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Abstract  

Bioalcohols are promising alternatives to reduce dependence on fossil fuels. While bioethanol is widely used, its 
properties limit its compatibility with current petrol engines. Longer-chain alcohols, such as biobutanol and 
biopentanol, are more suitable and can be used in existing vehicles. Among several combustion mechanisms 
developed for the four butanol isomers, the mechanism of Sarathy et al. shows the best overall performance but 
still has significant room for improvement. This work focuses on improving its predictivity through kinetic pa-
rameter optimization to enhance its performance for a large set of combustion data. Parameter optimization can 
be very challenging in the case of large combustion models and/or large experimental data collections. Recently, 
Horváth et al. proposed the Mechanism Reduction Assisted Parameter Optimization and Model Development 
(RAPOD) method to overcome the challenge of optimizing the n-pentanol chemistry model in the large multifuel 
NUIGMech 1.1 combustion mechanism against a small data collection. According to RAPOD, a reduced mecha-
nism is developed first that can very accurately reproduce the simulation results of the detailed model, and then 
its parameters are optimized and reintroduced into the full model. In the case of butanol, due to the huge size of 
the data collection, it is not feasible to perform the parameter optimization of the Sarathy model, even when 
using a reduced model. In this work, the RAPOD approach has been extended to reduce the large data collection 
as well. The optimized model shows similar improvements in accuracy for the entire data collection. We down-
loaded the experimental ignition delay time data (835 data points) collected for butanol isomers from the Re-
SpecTh information system. First, the Sarathy butanol mechanism was reduced, considering a small number of 
representative conditions covering the relevant conditions. Then, representative data points were selected from 
the data collection by dividing the condition and simulation error space into bins and taking single representative 
points from each with appropriate weights. The extended RAPOD method allowed for faster optimization of two 
orders of magnitude.  
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1. Introduction 1 

Our modern society relies on the large-scale 2 
consumption of energy. Our household appliances, 3 
working tools, services, and methods of transpor-4 
tation are working using the power of electricity or 5 
direct burning of fuel. Today, energy production is 6 
still overwhelmingly dominated by the combustion 7 
of fossil fuels, whose resources, according to some 8 
more pessimistic outlooks, may be depleted within 9 
half a century at the current rate of utilization.  10 

Popularly considered renewable alternatives to 11 
transportation fuels are bioalcohols. Bioethanol is 12 
already in use as a petrol additive in most coun-13 
tries (e.g. E10 petrol standard), and in certain 14 
countries (e.g. Brazil) as the main fuel component. 15 
However, the hygroscopic property of ethanol 16 
causes limited mixing with petroleum fuels and 17 
may also cause corrosion in the fuel system. For 18 
this reason, longer chain bioalcohols are consid-19 
ered as a viable alternative, although their produc-20 
tion is not economical yet. Larger bioalcohols like 21 
n-butanol and n-pentanol are expected to be better 22 
ingredients, as due to their longer carbon chains, 23 
their physical and combustion properties are more 24 
similar to those of hydrocarbon fuel. Regarding 25 
the combustion of the long chain bioalcohols, 26 
biobutanol has already been researched for more 27 
than a decade, whereas on n-pentanol combustion 28 
still relatively little is known. 29 

Kinetic models are developed for understanding 30 
the combustion of fuels and to promote the devel-31 
opment of new combustion technologies based on 32 
them. These kinetic models contain not only the 33 
reaction steps but also their rate parametrization, 34 
which, in theory, defines their pressure and tem-35 
perature dependence. Furthermore, thermodynam-36 
ic and transport data are provided for each chemi-37 
cal species with the models; thus, it allows simula-38 
tions of systems with complex geometries. Nowa-39 
days, computational fluid dynamics (CFD) simula-40 
tions using chemical kinetic models are central 41 
tools in the development of modern combustion 42 
devices.  43 

The assembled models are then validated 44 
against data from indirect experimental measure-45 
ments, whose results can be simulated using only 46 
detailed mechanisms; that is, they contain indirect 47 
information on the rate of elementary reactions. 48 
Such experimental measurements are, for example, 49 
ignition delay times (IDT) measured in rapid 50 
compression machines (RCM) and shock tubes 51 
(ST), concentration data from jet-stirred reactor 52 
(JSR) measurements, and laminar burning veloci-53 
ties (LBV) from various devices, etc.  54 

The size of detailed combustion mechanisms, 55 
depending on the fuel molecule, can range from 56 
tens of species and reactions (hydrogen, methane) 57 
to hundreds (natural gas, gasoline surrogates) and 58 
thousands (e.g. diesel surrogates, biodiesel). The 59 
accuracy of these models can be significantly 60 

improved by systematic parameter tuning; howev-61 
er, their sheer size makes their application unfeasi-62 
ble not only in CFD simulations but also for pa-63 
rameter tuning against a large amount of experi-64 
mental data. 65 

In our previous work, we presented a help of 66 
mechanism reduction to accelerate parameter 67 
optimization for large, multifuel mechanisms [1]. 68 
In that case, the simulation (and optimization) 69 
speed of NUIGMech 1.1 mechanism’s [2] n-70 
pentanol chemistry could be increased 40-fold. 71 
However, in the case of other biofuels, such as 72 
butanol, a significant amount of research data is 73 
available, making the optimization computational-74 
ly expensive, while selecting only parts of them 75 
may decrease robustness (i.e. overall accuracy) of 76 
the optimized model. As these large experimental 77 
data collections contain substantial amounts of 78 
data measured at the same or similar conditions, 79 
the information they carry is often redundant. This 80 
redundancy allows the creation of a reduced data 81 
collection, which contains representative data 82 
points spanning the entire condition space of the 83 
data collection, with assigned weights to account 84 
for the redundant measurements and to mimic the 85 
error function over the whole data collection. 86 

2. The investigated combustion 87 
mechanism 88 

The Sarathy 2014 combustion mechanism [3] is 89 
designed to describe the combustion of a wide 90 
array of fuels: hydrogen, syngas, C1-C5 hydrocar-91 
bons, aldehydes and C1-C4 alcohols. 92 

The original mechanism contains a large num-93 
ber of species (687) and reactions (3435), which 94 
makes its optimization time and power-consuming. 95 
This necessitated its reduction to accelerate its 96 
optimization using the RAPOD concept to a sig-97 
nificantly smaller size: 285 species and 1535 98 
reactions, which allowed a 10-fold increase in 99 
simulation speed with very similar predictivity.  100 

3. Experimental data collection 101 

The experimental data used as optimization tar-102 
gets includes many ignition delay time measure-103 
ments from various research groups, compiled by 104 
Bolla et al. [4]. These measurements cover a wide 105 
range of experimental conditions and contain 106 
experiments with all four butanol isomers, albeit in 107 
different proportions.  108 

All experimental conditions and measured data 109 
we collected were stored in ReSpecTh Kinetics 110 
Data (RKD) XML data files [5], which allow their 111 
automated use for setting up simulations in the 112 
Optima++ parameter optimization environment 113 
[6].  114 

The total error of each experimental data series 115 
was estimated based on the error value given by 116 
the experimentalists and the inherent statistical 117 
noise[7] of the data series using the following 118 
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formula, where the reported experimental error 1 
was taken as 2𝜎exp unless it was stated differently 2 
in the original publication: 3 

𝜎exp,tot
2 = √𝜎exp

2 + 𝜎stat
2  (1) 

4. Reduction of experimental data 4 
(RAPOD) 5 

To reduce the computational time and resources 6 
of the optimization work, we propose the follow-7 
ing framework of data reduction-assisted optimiza-8 
tion: 9 

1. Selecting a representative set of experimental 10 
data, which covers all regions of the condition 11 
space of experiments. 12 

2. Optimization of the important parameters of 13 
the mechanism against the representative set of 14 
data.  15 

3. Validating the optimized model against the 16 
total data collection.  17 

 18 

Figure 1. Reduction-Assisted Parameter Optimiza-19 
tion and Model Development (RAPOD) 20 

This method can be (as in this case) combined 21 
with the previous model reduction method. [1] 22 

5. Data reduction procedure 23 

The following protocol is proposed to reduce 24 
the data collection to a representative subset. 25 

1. In the first step, the parameters used for 26 
the categorization and segmentation of the data are 27 
defined and classified according to various as-28 
pects: 29 

a. experimental parameters: the experiment 30 
method and the measured quantity, the fuel com-31 
position (mole fraction of components or index of 32 
isomers), temperature (T), pressure (p), dilution 33 
(dil) and equivalence ratio ().  34 

b. uncertainty normalized signed simulation 35 
error (D): repeated measurements by different 36 
laboratories can have different predictions for a 37 
measured quantity, thus their initial mechanism 38 
can be significantly different. The outcome of the 39 
optimization largely depends on which of them is 40 
selected into the reduced data collection. 41 

c. continuous parameters (i.e. real numbers): 42 
p, T, dil, , D. Each of these continuously chang-43 
ing values with many distinct values in the data 44 
collection is assigned to a low number of bins. 45 

Before binning, these parameter values can be 46 
transformed to reciprocal (e.g. 1/T) or logarithmic 47 
scales (e.g. log10p, log10). The resolution of this 48 
segmentation can be adjusted for each parameter 49 
separately. 50 

d. discrete parameters: pure fuels, isomers, 51 
experiment type, measured quantity, and any 52 
condition parameter which takes on only few 53 
values in the data collection, thus can be indexed 54 
with small integer numbers. Here, every distinct 55 
value is considered and not represented by other 56 
values. 57 

 58 

Figure 2. Point density of data on a T-P map 59 

 60 

Figure 3. An example of generated cells on a T-P 61 
map 62 

2. From each cell defined by the discrete 63 
and continuous parameters, one representative 64 
point is selected. Multiple possible selection meth-65 
ods were tested, including selecting the point with 66 
the highest simulation error (D) and with the me-67 
dian error value. Empty cells are ignored in the 68 
following. 69 

3. Various combination of a number of bins 70 
is considered (e.g. (3,3,3), (4,3,3), (3,4,3), etc for  71 
(p,T, )), and the representative experiments are 72 
picked from them. The coverage of the full data 73 
collection by the reduced set of points is character-74 
ized by the convex hull ratio of the reduced data 75 
collection to that of the original one: 76 

𝑄C.H. =
𝑉𝑟𝑒𝑑

𝑉𝑓𝑢𝑙𝑙
 (2) 

4. The accepted representative data collec-77 
tion is the smallest set where the convex hull ratio 78 
is higher than a pre-defined limit (e.g. 90%)  79 

 80 
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The algorithm has been implemented as Python 1 
code, and will be available on the respecth.hu 2 
webpage upon journal publication of the method. 3 

6. Selection of active parameters 4 

Detailed combustion mechanisms usually 5 
contain large number of uncertain parameters. 6 
Frenklach et al. [8] suggested that only those 7 
parameters (‘the active parameters’) that have a 8 
high influence on the simulated value of the exper-9 
imental data need to be fitted. We carried out a 10 
brute-force local sensitivity analysis in the Opti-11 
ma++ [6] framework, using the OpenSMOKE++ 12 
[8,9] simulation code. Ranking the global maxima 13 
of the reaction sensitivities. 14 

7. Mechanism optimization procedure 15 

For the parameter optimization we applied the 16 
Optima++ code [10], which implements the opti-17 
mization methodology developed by Turányi et al. 18 
[11] and uses the numerical optimization algorithm 19 
FOCTOPUS developed by T. Nagy [11,12]. In this 20 
work we used the OpenSMOKE++ [9,13] code for 21 
the combustion simulations. The Optima++ code 22 
minimizes the following error function: 23 

𝐸(𝐏) =
1

𝑁
∑ ∑

𝑤𝑓𝑠𝑑

𝑁𝑓𝑠𝑑

∑ (
𝑌𝑓𝑠𝑑

sim(𝐏) − 𝑌𝑓𝑠𝑑
exp

𝜎𝑓𝑠𝑑
exp,tot )

2𝑁𝑓𝑠𝑑

𝑑=1

𝑁𝑓𝑠

𝑠=1

,

𝑁𝑓

𝑓=1

 (3) 

where 𝑁 is the total number of data series, Nf is 24 
the number of data files, 𝑁fs is the number of data 25 
series in the f-th file and 𝑁fsd is the number of data 26 
in its s-th data series. In this data series, 𝑌𝑓𝑠𝑑

exp
 is the 27 

optionally transformed d-th data and 𝑌𝑓𝑠𝑑
sim is its 28 

simulated value, which depends on parameter 29 
vector P that contains transformed Arrhenius 30 
parameters (ln A, n, E/R). R is the universal gas 31 
constant. The 𝑤𝑓𝑠𝑑 factors are the weights, which 32 
can help to develop optimized mechanism with 33 
balanced performance in reproducing all type of 34 
experimental data in the case of an unbalanced 35 
data collection. 36 

The experimental uncertainty of a data point is 37 
also taken into account via the 𝜎𝑓𝑠𝑑

exp,tot
 standard 38 

deviation of its determination. Thus, square root of 39 
E(P) measures the root mean squared deviation of 40 
the simulation results from the experimental data 41 
relative to the standard deviation of the experi-42 
mental data. Square root of E(P) is around 1 for a 43 
perfect model, and below 3 for a model which is 44 
accurate on average within three experimental 45 
standard deviation. 46 

The selected Arrhenius parameters were opti-47 
mized in such a way that the rate coefficients 48 
calculated with the optimized rate parameters 49 
always remained within their prior uncertainty 50 
interval [kmin(T); kmax(T)] in the temperature inter-51 
val of 600 K to 3000 K. The uncertainty parameter 52 

is defined as the radius of a symmetric uncertainty 53 
range around the nominal k0(T) value on log10 54 
scale: 55 

𝑓prior(𝑇) = log10

𝑘max(𝑇)

𝑘0(𝑇)
= log10

𝑘0(𝑇)

𝑘min(𝑇)
. (4) 

As prior information was not known for the un-56 
certainty range of the influential reactions, one 57 
order of magnitude of uncertainty was assumed for 58 
the rate coefficients in the 600-3000K temperature 59 
range, which corresponded to 𝑓prior = 1 value. 60 
The optimization was continued for 500 iterations, 61 
with 3 random parameter sets tested in each itera-62 
tion. During the optimization, the parameter sets 63 
improving for the reduced dataset were also vali-64 
dated for the full one. The mechanism improved 65 
for the reduced set was retained for the next itera-66 
tion, even if the validation error increased.  67 

8. Results 68 

The following combinations of convex hull ac-69 
curacy and selection rules were tested: 70 

Table 1. Table of reduced data collections 71 

Codeword 𝑸𝐂.𝐇. Selection rule 

CH90max 90% max(E) 

CH80max 80% max(E) 

CH70max 70% max(E) 

CH60max 60% max(E) 

CH90med 90% median(E) 

CH80med 80% median(E) 

CH70med 70% median(E) 

CH60med 60% median(E) 

 72 

Testing these settings shows the profound effect of 73 
both the convex hull accuracy and selection rule in 74 
the overall improvement and correlation between 75 
the optimization and validation error function 76 
curves: The results show that a median selection 77 
rule provided greater retention of correlation, even 78 
with smaller convex hull accuracy criteria, while 79 
selecting a higher convex hull accuracy decreased 80 
the shift between the representative and validation 81 
dataset. CH90med, in particular, showed remarka-82 
ble agreement between the two, staying accurate 83 
throughout the optimization. However, the overall 84 
outcome of full set accuracy was very similar in 85 
lower accuracy median selections, such as 86 
CH70med.  87 

 88 
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1 

 2 

Figure 4. Comparison of various reduction settings regarding validation consistency 3 

 4 

If we compare these optimization protocols 5 
with the the direct optimization of the full data 6 
collection, including the time necessary to reach 7 
the best results, we get the following results: 8 

With an initial E of 37.6, each reduced data col-9 
lection shows significant improvement in 500 10 
iterations, with CH70med (median selection, with 11 

70% convex hull accuracy) showing similar error 12 
reduction as the original set, with a significantly 13 
lower (44 hours compared to 365) optimization 14 
time. If we consider the tenfold increase in simula-15 
tion time due to mechanism reduction, the process 16 
was roughly 80 times faster than direct optimiza-17 
tion of Sarathy 2014. 18 

 19 

 20 
Table 2. Comparison of reduced datasets with a direct optimization21 

22 

 23 
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Codeword Lowest E in 500 iterations Time (500 iterations) (h) 

Original 23.7 365.4 

CH90max 24.4 62.3 
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CH70med 23.6 44.0 
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 1 

Figure 5. Diagrams of optimizations on reduced data collections2 

The optimized results show a significant im-3 
provement in the simulation accuracy, reducing the 4 
overall error function by 37.19%. This is compa-5 
rable to the improvement on the original data, 6 
which was 36.80%.  7 

There was a general improvement for both 8 
HPST and RCM simulations, with a larger im-9 
provement in RCM. For the butanol isomers, 10 
primer and seconder butanol showed moderate 11 
improvement, while tertiary butanol experiments’ 12 
error improved significantly. In the case of isobu-13 
tanol, there was no significant change in simula-14 
tion error.  15 

 16 
If we break down the error statistics for the two 17 

optimizations, the distribution is remarkably simi-18 
lar: 19 

Table 3. Comparison of full- and reduced dataset op-20 
timization results 21 

 √E 

Data Orig. Opt.full Opt- red. 

HPST 6.35 5.69 5.45 

RCM 6.45 3.79 3.69 

I-BuOH 4.42 4.26 4.45 

N-BuOH 6.98 6.21 5.66 

S-BuOH 5.86 5.08 5.44 

T-BuOH 6.27 3.51 3.75 

 22 

 23 

Figure 6. Comparison of full- and reduced dataset optimization results 24 
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9. Conclusions 1 

The goal of this research is to develop a method to gen-2 
erate small, representative sets from large amounts of ex-3 
perimental data. This, combined with mechanism reduction, 4 
can increase the optimization efficiency of large multifuel 5 
mechanisms for fuels where a large amount of experimental 6 
data is available.  7 

By mapping the experimental data points on a multidi-8 
mensional grid defined by experimental parameters, we 9 
could generate a representative data collection, which al-10 
lowed us to optimize the Sarathy 2014 mechanism’s butanol 11 
ignition delay time simulation accuracy with very similar 12 
results to the full dataset control optimization, with 8 times 13 
less simulation time, with an 80 times speed increase com-14 
bined with mechanism reduction.  15 

While the method is capable of producing excellent re-16 
duced data collections, the proper cut-off criteria of convex 17 
hull accuracy is yet to be defined. Alternatively, an iterative 18 
reduction, where points can be added and removed based on 19 
the validation results, could further improve the speed 20 
increase. Additionally, the discretization of parameters 21 
could be improved by discretizing parameters with fre-22 
quently used values (like φ) into groups according to these 23 
frequent values.  24 
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