. 2015 [54] OPF 3 22 0-100 1.0 1.0-4.9 298 

5 Li et al. 2018 [55] OPF 1 6 0 0.8-1.3 1.0 300 

6 Han et al. 2019 [56] HF 6 99 0-45 0.7-1.6 1.0 298 

7 Liu et al. 2019 [57] OPF 5 26 0 0.2-2.0 0.5-1.6 298 

8 Mei et al. 2019 [58] OPF 7 51 0 0.6-1.5 1.0-5.0 298 

9 Han et al. 2020 [59] HF 7 63 0 0.7-1.5 1.0 298-448 

10 Lesmana et al. 2020 [60] FC 3 21 0-8 0.9-1.2 1.0 295 

11 Lhuillier et al. 2020 [61] OPF 35 240 5-60 0.8-1.4 1.0 298-473 

12 S. Wang et al. 2020 [62] HF 5 67 40-60 0.6-1.6 1.0-4.9 298 

13 D. Wang et al. 2020 [63] OPF 9 51 0 0.6-1.4 1.0 303-393 

14 Xia et al. 2020 [64] OPF 2 15 0 0.6-1.6 1.0 298 

15 Kim et al. 2021 [65] OPF 3 12 0 0.9-1.2 1.0 298 

16 Li et al. 2021 [66] OPF 4 22 0 0.6-1.4 1.0 300 

17 Mei et al. 2021 [24] OPF 7 40 14-86 0.7-1.4 1.0-10.0 298 

18 Osipova et al. 2021 [67] FC 1 9 30 0.7-1.5 1.0 368 

19 Shrestha et al. 2021 [68] OPF 23 105 0-30 0.8-1.4 1.0-9.4 298-476 

20 N. Wang et al. 2021 [69] OPF 3 17 10-20 0.5-1.5 1.0-4.9 360 

21 Gotama et al. 2022 [13] OPF 2 14 40 0.8-1.8 1.0-4.9 298 

22 Han et al. 2022 [70] HF 4 49 4-60 0.6-1.6 1.0 298 

23 Hou et al. 2022 [71] OPF 6 32 0 0.7-1.3 1.0-14.8 298 

24 Ji et al. 2022 [72] OPF 10 92 0-87 0.6-2.0 1.0 303 

25 Karan et al. 2022 [73] OPF 14 140b 0 0.8-1.3 2.0-36.6 369-584 

26 Zitouni et al. 2023 [74] OPF 8 52 0-80 0.6-1.4 1.0 298 
a OPF: Outwardly Propagating spherical Flame method, HF: Heat Flux method, FC: Flame Cone method. 
b Originally published 2102 data points in 14 series were subsampled, resulting 10 points in each series. 

Table 1 

Optimisation targets from different reactor types used in the current study (used/total) 

Measurement Publication Ref. Nfiles Nseries Nexp Ndata xH2%  p/atm T or Tu/K 

BSSF conc. Hayakawa et al. 2022 [75] 1 7 17 119 30 0.57-1.40 1 298 

JSR conc. Zhang et al. 2021 [23] 8 14 71/74 284/296 10-70 0.15-0.79 1 800-1281 
 Osipova et al. 2022 [76] 3 33 51/54 254/269 38-61 0.60-1.50 1 800-1300 

LBV See Table 2. - 179 179 1283 1283 0-100 0.20-2.00 1.0-36.6 295-584 

All TOTAL - 191 233 1416 1940 0-100 0.20-2.00 1.0-36.6 295-1281 
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repeated simulations. Given the large number of flame 1 

conditions (1283 experiments) and the extensive 2 

repeated simulations required for the optimization, it 3 

was necessary to further accelerate the simulations. 4 

Consequently, as a compromise between accuracy 5 

and fast simulations free from convergence issues, 6 

loose thresholds for gradient (0.06) and curvature 7 

(0.12) convergence criteria were employed and 8 

thermal radiation was neglected during optimization, 9 

which was shown to cause 5% variation in the RMSD 10 

error value for LBV, thus, it is an acceptable trade-off, 11 

as significantly larger improvements are realised 12 

following parameter optimization (see later). 13 

Sensitivity analysis was carried out using tight 14 

thresholds (GRAD = 0.01, CURV = 0.02). 15 

 16 

5. Methods – CFD simulations 17 

This section describes the numerical setup for the 18 

CFD simulation of a turbulent swirl flame, with a 19 

constant burning power of 10 kW and selected 20 

equivalence ratios of 0.6, 0.8, 1.0, and 1.2. The novel 21 

burner geometry and experimental setup were 22 

presented in detail by Mashruk et al. [83]. The raw 23 

experimental data from [83] were standardised using 24 

the averaged oxygen and water content and presented 25 

as 15 vol% O2 on a dry gas basis. The simulations 26 

were conducted using Ansys Fluent 2024r1 [84] with 27 

the Reynolds-averaged Navier-Stokes (RANS) 28 

approach and the Reynolds Stress Model (RSM) for 29 

turbulence. The Stress-Menters Baseline (Stress-30 

BSL) model was selected to represent the pressure-31 

strain term in the transport equation for stresses. The 32 

reacting flow calculations used the Eddy Dissipation 33 

Concept (EDC) combustion model. Calculations were 34 

performed using the default turbulent Schmidt 35 

number value (0.7) and including thermal diffusion. 36 

The calculations included the determination of heat 37 

transfer rates for the burner and quartz glass at a 38 

temperature of 288 K, with and a heat transfer 39 

coefficient of 20 W/m²K. The radiative heat flux was 40 

modelled using the Discrete Ordinates (DO) model. In 41 

consideration of the heat and flow models applied, the 42 

coupled pressure-velocity solver was employed with 43 

the Procedure for Efficient Solution of Transient and 44 

Steady-State Operations (PRESTO!) scheme for 45 

pressure discretization, and a second-order scheme 46 

was used for the remaining equations.  47 

The improved mechanism presented in this work 48 

was compared to the Stagni et al. 2020 [28] and 49 

Nakamura et al. 2019 [27] mechanisms, which were 50 

selected for their relatively small size, overall good 51 

performance, and very good predictive capability for 52 

emissions in ammonia-hydrogen flames [85,86].  53 

A 40-degree rotationally periodic section of the 54 

combustor above was represented with a three-55 

dimensional mesh of 1.6 million polyhedral elements 56 

for a radial cross-section (see Fig. 2). Simulations 57 

were carried out for a fully premixed mode of the 58 

burner operation, which allowed the mesh size to be 59 

reduced but neglected possible inhomogeneities in the 60 

H2 distribution, which in the experimental setup is 61 

supplied near the tangential swirler for safety reasons. 62 

A significant densification of the grid was performed 63 

for the region surrounding the projected flame 64 

position, the tangential swirler and the boundary layer 65 

near possible separation points. 66 

 67 

6. Results – Kinetic model optimization 68 

In addition to the San Diego 2018 mechanism, 20 69 

NH3/H2 mechanisms published since 2018 were 70 

collected from the literature to evaluate the 71 

performance of the optimised model (Present work, 72 

PW mechanism). The list of the considered 73 

“decarbonised” mechanisms (i.e no carbon atom 74 

containing species) are shown in Table 3.  75 

To identify influential reactions whose rate 76 

coefficients should be optimised, sensitivity analysis 77 

was carried out on the whole data collection using 78 

+5% perturbation on the pre-exponential factor of all 79 

rate coefficients (64+5 for low-pressure limit). Both 80 

standard sensitivity analysis and the PCALIN method 81 

showed that each of the 69 rate coefficients had a 82 

significant influence on the simulation results, thus, 83 

all three Arrhenius parameters of all rate coefficients 84 

were considered in the optimization to exploit 85 

maximum flexibility of the model to compensate for 86 

the mechanistic deficiencies. To account for the 87 

imbalance in the data collection, during optimization, 88 

the error function weights in Eq. (1) were set to 1/179, 89 

1/47 and 1/7 for the 179 LBV, 47 JSR and 7 BSSF 90 

data series, respectively. 91 

Table 3 presents the performance the mechanisms 92 

in terms of √𝐸 evaluated for the three types of 93 

measurements separately, and the overall error 94 

Fig. 2. Radial cross-section of a 40-degree periodic burner 
section showing the computational grid structure and 

domain configuration. 
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function value (√𝐸Overall
 ) was calculated as the root 1 

mean square average of the three errors. The accuracy 2 

of the PW mechanism has been greatly improved 3 

compared to the San Diego 2018 mechanism in 4 

predicting LBVs. Surprisingly, it has become the most 5 

accurate mechanism for LBV calculation despite its 6 

smallest size. Very good performance is shown also 7 

by Han 2023 and the Z. Wang 2022 mechanisms, but 8 

the simulations using these mechanisms take at least 9 

five times longer than those using the PW mechanism.  10 

The average performance in predicting JSR 11 

concentrations for NH3/H2 mixtures with at least 10 12 

vol% H2 content is acceptable for all models. Notably, 13 

the Zhu 2024 and Z. Zhang 2024 mechanisms 14 

provided especially accurate descriptions (√𝐸 ~ 1). 15 

Additionally, the Han 2023, Mei 2021, Stagni 2023, 16 

Jian 2018, Otomo 2018, and Tamaoki 2024 17 

mechanisms performed well (√𝐸 ~ 1.5–2.1). The San 18 

Diego 2018 mechanism shows fair performance with 19 

√𝐸 = 2.43, with slight deterioration upon 20 

optimization (√𝐸 = 2.72), yet its error remains below 21 

3.  22 

In predicting BSSF concentration data, except for 23 

the most detailed Zhu 2024 mechanism (√𝐸 = 2.27), 24 

all mechanisms had unsatisfactory performance 25 

(√𝐸  3.65). While the San Diego 2018 mechanism 26 

had the highest error value of √𝐸 = 13.9, the PW 27 

mechanism emerged as the second-best one among 28 

the 22 mechanisms with √𝐸 = 3.24 for BSSF. Table  29 

shows the prediction errors of the mechanisms for the 30 

concentrations of different species measured in JSR 31 

and BSSF experiments. Regarding JSR experiments, 32 

the PW mechanism has very accurate predictions for 33 

NO and N2O (√𝐸 ≤ 1.5), and acceptable predictions 34 

for H2, O2, H2O and N2. Its accuracy for NH3 35 

deteriorated significantly compared to the San Diego 36 

2018 model (√𝐸 = 2.8 → 4.0), however, surprisingly, 37 

none of the mechanisms can perform excellently in 38 

this regard (all √𝐸 ≥ 2). Good descriptions are given 39 

only by the Stagni 2020, Stagni 2023, Zhu 2024, Z. 40 

Zhang 2024 and Jian 2024 mechanisms. 41 

Regarding NO emissions, all mechanisms perform 42 

well or excellently. For N2O, only eight mechanisms, 43 

including the PW mechanism, can give accurate 44 

estimates (√𝐸 < 2), and five models, including the 45 

San Diego 2018 mechanism were unreliable 46 

(√𝐸 ≥ 3.4. For O2 concentrations, almost all 47 

mechanisms perform accurately, and four 48 

mechanisms, including the PW model, have 49 

acceptable performance. For H2 concentrations, the 50 

predictions are also generally good or at least 51 

acceptable, and only the Gotama 2022, Nakamura 52 

2019, Wang 2022, and San Diego 2018 mechanisms 53 

have unacceptably large errors (√𝐸 > 3). In 54 

summary, three mechanisms: the Zhu 2024, the Z. 55 

Zhang 2024, and the Mei 2021 mechanisms showed 56 

reliable performance for all seven species. 57 

Regarding BSSF concentration measurements, the 58 

Zhu 2024 mechanism clearly stands out with its 59 

universal high accuracy for all species apart from 60 

N2O. For H2 and H2O, all other mechanisms give bad 61 

predictions (√𝐸 ≥ 4.1 and 3.8). For N2O, only the Han 62 

2023 (√𝐸 = 1) and PW (√𝐸 = 3.2) mechanisms show 63 

good and acceptable performances, respectively, 64 

whereas all other mechanisms perform poorly 65 

(√𝐸 ≥ 4.1). Except for four mechanisms (Mei 2021, 66 

Wang 2022, Tamaoki 2024, San Diego 2018), all 67 

models give good or acceptable predictions for NH3, 68 

with the PW emerging as the best. The trend is similar 69 

for O2: all mechanisms, except for the same four 70 

models, give excellent predictions. These four bad 71 

performing mechanisms and the PW model are also 72 

inaccurate (√𝐸 ≥ 3.6) for NO2, whereas most models 73 

predict it relatively accurately or at least acceptably 74 

with an error of √𝐸 = 1.9–3.2. After Zhu 2024, the 75 

PW model has the best performance for NO 76 

(√𝐸 = 1.5), whereas half of the mechanisms perform 77 

badly (√𝐸 ≥ 3.0).  78 

 79 

7. Results – CFD simulations 80 

The CFD simulations of 70/30 vol% NH3/H2 81 

mixture were carried out for a swirl burner at 0.6, 0.8, 82 

Table 3  

Prediction errors of the investigated kinetic models for BSSF and JSR concentration measurements 

 

 Green-yellow-red highlighting of cells corresponds to √𝐸=2, 3, 4 error values, respectively. 
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1.0. and 1.2 equivalence ratios. In the simulations, the 1 

tested mechanisms provided similar flow fields and 2 

temperature distributions across all the tested 3 

equivalence ratios. Figure 3 summarises the 4 

simulation result for outlet concentrations of NH3 and 5 

the three main NOx species obtained by the three 6 

mechanisms in comparison with the experimentally 7 

measured values. Emissions are normalised to a 8 

reference oxygen concentration of 15 vol% in the dry 9 

exhaust, which excludes water vapor.  10 

Regarding NO emissions in the 𝜙 = 0.8–1.2 range, 11 

all mechanisms perform qualitatively well, with the 12 

Stagni 2020 mechanism demonstrating the best 13 

accuracy, whereas the other two significantly 14 

overpredict peak NO emissions in almost perfect 15 

agreement with each other. While all mechanisms 16 

demonstrated the highest NO emission at 0.8, the NO 17 

emission drop observed at very lean conditions was 18 

only captured by the improved mechanism. At very 19 

lean conditions, the PW mechanism predicts NH3 slip 20 

accurately, whereas the other two mechanisms predict 21 

no slip at all. All mechanisms accurately describe the 22 

complete consumption of NH3 under stoichiometric 23 

and slightly lean conditions, and they give a good 24 

qualitative description for the unburnt ammonia in 25 

rich flames. In the latter case, considering that 26 

experimental NH3 emissions exceed the measurement 27 

limits, the present mechanism and the Stagni 2020 28 

mechanism provide the best and second best 29 

predictions, while the Nakamura 2019 model 30 

underpredicts the result by at least one order of 31 

magnitude. Regarding N2O concentration predictions, 32 

all mechanisms are qualitatively correct as they give 33 

zero emissions only in the 𝜙 = 0.8–1.2 range. The 34 

Nakamura 2019 mechanism is the most accurate, with 35 

20% overprediction, whereas the PW mechanism and 36 

the Stagni 2020 mechanism overpredict by 80% and 37 

170%, respectively, compared to the experiment. 38 

Regarding NO2 concentration all models reproduce 39 

zero emissions at stoichiometric and rich conditions. 40 

All mechanisms predict the emergence of emission at 41 

𝜙=0.8, however, they yield 3-4 times lower values 42 

than the experimental data. The Nakamura 2019 and 43 

the Stagni 2020 mechanisms give monotonically 44 

increasing emission with decreasing equivalence 45 

ratio, while the PW mechanism accurately captures 46 

the decreasing trend under very lean conditions.  47 

In summary, the PW model captures the NH3 slip 48 

and the rapid NO decrease at an equivalence ratio of 49 

0.6, and it also shows good qualitative agreement with 50 

the N2O and NO₂ concentrations. It should be noted 51 

that the resulting NO₂ emissions were under-52 

predicted, falling within the range of a few ppm, so 53 

this trend requires further investigation for 54 

confirmation. However, given the limited number of 55 

data points, especially in regions with large gradients, 56 

such as very lean and near stoichiometric conditions, 57 

these predictions should be viewed as an indication of 58 

the mechanism's capabilities rather than a direct fit. 59 

The PW mechanism is highly efficient, running 60 

1.78–2.14 times faster than the Nakamura 2019 and 61 

Stagni 2020 models while maintaining accurate 62 

pollutant emission predictions. 63 

 64 

8. Conclusions 65 

In this study, it was found that the mediocre 66 

accuracy of the compact San Diego 2018 mechanism 67 

Fig. 3. Outlet concentration of NH3, NO, N2O, and NO2 species measured experimentally 

by Mashruk et al. [83] and calculated using CFD simulations with three mechanisms (PW: 
present work) for 70/30 vol% NH3/H2 blends in a swirl burner design. Emissions are 

normalised to 15 vol% O2 concentration in the dry exhaust (i.e. excluding water vapor). 
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in predicting LBVs, and concentrations in JSRs and 1 

BSSFs could be greatly improved by rate parameter 2 

optimization if unphysically wide tuning ranges are 3 

allowed for its rate coefficients. The optimised model 4 

showed the best performance for LBV and gave 5 

reliable predictions for NH3, NO and N2O in BSSF 6 

and for NO and N2O in JSR, but its performance for 7 

NO2 in BSSF and for NH3 in JSR still needs to be 8 

improved. The model has also been tested in 9 

computational fluid dynamics simulations of a swirl 10 

burner, and it allowed rapid simulations there as well. 11 

Its predictions showed excellent qualitative and often 12 

good quantitative agreement with the experimentally 13 

measured emissions, which could not be provided by 14 

other widely used mechanisms.  15 

Despite the improved performance of the 16 

optimized San Diego 2018 model, tuning alone cannot 17 

fully compensate for missing reaction pathways. 18 

Future improvements include expanding its chemistry 19 

and parameterization, particularly with pressure-20 

dependent descriptions and third-body efficiencies for 21 

key reactions like NH3. Given its structural 22 

deficiencies, the optimized rate parameters are not 23 

physically recommended, but the mechanism offers a 24 

good balance between accuracy and efficiency for 25 

CFD applications. 26 
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