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Abstract

S€Birivity datysis iNesrigaks 6€ eff@t of pddellr chdge on fie solurion of
ma0tefrati€al models. ln chenical kinerics, models de usualy bsed on diffqqrial
equanN ed $e resuhs ee conce iation-dme cwvcs, reelion Btes, md vdious kinetic
fettues of the r€action. This review dirdsss in derail rh€ @rcdtration ssirivfty, rate
stuirivity, dd feaDre sdiriviiy aalysis of spanaly lDmogdeoB oturdr-parlm€t€r
reacdon system. Stritiviry rlslyss of disEibut€d pdmeld syslens dd of sb€hcric
sysr€ms de also b.iefly described. Special atle ion b pdd lo rhe intsprerarion of
smitiviry coefficimls which cm provide infomalio about the importece ed
hle.@m6rioD of pdmeeA ed vdiabl€s. ApplicarioN of stritivity ualysjs to
ut@nainty dltysis, pdm€lric s.aling, pum€ter estimatiofl, €xpsimenral design,
st bility ualysis, repro-no.lelirg, ud invqtigatio ed reducrid of coftpld( @criot
m@hdisns d€ discused prcfoun<Uy.

l. Introduction

Complex mathematical models have been used fiom the very beginnings of
rcaction kinetics for lhe description of dynarnic phenomena. The greatgst practical
problem, the numerical solution of stiff differential equations, was solved in the early
seventies, and then new questions werc raised: What is the nature of the connections
between solution and panmeters and would it not be possible to describe the
phenomena by fewer paramctcrs? These are the topics of sensitivity analysis. In rhe
last fifteen years, the theory of sensitivity analysis became very widespread and its
practical usefulness was dcmonstrated in many fields.

In a number of recent papers dealing with fte an ofkinetic modeling, sensitivity
analysis is discussed more [1,2] or less [3 7] profoundly. The single compreh€nsive
rcview on sensitivity analysis was written by Rabirz et al. [8] and appared in 1983.
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Since that time, nelv concepts appeared as a result of the rapid development of
sensitivity theory. Therc ar€ several rcviews on the various subfields ofsensitivity
analysis: Tilden et al. oveNiewed the local and global methods [9], Cukier et al.
summarized the FAST method nol, and other rpn-comprehensive rcviews can also be
found in the literature [1]-17].

Sensitivity melhods developed for fte study of spatially homogeneous conslant-
parameter rcaction systems are discussed in section 2. Other methods, described in
section 3, are suitable for the calculation of the sensitivity of special systems which
occur when ttle kinetic model has space- and time-dependent parameteN or when ihe
kinetics is descdbed by a stochastic or by a network model, or when experimental data
are processed. The nurnbeas obtained by lhe sensitivity methods have to b mnvened
into chemica.l knowledge by the interprctation of s€nsitivily information (section 4).
Nowadays, diveNe advanced software 0isted in section 5) is available for those who
wish to use the above described rooh of sensitivity analysis. The 4pplicarionr of the
theory are described in detail in section 6.

ln this review, sensitivity ana.lysis will be discussed from the point of view of
reaction kinetics. Malhematical tools used in sensitivity lheory ar€ usually not new, and
some computational methods have even appearcd in engineering scienc€ [18,19]. In
lhis paper, the first appeamnce of methods in chemical kinetics is cite-d, but their mathe-
matical and enginerring rcots are not searched. Such rEfercnces can be found in fte
odginal pap€rs and in r€fs. [8] and [9].

Sensitivity methods elaborated primarily for reaction kinetics can usualy
be used without changes in other fields where dFamic models descdbed by
differcntial equaaions are applied. However, application of the theory in other
disciplines is not discussed here. A large pan of the sensitivity methods used in the
investigation of complex mechanisms was also applied io molecular dynamics.
Although molecular dynamics and chemical kinetics are related disciplines, applica-
tions of sensitivity analysis in those fields will not be cited herc, and the reader is
refened to lhe following reviews: t141, t20l and t2ll.

2. Basic sensitivity methods

The kinetics of a spatially homogeneous rcaction system is usually modeled by
an initial value Droblem:

( l )

where c is the |t-vector of concentmtions and I is the fi-vector of system palamete$.
These paramgten may include mte coeflicients, A[henius parameters, temperature,
pressure, etc., but initial concentEtions ar€ not crnsidered in vector ,.. Tho solutions
of the sysiem of ordinary differential equations (1) are concentration-trme cuffes.
Rates of produclion of species can also be calculat€d ftom concentntions. Often,

dcldt = IG,k\, c(0) = co,
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c4nain kinetic features of lhe modeled systems, deduc€d fiDm concenfiation curyes,
arc morc imponant for the investigator than the concenfration-time curves themselves.
Sensitivity analysis can be classified on the basis of tlte output of the kinetic model
investigaied as a function of parametem. Thus, concentmtion sensitivity, mte sensi-
tivity, various feature sensitivities, etc. may be dislinguished. Sgnsitivity methods may
be divided fiom another poin of view as well. t cal methods refer to the small changes
of pararneters, while global methods refer to the effect of simultaneous, possibly
orders-of-magnitude pariuneter changes.

2.1. l,�)cAL CONCENTRATION SENSITIVITIFS

The effect of a pammeter change on the solution can b€ expressed by a Taylor
series expansion:

n ^ - n ^ a 2 . .
. ;  (  r .  I  +  a  t  )  =  c ,  {  r .  t  )  +  I  l l ' a r , +  l I  I  i l - l * ' a l ; + . . . .  ( 2 )

jlt dk1 " 
i:t ;t dhdkr

ln this equation, the partial de.ivatives acrla*, arc called tlrc Jirst-order local concen'
tation seditivitt coeftcienrr, whib a'�c-latPt, arc tlrc second-order local corceniq-
tion sensitivit! cofficieits, etc. Usualiy, <intj fte nntorcer (or lineaD sensitivity
coefficients ac-ldt, are computed and studied. They constitul,e the J€rJiivit! narit S,
which reprcsents d linear approximation of the dependence of the solutions on pam-
meter changes.

Assume that system (1) of ODES is solved fmm t = 0 to t = tr. Then the
pafiuneters are changed by A* and the solution is continued to i2. The difference
between lhe originat c and drc penurbed c' solutions can be approximated by the
sensitivity matrix:

c'(t) - c(t) + S(t2,t)6kt,. (3)

This equarion shows fJlat the sensitivity matric€s have a double time dep€ndence:
S(r' tr) = ac(rr)/ar<(rr). Usualy, rr = 0 is selected. lt s€ems natural to identify lhe initial
time of the ODE solution with the initia.l time of tJle sensitivity calculation, but lhis
selection implies a loss of genemlity. In some cases when, for example, combustion
rcactions ale studied in a batch reactor, lllere is a natural zelo time of reaction (the time
of ignition) but, for example in the case of atrnospheric chemistry, lhe selection of tr and
t2 is arbitrary.

Matrix S can be obtained by differcntiation if the aml,'tical solution of an ODE
is knowa. Unfonunately, in chemical kinetics such simple systems are mr€ly met and
numerical meftod$ have to be applied. In sections 2.1.1-2.1.5, five methods will be
described for the numerical calculation of the local conce mtion s€nsitivity matdx. The
methods are cornpar€d briefly in section 2.1.6, In the case of stationary systems, the
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limit in time of the sensitivity matrix can be calculated by an algebraic expression
(section 2.1.7). Two merhods, discussed in sections 2.1.8 and 2.1.9, were developed for
for an approximate calculation of the sensitivity matdx.

2.1.1. Brute force method

The simplest way of calculating local concentmtion sensitivities is the use of the
finite dwrcnce approtinati.ar. This t€chnique is also called fte Drxtslorce method or
the indirect method. Applying this merhod, rhe jth parameter is changed at time t by
A* , while all otler pa.amelers are held fixed. Matrix S is calculaled from the ditference
of the odgina.l and perturbed solutions:

ac?z\ _ c (t2, kj + Lkj) - c(t2 , kj)
atj(rr ) Lkt

(4)

Equation (4) shows that the application of the brute force method requircs the solution
of the differential equation (l) using lho nominal value of parameters and m solutions
of the equalion using penurbed paraneter sets. The sensitivities obtained belong to
the (t + Atl2) pammeter se!. If rhe sensitiviry coefficients werc desired to belong to the
nominal parameter set ft, eq. (4) should be modifled by replacing the second rerm in lhe
numemtorby c(r2,,t ,  Al,) and rIe denominalor by 2Lk,l22 241. Nevedretess, when
using lhis centered lormula,2m solutiom are required.'

The brute force method is widely used since no extra code beyond the original
ODE solvet is needed for the calculation of sensitivities. However, this meihod is not
r€commended because sensitivity coefficietus can b€ calculated consuming much less
compuer dme by other methods, e.g. the direct method [23,24]. Moreover, the estima-
tion of lhe errors of sensitivity coeflicients calculatcd by eq. (4) re4uires at least as much
computer fime as the calculation itselJ. The eno$ can be minimiz€d by an appmpriate
selection of A k, (see [8 ], p. 422). lf Ak is large, the linearity of appmximation fails, bur
if A*, is too shall, lhe round-off enoi is high.

Very often, a heuristic sensitivity measure is obtained using eq. (4) by changing
the paranelers by 50% [25], or by a facror of2 [26-30101 5 131,32,173], respectively.
The sensitivity coefficien8 obtained in this way are neither local nor global sensitivity
measurcs.

2.1.2. Detennination of sensitiyities using approinate e pirical nadels

The melhod of Miller and Frenklach [33-35] is based on approximations by
empirical models of the solution of system (l) of ODES in a parameter rcgion at
time t Scnsitivity information is obtained by differentiating the empi.ical equatiors.
The approximation requires much more computational effon than lhe computation of
sensitivities for a single-panmeter set. It is, bowever, a good investment if a pammeter



estimation procedure requircs the knowledge of sensitivities at s€veml points of a
panrneter region. Approximate values of local sensitivity coefficients belonging to
these points can be calculaled fiom lhe obtained S(r{) funcrions, bll significant dif-
fcrcnces may occur between the exact and appDximaled sensitivity coefficients.

A similar procedurc was also applied by Derwent and Hov [36].

2.1.3. Diect method

Differ€ntiation of eq. (l) with rcspect to k, yields the following set of sensitivity
differential equations [37] :

d  a c  . . .  0 c  A J U )
.  _ t  = J(r ,  i -  + - - i - .  (J '

Ot dkj dej dKt

where J0) = a//ac and rhe initial condirion for aclal- is a zem vector'
A number of metiods for compuling the local concentralion sensitivity co-

efficients are based on eq. (5). The three strategies desc.ibed in this sectron arc com-
monly refened to as fte direct method. Othe\ Ir'ore sophisticated, mefhods proposed for
the solution of eq. (5) have different names, such as the Creen irnction method'
polynomial approximation method, etc., and they will be treated separately below.

Higher-order sensitivities can be calculated by funher differe iation of eq. (5)

The generic expression for lhe calculation of arbitrary-order sensilivities is the follow-
ing linear differential equation [38]:
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*here the inhomogeneous tem s is independent of v. In the cas€ of second-order
sensitivities t39l:

w = d'�cldkidki

and

s = a2J Dkiakj + @J ldki)Gc ldki)+ (dJ ldh)(dc ldki\

+ t t (aJi/acj Xac lak)(aclakj), (8)

where { is the ith colurnn of the Jacobian. Since the structurc of ille differentiat
equation; for the higher-order sensitivities is very similar to eq (5), these higher-order
sensitivities can be catculated by most of tJrc methods descdbed below (ci

112,13,22,38 4t)).

(6)

(7)



208 T. Tur4n i, Selsitiritt atalysis oJ conplex kinetic qstens

Equations (5) and (1) are coupled thmugh maric€r a//ac and a//a&, that is, rtrc
solution of eq. (5) requires fhe knowledge of drc solution of eq. (l) in all the points
wherc the ODE solver calculares tle right-hand side of eq. (5). Connections between
these two equations can be made in one of the following ways:

(l) Solve the couple of equations (1) and (5) fofj = 1, . . . , /r, which requires the
solulion of 2a ODES m times I42l- This ve,sion is the simplest to code, but is the least
economical and may cause numerical difficulties [43 45].

(2) The solutions of systems (1) and (5) can b€ de.coupled. FiNt, differ€ntial
equation (1) is solved and the concentmtion-tftre curves obtained are storcd in a table.
Concentmtion values desired for the solution of eq. (5) at times when there is no
tabulated value are obtained by inrerpolation [2,45,46].

An impmved version of the decoupled diect methad \xas presented by
D'n*.et 122,231. He called attention to the fac rhar eqs. (l) and (5) have fte same
Jacobian, lherefore a stiff ODE solver will use lhe same step size and order of approxi-
mation in the solution of eqs. (l) arld (5). His m€thod first manages a step for the
solution of eq. (1), and also pedorms steps for the solurion of eq. (5) forj = l, . . . , m.
The procedure is repeated in the next step. This approach is applicable only in the case
where the ODE solution metlDd is fully implicit. Since the Jacobiaru of the equations
are the same, it has to be t.iangularized only onc€ for each time interval.

Dunkels implementation was based on the numerical integration program LSODE
of Hindmarsh. Recently, a new coding of this algoridm, also based on tlle LSODE
p.ogram, was elaborated by teis and Kramer [47,48]. Their previous realization
was based on the prcgram LSODI, which was valid or y for restricted sysrems
of differentiavalgebraic equations [49]- The implementatioD by Caramrsios and
Stewart [50] is written for genera.l syslems of differentiavalgebraic e4uarions. Their
work is based on the code DASSL.

(3) Solve eq. (1) and eq. (5) for all j = 1,...,m simultaneously, which
rcquires the solution of (m+ l)n ODES. Since implicir or semi-implicit algodtims
apprcpriate for solving sriff differential equations require the decomposition of
the (r't + 1)|l x (n +1)n Jacobian in each step, lhe direct solution of this large system
of ODES is inefficient. However, Dickinson and Celinas [42] caled attention to the fact
that this large Jacobian has an almost block-diagonal structuie, and Valk6 and
vajda [5 I ] c{nstructed a fast algorithm - called lhe decornposed direct method - for fte
efficient solution ofthis larye system of ODES. Similarly !o the method of Dunker, only
the Jacobian of eq. (l) has to be decompos€d and only once in each step.

The application ofthe direct mcdpd was discussed inrcfs,112,22,24,37,38A1 43,
45,47,5O 631.

2.1.4. The Green fuhction method

Differcntiating eq. (1) with respect to initial concentmtions c0, the following
souation is obtained:
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( 1 1 )

= r(,)#*
where rr is the initial time of sensitivity calculation and accr)/acfllr) = q. The symbol
d, represents a vector of zeroes except in the ith position, wheae it has 1 . Rewriting this
equation in tems of lhe marix fomalism, one obtains:

g
d!

cl

dr

3c(r)
ac:(a )

(9)

K(r,d) = J(r)K (r, rr ), ( t 0 )

where K is lhe irutdl concentration sensitivit! nlttrix. K(L t) = {aci(r)/acro(tr)}, witlt
K ( r r , t r ) = I a n d r > t r .

Since eq. (5) is a linear inhomogeneous equation with time-dependent co-
efficients, it can be solvei by first calculating the solution of the homogeneous pan
(eq. (10)) and then determining the particular solutions co[esponding io each para-
meter:

ffi =j*u''"'ry"'
In tlrc above equation, K is known as the Green function m4trit or kzrncl. "[18

sensitivity me6od that is based on eq. (11) is named ttP- Grcenftuction method. Tlri's
technique is also catled tte va otional methoiL It was first applied to solve prcblems
in chemica.l kinetics by Rabitz et al. [39]. There are several variants of tlle Green
function method and lhey differ from each other in fte calculation of the matdx K:

(1) Equation (11) rcquires K as the tunction of the second aryume , atd this
matrix can b€ detemined via the calculalion of tlle adjoint Green function Kr using the
identiries Kt(rr, !) = K(r, rr) and K(r3, ,r) = KGr, tK(t , tr). The adjoint oreen
function is obttined by the solution of fie following differential equation:

g
dt

Kr( t r , ' )  =  -K ' ( l r , t )J ( r r  ) , (12)

where Kr(t, t) = I and tr < t.
(2) The Green function for t > rr can also be expressed as

K(r,l) = cO G-'(.r),

wherc

d/dt G(t) = JG) G(r); G(tJ = I.

(13)

o4)
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The matrix G is not invertible numerically in a[ cases [39], but Hwang proposed a
solution for this problem [40]. His algorilhm investigates the determinant of the matnx
G during the solulion of eq. (14) and when lhe value of ldercl goes below a cenain
bound, the calculation of G is restarted. The procedure divides the time interval into
parts: in other words, it .escales it. The matdx G is given as a product of matrices G'
calculated in the subinieNals. This variant of the Creen function method - caled the
scakd Green function mdrhrd - was elaboraied in two ve$ions: in the first version,
caled the SGFMI method, the rcscaling is done when a numerical singuladty of G is
detected [40]. According to the second version (SCFMII), rescaling is canied out at tlrc
beginning of each step in the numerical integration of eq. (14) t64,651 and the
exponential chamcter of G is also taken into account [66].

(3) Rabitz et al. introduced the a@Utic^lly integrated Magnus version of the
Grcen tunction melhod [45]. In lhe GFWAIM method,lhe piecewise Magnus method
is applied, i.e. matdx K is approximated by a matrix exponential:

|  + a l

K ( r + A r , t = e x p  I  J ( r ) d r . (15 )

The sensitivities are then calculated from the kemel by analttical approximations to the
corresponding integral. Thg GFI,VAIM method was found to be scveral times faster
than the original Gr€en tunction method u2l.

In all the Creen function methods, tbe numerical effon is proponional to the
number of variables and not to the number of parameters. The Green function method
is paniculady suitable iflhe sensitivities ofone concentmtion to sevenl paruneteIs ale
to b€ detemined. In this case, the total effon is in trc oder of one kinetic solution.
However, the algorithms of the Creen function methods arc very involved, requiring not
or y lhe solution of stiff differcntial equations but also interpolation of tunctions,
inlegration using quadraErcs, and matdx opemtions. These are hardly cantrollable
sources of numedcal enors.

The Green function matdx technique was extended to provide fte sensitivities of
objective functions [67,68].

Usefd advice for lhe computational implementaiion ofthe Grcen function me0pd
(veNion (1)) is given in [69]. Edelson et al. coded tJle Cregn function algorithm for a
vector machine [70]. The Creen tunclion mothod was applied to solve kinetic problems
in a number of papers t12,15,22,39,40,43 45,64,66-68,?0-881.

2.1.5. The polrnomial approtimation method

The poltnomial approximatioi method ela|o..ated by Hwang [38] transforms the
sensitivity differential equations (5) to a set of algebraic ones. The original time interval
is divided into subintervals. Thg variation of sensitivity coefficients with time is
approximated by Lagrange interyolation pol),nomials of degree L:
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( 1 6 )

The value of dcld,t, is known al t0 and the values of acl4,t, for L prescribed times
(to < tr < . . . < ,r) are determined by requiring that eq. (16) satisfy eq. (5) at these points.
This condition can be expressed by an algebraic equation [38] and lbe values are given
by its solution.

Infomation is needed for the approprial,e division of the time domain and there-
fore a pr€liminary study of the behavior of eq. (l) is necessary, which makes the
polynomial approximation method slighily uncomfortable. However, as in the case of
the Grean function method, the main compulational effort is proportional to tlrc number
of species and not to the number of paramelgrs. Hwang demonstraied the high compu-
tational speed and good numerical stability of the merhod. A computational algorithm
and a FORTRAN code list were also provided i891. The metlnd was extended to
spatially inhomogeneous systems, too ul.

2.1.6. Which method to choose?

There are a number of afticles (cf. U2,22,24,38,43,45,47,511) in which the
above discussed methods are compared. The conclusion of each article is lhat the
authors'own method is faster and maybe more accumte than the previously pubished
melbods. Indeed, rhe methods are different from each other in accumcy and computer
time requirements, but these characleristics may be different for differcnt problems. The
improved dirccl mellods seem to provide highly accurate sensitivities and they
consume relatively little computer time; therefore, lie use oi such methods is recom-
mended in general. If the number of paraneiers is large in compadson with the number
of state variables, the use of lhe GFIWAM method or that of the polynomial apprcx-
imation method is advisable.

2.L7. Stdtionory systems

In equilibdum and in stationary state, conc€ntrations are constant. Sensitivity
coefficients arc, however, dynamic quantities govemed by eq. (5). The time prcfiles ol
the sensirivity co€fficients give fhe dynamic response of the system to a differential
change in t, (see fte analytical expression in [8], p. 426), and the st4rion4ry sensitiviD
coeflicients are t\elimits in time of the dynarnic quantities [46]. (Ihis latter statemenf
is valid only if the steady state is asymptotically s!able.) For stationary conditions,
species concentmtions as well as matrices J and F are time invarianl; thus, the stationary
sensitivity coefficients may be obtained from algebmic equations:

dc( r )  |  .  . .  dc  .
d,(, "=. ctl(,

[#)= ' ' t ' (17 )



where J is lhe Jacobian and 4 is rhe jlh column of maldx F = {arlat,l. Equarion (17)
fouows from eq. {5) by lakirig rhe lef1.hand sides equa.l !o zero.

The stationary sensitivity matrix represents the change of stationary species
concentmtions as a result of a differential change in parametels. This sensitivity
measurc is well applicable in the pammeter estimation of stationary kinetic
systems [90].

2.1.8. Quaristationary re/.titi'rit!

All rnsitivity coefficients ale zerc at rr (according to ttle inirial condition of the
sensitivity equalion {5)). and ftey usualJy change very rapidly only in a shon time
inteaval. An experience of numerical calculations is that at times r, >> r,, the change of
local concenlrarion sensilivities is not dramalic unless uhe changdof dncentralions is
rapid. This behavior is similar to tlle change of the concentmtions of free mdicals having
a shon lifetime. This fact gave the idea ro apprcximate local corrcgntntion sensitivities
with quasi- stationan sensititities I

aciq)lakj(t) = s:j(t); \ << tz.
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(18 )

The structure of sensirivity differential equarions (5) alows the use offte
Tihonov theorcm [91], and quasi-stationary sensitivities can be ca.lculated by an alge-
bnic eouation:

0 = J S q + F , oe)
Sq = -J-jF. (20\

The matrix Ss is a poor al4,roximation of the sensitivity matdx S, yet it can be
successfully applied to reveal imponant rcacfions in complex reactions systems [91].

2.1.9. Scoling relatiotLs and self-similafiry conditions

Another way of approximately calculating sensitivity coefficients is based on lhe
observation that the shapes of calculated s€nsitivity curves are in most cases very
similar to each olher. This is usually the case when a dependent variable plays a
dominant controlling mle in fte kinetics. Such a dominant vadable (denot€d by cr)
might be a radical concenlralion or the temperature in flame syslems. The conlrolling
role can be formulated bv

c t ( r , k \  =  F ( c t l t . * l )  i +  l . (21)

The furrctional dependence betwe€n concentaations (variables) leads to the scaling
rclations 14,921 b€tween sensitivities:
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a ci()la k ] r tt = (a ( J \)lA k,h t\) \ f ift 2tlf I t2,,.

2t3

(22)

A consequence of lhese relations is that sensitivity coefticients zufill dle self-si il^tiO
condition'.

ac.QJak-Q,) = ,i. (r,) q(r,), Q3)

.rhere the charactaristic constants o' scale the sensitivity coefficients for a given
dependent vadable with respect Lo the vadous paraneters.

Both the scaling and self-similuity rcladons were elaborated for space-time
systems [14,61,92,93]. Similar equations can be dedved for multidominant dependent
variable systems.

2,2, GI'BALCONCENTRATIONSENSMVITY

ln global methods, the paraneter vecbr f is considered to be a mndom vector
wilh pmbability density function p. Therefore, the solutions of the modetrs such as, for
lnslance, the concentrations, are also random vadables at any time. The methods of
globdl co cemrution sensitiviE atnllsis debrmine the mean and the variance or the
pmbability density function of concenfations, given tlle probability density function of
parameters and initial coocenraions. Usually, lhe probability density function of para-
meters is not known, and a presumed probability density tunction has to be calculated
from the known means and variances of pammeters by assuming a physically reason_
able distribution.

The single non-stochastic global sensitivity method is based on the Lie algebraic
ard group methods. Neverlieless, lhe lie group fiethod [94,95,169,170) was on]y
limitedly applied for systems of norilinear differential equations and ther€iore this
method will not b€ discussed in delail.

2.2.1 . The FAST and the WASP nathod$

The most widety used global method is the Fowier a pli de sensitirity test
(FASD merhod, which was developed by C\rkier et al. n0,96-91.

Assumins that the concentrations are tandom variables, theh mean value at
dme r is given by

(c,(4) = I c,(, h) p(k\ dk,

where p(f) is the probability density function of t. This ,n{imensional integral can be
convened into an equivalent one{imensional integral usilg ttle following tmnsforma-
tions:

Q4\
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* j=G i (s ina ) r ) , (2s)

where the tunctions G arc lnambiguously determined by tlle pmbabiliry density filnc-
tion p, (l) is a frequency which belongs to the jth parameter, and s is a scalar variable
called tie search paramcter. Exprssion (25) shows hal parameLer*, varies as a periodic
function of fie search variable r. If Lhe freouencies @ are incommensuraE. the curve
defined by eq. (25) fills the m-dimensional jarameter Jpace in the rangg -- <,r < +-.
For computational rcasons, it is pmctical to use appropriatg intoger fre4uencies instead,
and therefore the concentr-ations will be 2rperiodic functions ofJ at time t and they can
be Fouder analtzed. The variance of concentration c. at time I can be exprcssed by:

qt t \=  z  L (A iU)+Bi@) .

where A-(t) and qt(t) are the Fouricr coefficients:

t ,r1t1 = f; i . ,(, ") *.u 0,,

a 11t1 = fi J c;1r, s; sint as,

If the Fourier coefficients arc evaluated
transformation (25) or with its harmonics (l =
variances

o,'�,14 = z \qt !.,,.1a+ s!.,,1oy
t = l

with lhe fundamental frequencies of
r(D, r = l ,  2,.. .),  tbe dle obtaincd

(2e)

(26)

(2't)

(28)

are part oflhe total variance o,:(r) ard conespond !o the varianc€ ofc, arising from the
uncenainty in rhe ./th parameter. The rado S,-(t ) = o2\)lo,2ut, calle.d partial varianc?,
is the basic measure of sensitivity in de FAST mefrod. The panial variance malrix is
a nomed matrix and therefore it is independent of fie units us€d.

The FAST method was generalizcd by Kanatani uml, and he developed irs
further mathematical foundarions. An algorithmic improvement of the FAST merhod
was proposed in [101]-

Contrary to its name, the FAST method requires much computer time. If lhere are
m pammeters in the model and they arc varied over orders of magnitude, the system of
ODES has to be solved about X = 1.2 x a25 times [99]. In the case of a s0,parameter
modcl, this means 21.200 runs.

Computational implementations of lhe FAST method wer€ repofted by Seinfeld
et al. u02,l03l and by Pierce et al. [104]. Applicarions of the FAST merhod are also
found in refs. t9,10,52,97,101,104 l l0l.
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The point of tlrc FAST method is that the {(cos rJ), (sin nJ), , = 0, l,2,... }set
of functions can serve as a basis for the decomposition of drc conesponding function
c(J). A similar decomposition can be carried out wift other tunctions of similar proper-
ties. An example ofthis was shown by Pierce and Cukier [111], using Walsh tunctions.
The Walsh functions iorm a complete o(hogonal system of two-valued functions.

Tbe Walsh anplifi/de sensitivitt procedwe (WASP) is very similar to FAST. In
the WASP method, tie parameteN are assumed to have two values with "equal pmba-
bility", and the effect of parameter change fmm the first value to the second value on
the output is investigated. A practical choice for the pammeters is the selection of
extreme values, maximum and minimum, of the par:uneter uncertainty mnge. Thus, the
WASP melhod provides an upper limit of ttle modcl sensitivity with rcsp€ct to other
choices oiparameter distribution functions. The WASP method is suitable for studying
the effect of a model reduchon, i.e. setting zerc the value of pan of the pammeters. In
such an investigalion, the upper value is the nominal value of the parameter and the
lower value is zero. The WASP method is numerically simpler than the FAST method,
but consumes much more computer time. The investigation of a s0-parameter model
would require 250 = 1015 runs.

2.2.2. Stochastic sensitiviu analysis

The method of stocrartic sensitiviry anab)sis is a global sensitivity m€thod based
on tbe solution of a partial differential equation. This technique was elaborated by
Costanza and Seinfeld [9,112]. The name "stochastic sensitivity analysis" is not
fortunate, since all the global methods deal witr stochastic measurcs. Morcover, a
dilfer€nt technique, for the investigation of gas-surface collisions n 13,I l4l, has the
same name.

The initial value problem (l) can be refomulated by joining the concentmtion
ard parameter space:

|=  FG\ :  x (0 )  =  xo , (30)
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where F(r) = (f,,...,f^,0,...,0) and r0 = Gi, . . . , c), *.,, . . . , *^). The joinr
concentmtion-parameter probability density linction can be obtained by lle solution of
the following equation:

dp
at + V(Fp) = 0; p(O,r\= po?.\, (31)

where po(r) is the p.obability density function of .r0.
This method requires considcrable computer time since the numedcal effon

needed to obtain the desired probability density function is comparable to that lequired
in lhe FAST mefiod.
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2.2.3. Monte Carlo methods and latin htpercube sonpling

All lhe global me&ods described pleviously requirc complex computer codes.
Monte Carlo methob h not Equire special plograms, but they also cons:ume clDsider-
able computer time. A random number generator is used to select values of pammeteas
in the domain of uncenainty according io tleir probability density funclion. The system
is then solved for each of the parameter combinations. The computed concentmtion
values ate analyzed by standard statistical metlDds at any given time t.

Using lhis method, fte odginal ODE solver has to be supplemented by two
segments ior selecting new pammeter values and for a statistical analysis of solutions.
The convergence of statistical chamcleristics has to be checked, say, after every
thousand runs. Applications of the Monte Carlo methods ar€ given in [115- 11?].

The latin hlpercube sampling can be considerei as an impmvement of the
Monte Carlo methods. In lhis plocedure, the input parameier sets are not selected
randomly, buf ar€ planned in advance according to a Latin hypercube. The means,
variances and cumulative f.equency distributions obtained by Latin hlpercube sampling
are insignificandy differcnt from those genemted by Monte Carlo methods, while the
computer time demand is about an order of magni[rde less {36, I I 8].

2.3. RA'IE SENSITIVTIY

lnvestigatiol of the production rate of species is very important in chemical
kinetics and their sensitivity is very informativg, too. According !o the Young theorcm,
the derivative of concentration sensitivities with respect to time, (a/al)(aci(t)lakq))
is identical to rar€ reruitivitiesi (Aii(t)lakiQ) = aftq)lak)(tt>. Oncr local conc€htra-
tion sensitivities have been computed, th6 values of mte'sensitivity coefficients are
given by fte sensitivity differential equation (5):

S (r2, rr ) = J(r2 )S G2,4 ) + F(r2 ). (32'�1

Rate sensitivity coelficienB a, /at, supply turther mechanistic details about a reaction
system which are not inhercnt in the concentniion sensitivity coefficients [77,119].

A particular case of rate sensitivities is obiained when l, = t,. then,
aIi1lak,Qzl = af,ft)lakj. which is an elemem of matrix F. The manix F is an
algebraic sensitivily measure in contmdistinclion to the dynamic sensilivities discussed
so far. Ifr( denotes the vector of mte coefficienfs, then rhe log-norma.lized algebraic rate
sensitivity matrix F can be computed by ttl€ following e{uation [120]:

F= lE ln f . /a tn t  |  =  l v . .R  t f  l . (33)

where v is the stoichiometdc matrix, R is the rate of rEaction J, and/i is the pmduction
nte of sDecies i. Thus. an elemerit of matrix F is the rario of lhe rate of
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formation or consumption of species i in reaction j and the net mte of concentmtion
change of species i

The matrix F represgnts the link bedween concentr:ntion sensitivity analysis and
nt€-of-production analysis. This matdx can be treated like othgr sensitivity matdcls, as
discuss€d in section 4.2, while the connection between lhe los-normalized local concen-
mtion sensitivity matrix S ald matrix F provides a mat}leriarica.l basis for the use o[
various forms of rcaction rate analyses [120]. The investigation and reduction of
complex reaction mechanisms can be based very effectively on tle study of the matrix
F [120-r22,164,166,168].

2,4, FEATURE SENSMVITY A}IALYSIS

Results of kinetic modeling are usually concentmtion-time curves. However,
often cenain kinetic features of the investigated systems, which arc functions of the
concentmtions, are more imponafi foa the investigator than the concenaadon-time
ftrnctions themselves. Such features are, for inslance, the maximum concenradon of a
species, ihe con€sponding rcaction time, the lenglh of the induction period, or ttrc
period time t of an oscillating rcaction.

Feature seniitirities can be detemined appDximately by the brute force
method [2]. However, since concentntion-time cuNes contain all information about
features, feature sensitivities can be calculated from concentmtion sensitivities and con-
centlations. The first example of this was given by Edelson and Thomas [81], who
derived the following equation (without the corrcction term C) for lhe calculation of the
pedod sensitivities of an oscillating reaction:

(34)

The correction term 0 may be negligible in some practical calculations [ 123, 124].
This corection term tends fo zero as (t2 - tr) --r -, which was shown for the general
case [123,125] and for an explicit form [126].

Laner et al. [82] pmposed a differcnt but relaied equation for the calculation of
a aki. 'fhey pointed out that the accumcy of the computation depends on the
sp€cies i selected. Gydrgyi et aI. [5?] applied Edelson's reafnent for the computation
of s€nsitivities in the time periods from minimum !o maximum and ftom maximum to
minimum of the concentration of a species. They also suggested a method to select the
most appropriate time 12 ard component i for period sensitivity calculations in order to
minimize numerical ermrs.

Rabiu et al. proposed two melhods for the computation of sensitivities of
arbitrary features from local sensitivities. According to the first melhod - called point-
wise feanlre sensitirit! dnalysis [12?] - the featurc in question is characterized by a

ar Ac,\tz)laki$, - ac,0t + r)ldki\tt ) ^
dk; dci?2)ldt
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mathematical equation and featu.e sensitivities are derived from it. Equation (34) was
obtained in a similar way, and also an equadon for lhe calculation of induction pedod
sensitivities was given in ret [72]. If the invesrigared featurc is lhe locadon r* of the
concentration maximum of specieJ i [8,13,72], lhe conesponding mathematical equa-
tion is

q([, (r.)1, -, = 0.

Differcntiation of e4. (35) wlti respect to t, yields:

Er. - a'�c, (r')/ata*, (0)
dklq = 

ar",tr yAi-

(35)

(36)

Equation (36) indicates that ar*/aq is tu ralio o[ the apprcpriare rate sensitiviry
coeffrcient and the second derivarivebf lhe concenlralion c- with respecl lo time, which
can be calculated from the Jacobian and fmm fte first deiivative; d2cldtz = JJG).

The second apprcach - c alled force-lit feoture ser.ririyir) 4i4rNiJ { l28l - is based
on fining by a least-squaEs procedure the @ncentElion cune c,(&, r) to a chosen
tunction cj(p, r) (where p is tt|e veclor ot feafure parameters) in a time intewal lrr, r2l
containing the features of interesl. The co€fficient a4l4,t, is then obtained as a functron
ot ac$,t)lap and ac(t,0/at. This apprcach was afplied in a paralneter scaling
pmcedure [76] and in fte transformation of an elementary chemical kinetic mechanism
to a global mechanism [129].

Note lhat, uriless there is an d prlori rcason for selecting a particular functional
form for c,(p, t), finding a suitable tunction may rcquir€ significant effon and the fiNt
approach is preferable.

Feature sensitivities give a differ€nt iDsight into the operation of a kinetic
mechanism than concentmtion s€nsitivities do. However, the interpretation of feature
sensitivities is not straightforward in general. Rec€ndy, anilicial inte[igence was shown
[58] to provide a considerable help in the extraction of kinetic information fmm featurc
sensitivities. Most applications of feature sensitivities occur in the fields of oscilating
r€actions [57,58,71,?9,80-82], and of combustion kinetics (mosdy using the brute
force method) 12,28,12,88,130- 1321.

3. Sensitivity analysis ol special systems

The basic cas€ of kinetic modeling is tle detgrministic simulation of spatialy
homogeneous constant-pammeter syslems. Sensitivity metDds devoted to the study of
rEaction systems describ€d by eq. (l) have been discussed in lhe previous secrion. ln this
section, olher sensitivity methods, suitable for the investigation of more special systems,
are gven.
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3.T. FUNCTIONAISENSMVITYANALYSIS

In most kinetic modeling studies, paranete$ are assumed to be constant. In a
numbea of problems of great practical imponance, however, parameters aro functions
of time and/or q,aca. In models of atrnospheric chemistry, rate coefficienfs of photo-
chemical processes are changing wiIh the intensity of su$hine; also in non-isotherm
rcactoN, mte cocfficients are functions of time (and space). If tlrc paramer€rs arc
tunctions, tlE appropriate sensitivity analysis is based on fteir prtu6ation by anothet
function using the principles of nonlinear functional analysis. Functional se$itirity
aaatsis has been used for a long time in conuol theory and in mmputational physics.
A necessary and sufficient condition of functional sensitivity analysis is the existenc€
of the Gercaux differentials of the operatoN appcaring in the pmblem [133,134j.
OpemloN used in chemical problems are usually "we1l-behaved" (e.g. pammeters arc all
continuous tunctions) and therefore special techniques arc applicable, !oo.

In chemical kinetics, Dickinson and Calinas [42] werc the fint to face fte
problem of parameter functions in the study of an aanospheric chemical mechanism. In
their model, t.(r) denoted the rate coefficient function of photochgmical r€action j and
&(r) was an appropriately chosen penurbing funclion. Functional sensitivilies were
defined bv
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ac, (1, O) + €S,(r)rl
Jt, = --:- 

|'  . lE  l f=o
(37 )

A similar sensitivity definition was also used by Dunte. [23,135] in the study of an air
pollution model.

The sensitivity measure r,, depends on thc pcnulbing function &. In the generat
case, this measure can only be calculated by a pmcedure similar to the brute force
method. Therefore, another functional sensitivity measure that is unambiguous and cair
be calculated by more sophisticated methods was searched for The sensitivity measure
which meets these rcquirements was named seffirrviry &nrtr, [136]. As a first step,
sensitivity dcnsities will be shown as applicd for constant-paramete. models, since in
this case a dilecl comparison !o local concentmtion sensitivities can be made.

The basic idea of local sensilivity analysis is drat a consEnt parameFr l, is
changed to a new value ar tr (and kep! al $is new value) and rhe effefl of a param6ter
change on the concenimtion of species i is observed at t,. The essence of sensitivity
densiries is $ar the parameter l, is penurbed by 6& jusl i rine rr and rhe response ar
12 is chamclerized by a functional derivative 6c /0t,. The sensirivily density malrix
DA|tr\= l6c,(;15k,(tr)l can be simply evalualed if lhe initial concentrarion sensi-
livity matrix K(rr. ,r ) : lac(rr)/a.o(tr)l and lhe malrix F{rr ) = {d.f(r,l/0/<} an known:

D(rr. rr) = K{12. rr) F{tr). (18)
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The relation to dle local concentradon sensitivities is given (foa lhe case of constant
palameteN) by an integral:

s(r2, rr ) = J D(r2, r')dr'.

acJa. = Vu(r, t)c. + V Di(r, tvci +/(c, t(r, ,)) + Si(r, ,)

with initial and boundary conditions:

ci(O, r) = c:(r),

A:(t, t)vci + A:(x,t)c.= A?(x, t),

(3e)

Note that when th€ sensitivity densilies ar€ integrated acc-ording to eq. (39) to give local
coDceDtration sensitivities, fte Green function melhod is regained. The sensitivity
density matrix can also' b€ related [120] simply to the algebnic rate sensi-
tivity marix. As is apparent fiom e4. (38), trc matrix F is a limit in time of the
sensitivitv densitv matrix D:

tr'(tr) = lim D(tr, rr ). (40)

Based on sensitiviiy densities, a parallel local sensitivity analysis theory for
the investigation of constant parameter models carl be elaborated. Higher-order
sensitivity densities [137], derived sensitiviry densiries (see section 4.2.2) u38,1391,
sensitivity densities of objective functions 1671, and expedmental sensitivity densities
(see section 3.4) [8] were also calculated. However, in the investigation of constant
para-meter models, sensitivity densities have played only a minor role so far [82].

The use of sensitivity densilies is of basic imponance in the study of
models with space- and time{ependent pammeteN. Conc€nuation changes in a
spatially inhomogeneous chemical system can be described by a set of coupled non-
linear Dartial differential eouations:

i = 1 , . . . , n ,  ( 4 1 )

(42)

(43)

where fte r spacr clordinale vector is all element of lhe space domain ,, .r(t, ,) is drc
advection speld field, DiG, t) is lhe matdx ofphysical or tuftulent diftusion,/(c, t(r, ,))
is the right-hand side of the kinetic differential equation with spac€- and time-dependent
parameteN due to space- and time-dependent temperaturc ard/or light flux, ard Sr(r, t)
rcprcsents the sources and sinks of lhe species in the system.

Sensitivity e4uations have so far been derived only for a sp€cial case of the above
Droblem:
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(44)

(45)

(46)

0c.l}t = YD (x,t)Yc + f(c,k(t, t\)

ci(o, r) = cl(r),

Al(x, t\vci+ A!(x, t)ci= A:(x, t).

An appropdate sensitivity measurc for an inhomogeneous rcaction system is rhe
generalized sensitivity density:

lt(x2, t2, x', {\ = l6ci@2, t)l6kj(x', {)J. (47)

It is a response function which gives th€ linear r€sponse of the concentration of speries
i al (.!, tz) lo a sma.ll varialion in the panmeler k, at tt'.f\. The change in the
concenlmlion c (.r. ar) due to a small variation of t i t + 6I in lhe parameteN is:

(48)

Functional de.ivatives for the study of .eaction-diffusion systems were fint
computed by Koda et al. [52,140]. Rabitz and coworkeN showed 1136,137,141,1421
how a s€nsitivity analysis of tlrc system described by eqs. (44)-(46) has to be canied
out. They inuoduced fte generalizld initial concentration sensitivity matrix K (this is
also called the Creen function):

K(x,t,x',{) = | 6c i6, t)ltuj(x', { )J. (49)

This measure gives tlrc linear r€sponse oi fte concentration of species i at (t, t if fte
concentralion of species 7 is penurbed by Q,&t - {) qt - r') at (r', t'). This conc€n-
tration response function plays a central rcla in functional sensitivity analysis since aI
other Esponse tunctions can be calculated from it.

ExprEssions for derived sensitivity densiti€s 1138, 1391, higher-order sensitivity
densities [37], and for the sensitivity of objective funclionals [143] are also given for
rcaction-diffirsion systems.

Fre4uendy, the space and time dependences of parameters are given by funclions
with constant panmeters. Inc!ryorating these functlons into the system of differential
equations, tlle resulting, more involved sysiem, has only constant paiameteN. For
example, in the model of a non-isotherm reaction, rate co€fficients at€ functions but
Arhenius pammeteN are constant values.

If the paramete.s of a reaction-diffusion system are not space-time dependent,
the non-functional sensitivities can be calculated by tlE methods descaibed in section 2.
Such examples are given in refs. [1,41,52,55,93].

6c (x, t2\ = J I D(x', {, x, t2 ) 5k (x', t'\d,r' d,t .
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3,2. INVESTIGATION OF STMHASTIC MODELS

' In order to take into considemtion the mndomness of the molecular events
responsible for chemical reactions, the conc€ntmtions have !o be represented by
stochastic variables. In macroscopic systems, the fluctuations are often negligible and
the deterministic kinetic equations provide an accuratre description of the behaviour of
the concentmtions. In such systcms, the flucllations are important if chemical
instabilities exist which lead to drc amplification of fluctuations. In the description of
chemical rcactions involving a small number ofmolecules inside a small volume, as in
lhe case of reactions in micelles or cells, lhe siochastic handling of kinetics is essential.

The use of stochastic differential equations is a convenient way for the descrip-
tion of concentntion fluctuations in chemical kinetics. These e{uations differ ftom the
deteministic ones in a noise term:

dp ldr  =  J r  p ,k t  +  P l t :  p tc l=po, (50)

!9here p is the stochastic vector of concentmtions, 6 is a delta cofielafgd Caussiar-
stochastic variable vector (white noise), and rhe matrix P is determined by the rcactior,
mechanism and by the volume of the system. A11 thc information on the stochastic
variable p is summadzed in the multiple time pDbabiliry distdbution fundion
4(cr, tr; . . . ; c", t"). This multi-variable function is difficult to look over and the con-
centation flucluations can be characterized by odrcr measures which can b€ calculated
frcm p . Such mcasures (denoted jointly by F[ A]) ar€, for instancr, $rc expected value
and the variance of p(t). Concentmtion flucoations can also b€ characterized by tle
devial.ion from lhc delerministic valuel(r) = p ta) - c,(t and by the correlation of sucf-
deviarionsr C,,(rr. rr) = (/(,r)/(,.,)).

Allof the above functions depend on lhe pammetem and initial conccntrations of
the kinetic system, and a sensitivity analysis of these fiuctions was elaborarcd by Dacol
and Rabitz u441. They gave analttical expressiora for the evaluation of lhe local
sensitivity and $e sensilivity densiry of fie probabilily dislriburion tunclion. ap /at,
md dp,/6,t,. Calculations ofa(Fl p lyat, and d(FI 4l)/tt, are possible from the fomei
sensluvlty tuncuons,

In the case of more involved systems, only numerical calcularion of p, is
possible. Therefore, a ditterenl way was presenled for the numerical calculation of
aGI p)>Dk, and 6<FI p.l)t5k,.

Applying a quasi-lineai approximation in rhe reciprocal volume, Daml and
Rabilz obtained closed expressions for (pfr)) and (4(t,)4(rrt as well as for their
sensiLivily coefficients and densities in terms of the determiriisric concentmdons c and
the (deteministic) initial concentration sensitivity matrix K. Thgse expressions allow an
investigation of flucluation phenomena without stochastic simulation. However, this
quasi-linear appmximation is applicable orily in macrcscopic systems and far frcm
chemical instability.
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33. REACfiON NETWORK SENSMVTTY ANALYSIS

The network analysis as develop€d by C'larke reparametrizes the kinetic differen-
tial equations using new parameteNj and tr iistead of rate caefficientr. The components
of the pammeier vector J rcpresent fie weights assigned to elementary flows in the
rcaction network, while the parameter vector ,r can be inlerpreted as the reciprocal
steady state of concentmtions. Network analysis r€lates the dynamics of complex
chemical rcaction systems to feedback loops in the reaction network.

A combination of network theory and s€nsitivity anal'sis, prcsented by Larter
and Cla*e [83], invesligates tlrc sensitivity of conccntrations on the change of new
parameters. The new sensitivity matrices aclal and aclah catry information on dle
effect of tlEse new pammeters, as well as on their relative importance and inter-
connection. As an example, the Brusselator was analyzed [83] and the period sensi-
liviries of fte new pammeters were studied.

3.4, EXPERIMENTALSENSMVTTYANALYSF

In sensitivity analysis, parameters are considercd as tJrc input of models. How-
ever, in a parameter estimation pmcedur€ the experimental results are tlrc input and

le estimated paruneteN ar€ the ouFut. The eqerimental elememory tensitivities,
E = {at,/ac:) show how lhe estimated parameteN change when the experimentally
m€asurea concentrations c" change. (One codd use any experim€ntal observable
in$ead of concentrations.)

Parameters arc usually determined by a least-squarcs procEdure, i.e. by minimi-
zins lhe function
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Q =  L ( J - q l c  
2 , (51)

(52)

where rl. is the numbea of experimental data and c, is the ith calculated concentrauon
coresponding to the ith measurcd conc€ntralion d. From eq. (51), a simple pmcedurc
1145,871 yields the folowing expression for the calculation of log-normalized experi-
mental sensitivities:

I  u11@n*' lanc;1= - t to,  i= t , .  . ,n ' ,

where m' is tlle number of estimated parameters,

ryr = t {(a2 t'Jr ct laltri.kjaljl'k iGi lci)o - ci tci)

+ (r - zci / ci)Gi lci)@ ln ci /a h tj Xa h ci /a h,t r) (53)



224 T. Tur6nJi, Sensitiviry analJsis of conple, kineic systens

and
Ljh = (r - 2cr lci)Gh lc;Xa h c/, /a h *, ). (54)

Equation (52) rcprcsenls a system of a" linear inhomogenerus e4uations and its solution
requircs lbe prior calculation of the coricspondiDg fiast- atd second-order local concen-
tration sensitivity coeflicients.

Experimenml sensitivities can be used to ideftiry panmeters which are highly
sensitive lo noise in the experimental data. Thes€ sensitivity coefricients also apped in
expr€ssions for puameter deviation arising from uncertainties in and discrepancies
between model and measnred obseryables [145].

4. Interpretation of s€nsitivity information

4,1, MPORTANCE AND INTERDEPENDENCE OF PARAMETERS

Sensitivity coefficients must have the same physical dimensions or they must be
dimensior ess if a compadson of lhem is requirei. However, lhe parameters may have
different units and then the sensitivity coefficients are directly incomparable. The usual
treaEnent of this problem is to introduce normalized sensitivity matrices 137,43,1301,
The elemenls of the norma.lized loca.l concentraLion sensitivity matrix 5 are dimension-
less and therefore their values are independent of t}rc dimensions of the original kinetic
model:

S = l&,k,) (dc,Q/dk,(t,))l = {a h ci(r,)/a h *r(rr)1. (s5)

These coefficients aepresent trc perccntage change in concenlration ci caus€d by a
percentage change of t,.

The study of a iormalized sensitivity matrix allows one to determine lhe mnk
order of paramete$ on the basis of the effect on c. a! dme t, as a rcsult of a small
parameler change at lime r,. In the case of another sp;cies or diiferent times, a differcn!
rank order can be obtained.

Frequendy, one is interested in the effect of pammeter change on the
concentrations of several species. The need for such infomation has been realize-d by
Edelson [75], and he applied a heudstic measure. Matbematically morc eslablished
methods can be inroduced by using objective functions, which show th€ deviation of
a penuded solution cl from thc nominal solution ci considedng a group of species.
Such objective functions are, for instance,

e1  =  \  l ( c i  - c ] \ / c l ,

ez= 2 lk i  -c) lc i lz ,
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-  c ) l c ) 2 d t

Using these functions, all fte species taken into account in the summadon have
equal {eights. The sensitivity of the objective functron can be calculatei either
directly [6?,68], or from the concentmtion s€nsitivity coeffrcients as, for instance:

del ld ln k; l a h c i / a h t , L

d e 2 l d  l n  k t  =  L l d A t c ; l d l n k t ) - ,

det ld tn ki = t >(ahci0r)/ah*r(rr))'�,
t - 2  i = l

where the effect of the change of paramet€r i is studied on r' species and in tbe la$er
equadon, integration is replaced by summation. The sum of the squales of the nonnal-
ized s€nsitivities is termel the owrcll searitivitt [53] and it is closely connected with
the objective function of the leasl-squares method.

When $e imponance of pammeters is treated, it may be wo(hwhile io
distinguish two kinds of importance. The kind of parameter importance discussed so far
may be called tunihg importance. Tuning importances give a picturr about dle
effectiveness of parameter changes arourd their nominal values for $e inspect€d
measure (concentmtioo, objective tunction). If a parameter has small tuning imponance
wilh r€spect to tJle impoftant species or featur€s, this parametef may not necessarily be
eliminated. This striking fact has been indicated s€veral times (eg. [2,53]) The
reh$tion inportance of a parameter can be det€rmined by s€tting the palamder to zero
and reaunning drc model. The rank order of aeduction importances obtained may be
quite different from that of tuning impoltlnces. Seositivity methods (excepl wAsP)
give direct infomation o{ y for tuning impo(ances.

Does this mean that there is no way in which to identifl rcdundant reactions on
the basis of sensitivity analysis? Of course not. A reaction can be eliminated if the
scnsitivity of oll species to the conetpondinS rale aoefrcients at an! t ne point in the
considered intenal is stnall l'171. An equivalent statemeot is tllat a parameter is

eliminable if the norm of the corresponding column of the sensitivity matdx is small
This nolm may be a maximum norm:
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" " = l S . i " :

, s (56)

(s7)

(5E)

4j = n|la{a:'j.cilahkil,

or a Euclidean norm:

(5e)
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(60)

Notg that the ovemll sensitivities (when all species are considercd) are the squares of
the Euclidean norm and therefore they give lhe same estimated mnk order of reduction
rmponances.

So far, odly the concentration sensifivities have b€en mentioned and the question
of fearurc sensitivities has not been discuss€d. In genenl, the jrl fearure sensirivity
coefficient rcfen only to the tuning importance of the jth pammeter considering the
specific feature and it must not serve as a basis for mechanism reduction [2]. If lhis
feature is closely connected to all tle necessary species (see section 4.2), this value
might refer also to reduction importance. Such a dominant feafure sensitivity might be
the period sensitivity of an oscillating rcaction [t2l].

Having discussed what thc importance of parametels means, one may ask wret
is a parameter important. All the sensitivity matrices discussed in the preceding sections
(exc€pt matrix F and the quasi-stationary sensitivities) belong io a time interyal which
is determined by rhe rime of pe(urbarion r, and rhe lime of ob6ervalion r, Ii. | 20J. Botl
the tuning and fte reduction imponances deduced from such matrices bel6ng to tie time
intewa.l [tl, r2].

Reduction importanc€s belonging to a definite reaction time can be obtained by
the study of tbe algebraic rare scnsitivity matdx li. This matdx can be pmcessed like
other sensitivity matric€s [ 120]. If only column i of the matrix F is considired, reactions
having the grcatest gffect on tle rate of production of species i at a given rcactioo time
are identified. Similarly to the case of concentmtiorl sensitivities, tlrc effect of Dara-
mele6 on the rate of a group ol species can be inspecred. If all species are tate; inlo
account, the reduction im[nnances at a given time are obtained. If a reaction proves to
be important at l€ast at a single time point in an interval, this rcaction must not be
eliminated fmm the mechanism. The invesdgation of lhe change of reduction
imponances as the rcaction proceeds can reveal line details of tlrc operatton of tbe
mechanism.

Hitherto, the imF,onance ofindividual parameteN in a reaction was discussed. ln
reality, groups ofjoint paramgters influence the concentmtions. Thes€ pariuneter gmups
caus€ functional connections between th€ sensitivity coeflicients and they can be
identified by the mere inspection and compadson of fte elements of lhe normaliz€d
loca.l concentration sensitivity matrix t77,66,38,11. ln the next section, a more con-
venient way is presented for the identification of these parameter gmup6.

4.1 .1 , Prin iN component anallsis

Let us use rhe objecrjve function er !o assess the effect of pammeters on a group
ol species. Replacing $e int€gral wilh summation and inlroducing the normalized
parameters aj = ln *j (./ = 1, . . . , |rr), the function ,3 is appmximated by:

/  ^  \  l / 2

4= P 
(ahc,/a hi j) ' �J
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l a '

ez@) = \ LIG: $i- cihDtci1)12.
h = 2  i = 1

This objective hrnction can also be given [53] by

e3(a) - (Ao)rSrS( q),

where Ad = a- oP ald the matrix S is defined as

s,

s=

s2
D 3

:

s,,
:
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(61)

(62)

(63)

U. of 5rS such that

(fl)

(65)

where an element of matrix S/, is a ln ci(r/,)/a h4(tr).
l€t U denote the matrix of nomalized eigenvectors

u:ui= l, j = 1, . . . , m. Then the new set of parunetem

V=l l ra '

called principal compo'ents, leads to the canonical form of the objectrve furction ?3:

4 = L L@v)"

whereav/= UTAdand r,r> 12 >. . . > tr are $e eigorvalues of SrS. lt is apparcnt ftom
eqs. (64) and (65) $at the eigenveclors of matrix S 'S reveal he relaled parameters :uld
tle corresponding eigenvalues €xpress the weight of thes€ paraneter groups [53]

Piicipal component 4|t41]Jir should be ptefened o other methods which
describe the effect of individual parametgrs on a group of species concentFtions. when
tuning impofiances arc investigated, the metrcd can identify rhos€ cas€s where, for
instarrce, only the mtio or the product of two parameters inlluenc€s the objective
frnction. Moreover, principal clmponent analysis can b€ very usefirl in mechanism
rcduction. Sometimes, the €limination of dle reactions one by one may cause significant
changes in the solution, while elimination of reaction paiN has no signiflcant conse-
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quences [53,122]. Principal component analysis can be used to identify groups of
reactions which can be eliminated.

Although the principal comf,onent analysis lechnique was suggested odginally
for the analysis of local concentration sensitivity matrices, it can be adapted to tp sutdy
of other sensitivity matric€s, too. The use of pdncipal component analysis for the
investigation of the rate sensitivity matrix F is discussed in 0201. Applications of
principal component analysis are found in rcfs. 153,54,61,91,120-122,164,166,1681.

4. L2. D er iv ed sens itiy ities

While principal component analysis provides infomation about bolh ttrc
imponance and the connection of pammeters, caJc,Jlation of de red sehtitirities
might give a deeper insight into the interconnection of pammeiers.

The change of a conc€ntration vector at t, as a result of the change of a
pammeter vector at tr can be exFessed by utilizing ttie nonnalized s€nsitiviry maEix S:

d ln ccr) = S d h *(tr).

Let us rcwdte this equation into the folowing form:

(66)

(6?)

Interchanging variable vectoN ln a' and ln t' leads !o

(68)

In eq. (68), ln c' and ln ,(" arc independeni variablgs, while ln t' and ln c" arc dependent
variables. Using the rules of multivariable calculus, fte blocks of matrix D can be
obtained by

D r  = S r  ,

Dz = -5 t  Sz,

f r  =  S : i ' ,

5 r  = S r - S : 6 r S z .

f d  t n  c ' ( e  ) )  1 , S r  I S z ) f  o t n t ' t r r I t
f o rn ""tr, r. i 

= 
ls,Ts. )\a v *"t,, i '

f  d ln t ' ( r r  ) )  fD'  I  Dr) /ornc(a) l
[o r" "r,' r J = 

lorTp. Jta r" *'1,, rJ'

(6e)
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a h &'(tr )
a h c'(t2 )

a ln c"(t2)

a ln c'(t2)
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If matrix S, is no! a squaE matrlx, a least_squares solutlon is r€commended to

obtain matdx b, itlSt. fn" bbcks of the first-order normalized deriv€d sensitivity
mataix D have the following elements:

fo' Dr l
\D: Dr./

(70)

All ftese derived sensitivity coefficients have an unusual interpretation, as discussed
below.

(7) Matfit 1; Porarneter-obsenatiotr interdependence

The coefficients of matrix D, Provide information on the accuracy of the detet-
mination of parameters l' if concenfiations c' are monitored. ln an experiment, it is

desi!-able to choose the experimental conditions in such a way as to minimize
d ln l1/? ln c'. This ensures lhat lhe uncenainty in the monitored species concentmtion

c, is riot magirifiei in ltte estimation of the rate constant ki.

Q) Matb br: Paratneter-paratneter interdependence

If fte value of &, is changed at t,, the denvative abktlahki irdicates fie

dircction and magnitud6 of the necessar! change in fte mle constant t at tr which

reproduces the original concentmtion vector c' at t2

Q) Mat xbi Interdependen e of different obsemations

kt us suppose ihat in an experiment the colrcentration pmfiles for some species

are monitored, but that lhis information is inadequate to identify ttrc mechanism and

the.eiore the concenuations of further species have to be monitored. The less the

corulection between the old and new observations regarding the parameffs t' to be

determined, the greater the information increase. The task is to scan $e

observation-observation sensitivities in order to find those observables which are the

leasl dependenr on fte alrcady measured concentrations.

(4) Mati, irat Obsenation-parameter inzrdzpendence

One has to .ealiz, that lhe coofficients of matrix bo are different from the

elementary sensitivity coefiiciens a h cila h t , since in ttle formel case concentm'

ions c' ate held fixed. Applicarions of thise deriied sensitivitigs have not been repoted

so far.



Derived sensitivity coefficients we.e inroduced by Doughefty et al. [43],
although the matrix Dr has been calculated in ret [131], too. Larter et al. showed that
derived sensitivities can be computed dirEctly, that is, witlput 4 p/iori evaluation of
elementary sensitivities [139]. Yetrer et al. calculated second-order derived sensi-
tivities U4l as we , and Demiralp and Rabitz presented dedved sensitivity densi-
ties [138]. Recendy, Yefier et al. [?4] demonstrated fte interpretation of derived local
s€nsitivity co€fficients on fte example of a larye reaction mechanism. Derived sensi-
tivities were also applied in the invesrigarion of flanes t551.

Since partitioning of matrix S in eq. (66) is arbitrary, a number of different
derived sensitivities are possible which may be calcutated from the same matrix S.
Therefore, it is not practical to seaich for parameter dependenc€ in this way. However,
the existence of assumed cornections can be pioved or refuted by appropriately calcu-
lated derived sensitivities.

Another type of derived sensitivities can be calculated fmm normalized exped-
mental sensitivities and from fte oorma.lized local concentntion sensitivities usins the
chain rule [145]:
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d ln c; lD ln ci = L (d tn cila ln *r)(a h *r /a h c.re). ( 7 1 )

These coefficienE intefelate lhe calculaled and the exDerimentallv measuted concen-
tmtions.

4.2. IMPORTANCE AND INTERCONNECTION OF VARIA3LES

The aim of most kinetic modeling studies is to pmperly describe tile concenfia-
tion changes of some species considcrcd lo be important and/ot to reproduce some
kinetic features ofthe reaction. A reaction mechanism has l,o contain both the reactions
of these inportant specieJ ard the reactions of thosg species which are tAcessary ta
accurately calculate lhe concentmtion changes of the impoftart species. ln a large
rcaction mechanism, some species may be r€dnndart and lheir concentration need nol
be calculaied. Note that tt|e products of important rcactions may be redundant species.

The decision about which species and/or features ar€ considered importajrt deperds
on lhe objective of the modeling. Herc, two methods [122] are given for the id€ntifica-
tion of redundant specigs. Bolh methods ar€ based on the fact that nec€ssary species are
strongly connected to impoftant specics and features.

4.2.1. Identification of redundant species via reduced nodels

According to this melhod, a species is redurdant if the elimination of its
consuming rcactions does not cause significant deviations from the solution of lhe full
model with respect to the concentration of imponant species and/or imponant features.
Some redundant species are formed in fasf reversible reactions and they cannot be
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identified by the above test. Therefore, each species has to be reinvesdgated by t]rc
simultaneous elimination of its fast lorming and consuming reacdonsi if the solution of
tlle redlced model is practically identica.l to the solution of tlle flrll model considering
imponan species and/or features, the investigated species is rcdundant as well.

4.2.2. IdentiJication of redundant species ia the in\)estigotion of the Jacobiarr

A species is redundant if ils concentration change has no significant effect on the
production rate of l}|e impotant spccies. Such an effect is indicated by an element of
the no.med Jacobian a lndld ln c,. The inlluence of tle change of the concen!"ation of
species i on the rate of produclion of an N-member group of imponalt species call be
taken inio account by an ove&Il sensitivity-type measurc:
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8; = ! (d tn/, /d tn c; )'� ('t2)

This measure quantifies or y the dir€ct effects. lndirect links can be revealed by an
iieration procedue. The imponanl species, together with the best-ranked species by fte
merit of their q values, are taken into account in the summation in eq. (72) to identify
new necessary species. This procedure is repeated until convergenc€. Redundant
species arc those wNch do not take place in the summation at lhe end.

The econd method is less effective, since redundant species formcd in fast
rcversible rcactions caffrot be identified and the effgct on important featurcs cannot be
investigated. However, this method is suitable for studying how the categories of
necessary and rcdundant species change as the rcaction proceeds.

43. SEPARATION OF THE SECULAR TERM

When oscillating rcactions are studied by scnsitivity analysis, one has to face
pmblems which are unknown in the invesrigation of other Ieactions. Thg change of a
paraneter or an initial concentration causes a phase shift in the concentmtion
waves [82,125]. Moreover, a pammeter perturbation in the general case changes nol
only the wave form, but atso thc period time of the oscillator The coNequence of a
change of the period time is that the nominal and thg pertufted solutions move away
from each other as fbe time prccceds. Therefore, the calculated local concentratron
sensitivities gmw without bound in tbe limit of large times and they consist of two
terms: The first one (called structural sensitirity) is a periodic function which carries
infomation abour the changg of the form of the concentration wave. The s€cond, the
so-called secular tertu, is proponional to t = 12 11 and it becomes arbiuarily larye as
t becomes large.

An important step in the interpretation of the sensitivity coefficients ol oscillalors
is to reveal tlle iniormation inherent in structural sensitivities by lhe separation of the



secular tem. Two ways were goposed for the separation of the seqrlar tem. According
to lhe tust [80], drc phas€ lead or lag betweel lhe origirMl and perutbed solutions is
calculaied by a linear approach from the period sensitivity. Thus, fte phase lead or lag
al time 12 is appmachfd by (r/rxa r/a*r), where r is rhe period time and , = 12 - rr. The
conesponding equation for the separation of the secular lerm is: 

-

}citz) ( dcib)\ t
akjtt\ | a&(tr )J" r

dr
:i

dc(t2)
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(73)

(74)

where (aci /4,t,)o and (ata*,)o Nc called path-independ.ent sensitivity urd phav
.r?'|Jinvity. respectively. The calculation of phas€ sensirivities is more complicat€d |han
the calculation of a"/at,, but path,independent sensitivities can be considered rhe exacr
structuml sensitivity coelficients. Kramer et al. [l25] also elaborated equations for lhe
calculation of second-order pedod, structural, palh-independent, and phase sensitivities.

Recendy, lhe concept of the secular tem was also applied io non-oscillatory
syslems [76]. The secular term of a genera.l sensitivity coefficient conesponds to trc
change in the time scale oftlE reaction caused by the change of a parameter. The secular
tefm free sensitivity coefficients were applied to the prediction of the model solution for
paaameter values away ftom the nominal parameter values.

Shon summaries dealing with the handling of the problem of fte secular
t€rm based on eq. (?3) are found in r€fs. [146] and U471. The sepaiarion of the
secular term has been illustrated so far only in the case of small model systems,
such as Brusselator [82,1261, the Lotka-Volte.ra model [80], and other simple
systems [76,125].

5. Software

Computer progftuns makc sensitivity tools applicable for the chemist. All
methods discussed so far are reproducible fmm their annoutcing afiicles, but coding a
sophisticated method mighr be an gxhausting task. Therg are a number of anicles in

n t

Once the pedod sensitivities ada,t, have been calculated by e4. (34), the shuctural
sensitivities (ac- /al.). are derived liy a simple addition.

Lafier [126] also presented a more involved, but moie general, way for the
separation of the secular ierm, based on a Floquet theoretic approach. This method is
also applicable to unstable oscillato$.

The second way [125] takes into account lhe actual phase lead orlag(dtldk,)^
at time , instead of the linear approach. The conesponding e4uation is:.

ac, ( f2)  /d . , t r r t )  f  dr )  dc, t rz)
a*r(rr ) \ dtr(rr )/o \ a4 Jo dt
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which the authoN repoft on their efforts for coding a metllod, and they give tips on how
to construct an efficient program. Such articles are refs. uml and [l03] for the FAST
method, rci [69] for dle Grcen turction method (veNion (1)), and ref. [65] for lhe
SGFMII method.

Unfonunately, only few anicles exist in which a ready comput€r code is
published. FORTRAN codes are presented in [89] for tlle pot],nomial approximation
method and in [51] for the decomposed direct method.

S€veral pmgmms are offered in dle literature for sensitivity calculations. A
computational implementation of the GFI4AIM mcthod is available from the authors
of rel [ 148] . Moreover, this software was also combined with the CHEMKIN chemical
kinetics softwarc [149], yielding a production code called CHEMSEN u50l to model
isothermal mnstant-volume chemical kinetics systems. This pmgram was rcpmduced
by Hayashi and Fujiwam n5j. Caracotsios and Steward offe. a progmm package named
DASAC t50l which is based on an improved dircct method. The combination of this
program with fte CHEMKIN package is called SENKIN u5ll and is applicable for the
sensitivity study of a homogeneous reacting gas mixturc in a closed system. Another
realization of ttrc decoupled dircct melhod is offered under the name ODESSA t481.

The author of this review also offers a pmgmm package, named KINAL u521,
which is written for the finetic anzlysis of complex reaction mechanisms. The package
includes programs for the integration of kinetic differential equations, for the
constuction of the mte sensitivity and quasi-stationary sensitivity maftices, and
for the calculation oflhe local concenfation sensitivity matrix based on the decomposed
direct method. The principal component analysis is applied to reveal inJomation
inhercnt in these matdces.

6. Applications

Applications of sensitivity analysis mver very imponaft areas of kinetic
modeling. Usually, several sensitivity tools can be used to solve ttre same problem and
the selection of the appropriate method is based on a trade-off betwe€n accuracy and
computer time demand. Most problems may also be solved by medbds otlrcr than
sensitivity analysis, bul they will not bc discussed here.

6.I. UNCERTAINTY ANALYSIS AND PARAMETRIC SCAI-INC

All parameters of mathematical models have more oa less uncertalnty.
Uncertainty dratJr.r melhods arc addrcssed to calculate the unceftainty of model
results caused by the uncartainties of fte parameters. Ths uncenainty of a model output
may be so significant lhat lhe practical value of the model may b€ questioned.

In sensitivity analysis, each parameter is perturbed to the sane extent, while in
uncertainty analysis (also called sensitivity^rnce(ainty analysis), the real uncertainty
associated wilh each parameter is taken inio account. Such uncenainty information is
derived from the statistical analysis of expedmental data. l-aboratory controllable
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parameters (e.g. tlle t€mperature of a tlrcmostat) also have an unc€rfainty, caused by the
expedmental apparatus.

Global meilpds are directly applicable to uncetainty analysis. Such calculations
have been performed by the Monte Carlo method [l15-ll7], by the Latin hnelr1rbe
method [36,118], and by lhe FAST metlbd [107,108].

Local sensitivity infomation can also be a basis for uncertainty analysis. The
mean value and variance of the concenfation cr can be determined [46] by trc e4ua-
tions:

. !  ^
(c i )=c ,+ ]  >Gzc,  tak :F2\k r )  +  L  2  (d 'c i  tdk idk t tcov{ l j , l r ) ;  (75)

t = r  j = t  t = j + l

62(ci\ = > (aciftkj\2 o21k,\+22 > (aci Dkjr(aci nkj cov(kj, kt)
j - t  j = l  t = j + l

+ 2 @ci /a*)@2,i tdt)p-,$i), (16\

wher€ ,q is th. Jrird central moment. Frcquendy, only the mean value and the vadance
of pammeteN ar€ known, and in such cases the last term in eq. (75) and the two second
terms of eq. (76) can be neglected. However, kDwledge of the covarianc€ matrix is
essential if the parameters arE highly conelated.

The use of linear sensitivity information in unceftainty analysis rcquir€s orders
of magnitude less computational effon, but the results obtained may b€ misleading if
the unceftainty of lhe parameteE is large. Non-global uncenainty analyses were also
canied out by Dodge and Hecht [25] and by Butler u531. Their considerations were
based on sensitivities calculated by lhe brute forc€ method.

While uncenainty analysis investigates the influeDce of paEmeters on the solu-
tions frcm a stochastic point of view, this goblem has a deteministic equivalent: What
wil be the new solution of drc model af dme r, if the parameteG ar€ changed at
fime tr? The prccess ofextrapc:ation o[ a modeling result o new parametric condil.ions
is called paratnetric scoline.

The simplest solulion of the pmblem of parametric scaling is based on the
application of the Taylor series, in which lhe coefficients are the local first- and higher-
order sensitivity matrices (ct eqs. (2) and (3)). As an example, Taylor series approxi-
mations vere used u25l to prcdict the new amplitude and pedod time of a limit cycle
oscillator when the paramete$ are changed significandy.

In chemical kinetics, the exponential b€haviour of speciqs concentrdtions is
ubiquitous and therefore eq. (77) gives a better appmximation in most cases ihan the
first-order Taylor series [43]:

onis rrt, t",Xa",ra4l].c i ( l + A t ) = c l ('1'7)



T. Twdni, SensitivitJ ar|alysk of conple, khetic sys,-nls

Hwang {,l0l applied a similar equation supplemented by second-order terms, and found
it much better than eq. (77).

Kmmer et al. [76] examined seveml strategies foa pammetdc scaling. They
showed that the previous methods may pmvide physically unrcalistic results when d has
known bounds. FiNt- and highe.{der altemative equations arc proposed with built-in
constraints, thus expanding the parametric region in which Ole extrapolation may be
valid. They also demonstmted that secular term free sensitivities can be b€tter applied
for parametric scaling, both in the case of oscillatory and in fte case of non-oscillatory
systems.

6.2. PARAMETERESTIMATION

A usual task in chemical kinedcs is the fiEing of model parameteN to exped-
mental dala. Suppose that the sfucturc of the rcgrcssion model allows an adequate lit.
Then the greatest possible pitfal rn a pammeter estimation proceduE is to
encounter an ill-conditioned prcblem. Here, we present a procedure [53], based on the
eigenveclor-eigenvalue decomposition of marrix F, !o avoid such problems. The
definition of lhis matrix is

(rr)WrR(rr), (7E)

where matrix n = (a h rrla h c)(a h c/a h t), the tunction t(c) is tlle instrumental
functiori, i.e. fte function which convcns the calculated concenuations into calculaied
signals of the expedmental apparatus, ard L is dle number of meaiurements. The matdx
W is the weighting matrix belonging to the lth data set, which may be identical to rhe
unit maFix (unweighted parzuneter estimation) or is chosen as the inveEe of the
covadance matrix.

Parameters which are not rclated to large eigenvector elements of large eigen-
values carulot be determined by parameter estimation. The values of these pariunete$
have to be fixed to avoid singularity. In addition, very often only lhe value of the
quotient (or pmducD of some pariuneten can be determircd. This situation is
indicated by a low-eigenvalued normed eigenvector which has a fom similar to
(0.701, tO;lU,O, . . . , 0). In this case, one of rhe coupled parameters has to be fixed.
Howevgr, one has to keep in mind that the ratio of the pammeteN and not their real
values are determined! This procedure is also a solution for the pDblem of the deep-
valley-shaped objective functions, which occur often in chemical kinetic modeling [2].

The matrix P depends on lhe values of paramet€rs. Since the exact values of
panmeteN ar€ not kno*n, one has to calculate the matrix using estimated palamete$.
It is advisable to carry oui the eigenvalue-eigenvector decomposition of the r€calcu-
lated matrix P in each cycle of parameter estimadon. The list of fixed paftrmeters may
have to be revised as the Darameter set becomes more ard more accumte.

235
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Note that the principal componeni analysis of matrix SrS is obtained ehen the
concentmtions are measured direcdy (1, = c) and weights are not used (W = I)

Having detemined which parameteN have to be fixed, one can start the paia-
meter estimation procedure. The Marquadt algo.ithm has proved to be fhe most
effeative tool for pammeter estimation in chemical kinetics [l54]. According to this
method, the parameie$ ar€ fitted by an ireration and the new paruneter set is deter_
mined using the following equation:

-  - L  -

f " '  
r  )  =  t  +  t P ' p  +  i i ) - r  P '  I  R ' t r r l W l  r ,  - i ( c ( 4 ) ) 1 , (19)

where alr element ofvector d(i * l) is ihe ratio of trc new and of lhe old estimaied value
of pamm€rer j. i.e. pti ' rt - k:t"tlk:t', !, is the veclor of measured data in the l$
experiment, and i is'the Marqirardt farameEr. All veclols and malrices on the right-
hand side of eq. (?9) ale evaluated using tie pamrneler veclor l(i).

Elficient numerical methods, developed for the calculation of local concentration
sensitivities, are well applicable in a pammeter estimation. The sensitivity matdcesirave
to be cmputed using the fint-guess values of parameters. Then matrlces R and P are
calculated, the parameten to be Iixed ar€ selected, a new pammeter set is ottained by
eq. (?9), and lhe pmcedure is repeated until convergence is achieved.

Above, it was assumed that the structurc of the rcgression model is adequate for
fitting fte data. If not, a discrepancy between the measurcd and calculatei data will
r€main even in the case of the besr lit. In this case, new pammeers (new reactions) have
to be searched for io complement the original model. The values of the assumed new
pafiuneters are set to zerc and a sensitivity analysis is canied out. The solution of the
model r€mains unchanged, but great sensitivity indicates that lhese paramete$ migit
effectively change the solution. Such calculations were descdbed in refs. Ull and [?9].
Note, however, thal the effect of a new parameter may b€ very different if its value is
different flom zero-

6.3. DESICN OF EXPERIMENTS

Each laboratory expedment should be preceded by experimental design to ensurc
the maximal effectiveness of labomtory work. The problem of experimenlal design can
be interpreted both from strategical and tactical approaches.

lf one has a large multi-parameter model lo improve, ong has to identiiy those
parameters which should be krFrn more precisely. These paramete6 ar€ not neces-
sadly lhe most uncertain paramelers, but lhey ar€ tlps€ parameters which cause the
greatest uncertainty in the modefing results. Therefore, lhe parameteN to be investigated
experimentally have !o be selected on the basis of fte r€sult oi an uncefiainty analysis.

The next step is lhe design of an exp€riment in lvhich more accunte values for
the critical parameten are detemined. There ale sevenl ways of perfoming experi-
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ments: oflen one can select the species' concentrations to be measured, tlle time points

of the measuEment, and the initial conc€ntrations of rcactants. On fte basis of a
simulateal experimen!, matrix F has to be calculated according to eq. (78). The prirEipal
component analysis of matdx F reveals if the value of ihe parameter in question can be
determined. The matrix P has to be r€calculated for different plarmed reaction circum-
stances until the parametet to be determined is a single dominant element of a paincipal
component of large eigenvalue.

The above described "tactical expedmental design" can also b€ canied out by
using eifter derived sensitivities or experimental sensitivities. The appropriate elements
of the derived sensitivity matdx Dr have to be midmized to derrease tlle variance of
paraneters to be determine-d. The inatrix b, gives informarion about he influene of
$e value of fixed paramercrs on the value of fitted parametets. The selectlon of new
concentmtions !o be measured besides lhe aLeady measur€d ones can be based either
on matrix D3 or on the derived experimental sensitivity matrix. Elementary expedmen:
tal sensitivities cnn be used to identify those parameten of ttle assumed model which
are strongly affected by noisy data.

6.4, REPRO MODELINC

when modeling a spatially inhomogeneous chemical reaction system, the kinetic
equations have to be solved at each grid point. This means several hundrcds or
thousands of soludons of large sets of ODES while ttteir initial conditions cover a
physica[y reasonable (usually not very large) domain. Aft€r the solution of the kinetic
equations, lhe transpon equation has to be solved over the same time intefial. This time
interval At is detemined by tlrc stability and/or the accuracy of lhe transport equation
and it is usually not very long, while stiff ODE solveN require time to "sta.t up" and
are therefo.e not very efficient over a shon time i ,erval. The conse4uence is tlrat an
overwhelming part of the computer time used in modeling a space-time system is con-
sumed by the description of chemical reactions.

The application of initial concenfation sensitivities offe$ a simple and efficient
solution for this p.oblem [60]. This procedure is caled "repro-modeling". The domain
of initial concentraions is covered by a grid of C0 vectors. The solution of kinetic
equations F(Co, At) and the firsF and second-order initial conctntration ssnsitivities

aF(A4l arF(A4l
dc l .=co - . -  

acac t "=co

arc calculated for each c0 initial concgntration set and arc slored ("parametdzation of
lhe mechanism"). Then lbe solution of fhe kinetic equations after a time inlerval Ar for
any arbitrary c0 initial concentrations within the domain of interest can be approxF
mated by
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c(co,a4 = p1g 0,64 ". > {fl l"_".r.,"-c,!l

* I > > -,o(.oul kl-c,oxr,o-c,P),-  
i  t  d ( t d c t l . = C o

(80)

wherc Co is chosen to be close to co.
Dunker [60] applied dlis procedure to a photochemical mechanism for oxidant

formation in urban areas. He showed that the computational effort r€quircd for tlrc
solution of the kinetic equations by lhis method was rcduc€d by more than two orden
ofmagnitude, while the appmximated concentrations agreed fairly well with the exactly
calculated ones even after fifteen hours simulation time.

Ma$den et al. F55l also prEsented a similar appmximation, where the whole
initial concentration domain is covered by one second-order empirical polynomial. This
procedure is closely related to lhc determination of sensitivities using appmximate
empirical models. In the method of Dunker, the coefficients of th€ second-order poly,
nomial depend on initial concentrations, but this is nof fhe case in the method of
Marsden e! al., and therefore the second way is simpler but provides less accumte
solutions.

6,5, STAITILITYANALYSIS

If lhe solution of a mathemarical model is penurbed at r, by &(r, ), the deviation
beween the penurbed and lhe nominal solulions at r, can be ixpressei ty

6c(rr) = K(r,, rr) 6c(r), (81)

where K is lhe initial concentration sensilivity mafiix (see eq. (10)). The growlh or
stuinkage of & shows the stability of the model wilh rcspect to changes in the initial
@ncentrirtions. A us€fi method to assess the stability is to perform an €igenanalysis oi
matrix K [82,84]. The eigenvalucs of K indicate ihe stability, instability, or marginal
stabili ty of cerfain combinadons of deviariors frcm the initial condition in lhe Lyapunov
sense. The eigenveciors indicate the diroction of deviation from the solution in state
space.

The mixed second-order scnsitivity coefficients can be interpreted as fhe s€nsi-
tivitv of matrix K:

a2cQ2\ _ 3K(rz, rr )
dh6 )ahh)acoQ)

(82)
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The analysis of matdx aK/a& provides the s€nsitivity of stability eigenveclors and
eigenvalues to model parameters. This gives information on how the stability changes,
bolh in magnitude and in direclion, as a tunction of system pammeteN.

Thg concentmtion sensitivity matrix S can also be interpr€ted as a measure of the
stability of tlle solution with respect to the change of fte parameteN. (Ihe second-older
sensitivities can be considered to be the sensitivity of these stability measures.) If small
per$abations in the mod€l panuneters cause exorbitant changes in fie model
prcdictions,lhe usefulness of the model may be questioned [143]. Later demonstrated
[80] lhe sructural instability of an oscillating reaction model by the calculation of
secular ierm frce seNitivities.

6.6, INVESTIGATION OF REACTION MECHANISMS

The study of the elfect of pararneter pe.turbance on the solution, which is lhe
essence of dynamic sensitivity analysis, can pmvide significant information on the
structure of reaction mechanisms. The change of a pammeter belonging to reaction j
causes a direc! concenlration change only in the case of those species which are
aeactants oa products in this reaction. The ditect concentration changes cause fufiher
changes in lhe concentration of other species 0201. The latter indirect (nonlinear)
effgcts carmot be predicted by scre€ning analysis or by studying matdx F, and the
nonlinear fiecrc revealed by dynamic sensitivity analysis can be used !o setde
panicular mechanistic quesrons 11,26,43,44,'12,9?,106,1321. The sensitivity infoma-
tion belongs to a time intewal ard this interval call be changed by changing the time
of penurbation rr and the time of obseryation ,2. This rvas called "the vadable-initial-
time prccedure" by Hwang ul.

Often, one is interested in the stnrcore of rcaction systems and lhe imponance
of reactions al a definile Eaction ume which conesponds to a given concenrauon set.
Such questions can be a-nswered by the analysis of matrix F [120]. This technique can
have advantages also in the study of distributed parameter systems, since in some cases
the trme-consuming tunctional sensitivity analysis may be avoided u641.

Rqu-limiting steps are exposed by very large sensitivity c4efficients [ 104' l3l ' 156].
Rec€ndy, Ray u l9l proposed the following definition of rate-limiting steps: a rcaction
step is rate-limiting if lhg increase of the mte coefficient causes a significant increase
of the overall rcaction mte. Thereforc, the rate-limiting step can be identified by
inspecting fte ith row ofthe dynamic mte sensitivity matrix, wherc th€ mte of produc-
tion of the ith species is considered !o be identical !o ttle overall rate of the reactron. A
possible extension of the original definition is to assign a ratelimiting step to the
fomation or consumption of each species of a complex reaction. The ratelimiting
step of the ith species can be idendned (if it exisfs) by searching for a very large element
in the ith row of the dynamic rate sensitivity matrix. This extension of lhe definition
may be usefirl, sinc€ in the case of some complex reaction systems (e.g. smog mechan-
isms), the concept of an ovemll rcaction r:ate is meaningless and ther€fore ttle original
definition of a rate-limiting step cannot be applied.
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The existence of/drr €quilibfutn conditians or quati-statioMtry specier c rtfJs
interactioals between the parameters. They can be identified by one of the methods
describ€d in section 4.1. As an example, such pammeter coDtections can be rcvealed
by priocipal component analysis of tlrc local crncentration sensitivity [53, 54] or the rate
sensitivity mauic€s 020, 1681.

A list of s€nsitivity studies on @mplex reaction mechanisms is given in table L
This table can be used as a soutc€ of citations !o fird which difficulties have beer-
encountered using the sensitivity melhod of interest. Futthemore, in exarnining a
reaction syslem. experience obtained by fte investigalion of $imilar reafiions carik
utilized.

6.7. REDUCIION OF REACT]ON MECHA]\ISMS

The WASP method [111] is the or y sensitiviry method which gives dirEct
information about the effect of the glimination of pammeten fmm a mechanism.
Unfonunately, the application ofWASP formechanism rcduclion nquires ar unEason-
able amount of computer time.

There arc a number of methodE ior the estimation of the reduction immrtances.
Crigoryeva et al. poposed a mechanism reduction proceduF based on tepetitive calcu-
lations of FAST sensirivity coefficients [1011. The method ofpierce et al. tl04] is also
based on FAST sensitivity coefficients. Frenklach proposed a synoptic study of appro-
priate feature sensitivities and of reaction rarcs [2].

Mechanism reduction can be based on trc dircct investigation of local
concentlation sensitivity coefficients [1,??], or on vector norm analysis or prircipal
component analysis of the local concentmtion sensitivity [53,54,164], mte sensirivity
t120,164,166,1681, or quasi-stationary sensitivity I91l matdces. Species taken in[o
account in fte analyses can be selected by one of the methods described in section 4.2.
Combinaions of the above prccedures give an €normous number of vadations. The
method [122] described b€low seems to be effective regarding bofh re computer time
rEqurrements and fte size of the oblained reduc€d mechanism.

First, the model€r has to dccide which species concentrations or featurcs of the
Illl mechanism are required to be rcpmduced by t|e reduc€d mechanism. The fint
method described in section 4.2 provides the list of species necessary in the reduced
mechanism. Then, aprincipal component analysis ofmatdx Fis fulfilled with impo ant
and necessary species in lhe objeclive funclion of l}|e method. .this analysis hai to be
carried oul for seveml reaction times allocated in lhe entirc time interval of intercst A
rcaction rnust no! be eliminated ifit proves to be imlnnaft at any time. The next step
is to eliminate the redundatt reactions from the mechanism. Finally, th€ success of
mechanism Eduction is tested by comparing the solutions of full and rcduced
mecnantsms.

The rgduced mechanism obtained can be shrunk funhe. by rcaction lumping,
taking into account the ratglimiting steps, fast equilibrium conditions, quasi-stationary
species, and parallel reactions. Another possibility for lhe reduction of the size of
reaction mechanisms is species lumping. Recently, new melhods were published for tlle
analysis of lumping [157, 158, 170, 174, 175].
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T.bIe I

Coll)m nMbqs refer to: (1) shqt nme of onplex r@tim m@hmism sfudied: (a nnnber of
sFcies; (3) nmber of rcactionsi 6) ref€renc€sr (5) seNitivity ndnod Ndi.d (s tbbr€liationt);
(6) lin d shofl desipti@ of the invstitation

(2) (3) (6)(5)(4)(r)

Lw lqnFrrntr. Fop!tr. prol. 38

High temFr.tu€ prcpm€ plDl. 14 zL4

m@hrn. invsl. & .edrcr
m@huism invstiSatim

n@hanm inv€stig.rion
mehmilm iNstitation
mehdiM invetiSatim

mechanism invstigrtion

he.huisln invdtiSation
m..hrnism invdtitation

rnehdisn investiSad@

mc.l|. hv.,st- & tldtrt.
n cl|' irwsr. & redlcl.

.xmple of tll€ method

t3u BF
tr59l BF
t33l ArM
{9ll QsA, rcA
11201 RA, rcA
t75l GFM
I7O1 GFM
t1221 RA, rcA
W] BF
t45] AIM, (GFM, DM)
t22l DM, (AIM, BF)
T76] AIM
1471 DM
t56l DM
[l01] FAST
I88] AIM
11601 BF
t63l DM

tr 22
\4 66

l t  38
1 5Efianc ltrolysis

D@mpqirim of nitomerhde
D@mpositid of merhMe
PtrolFis of burylb$me

Oxidadon of CH.

4/3,N, flamc
High tmperatue dr rqctim

Csr-O, explosion

Fomaldehyde oxidrtion

Oxidltion of cyano8cn

DM
FAST
BF
GFM
DM
FAST
FAST
OFM
AIM
BF
BF
GFM. (DM)
DM, (BF, AIM)
DM
DM, rcA
RA, rcA
BF
FAST
PAM, (DM)

l4

E
9
8
5

1 3

15 25
9 9

26 128
17 36
29 60

l0
l l
l5

l l
20

D INI
18 t97l
32 I30l
62 L44l
34 I4t)
l0 I9?l
46 [106l

I43l
051

1l [r30]
36 [16r]
E t431

122)
t5ll
t53l
tl20l

15 [2rl
56 [r05l
r0 I38l
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0) (2) (3) (6)(5)(4)

Oxidation of N,
Oxidation of n-butee
Oxidation of @&ldehy<le
cL ifibit d co/q 0de
Steady stare CH,y'O. flme
Premired r! riinaire I
Prenix€d tt,st flamc n

Thmolysis of methdol

Wer on<bdon of CO t2 AIM, (GFM,DM,BF)
AIM
DM
AIM
AIM

FAST
AIM
AIM
BF
BF
NM
DM, PCA
AIM
AIM
BF
DM
DM
BF

BF
DM, FS
GFM
SGFM/tr
SGFM/tr
PAM, (DM)
DM
MC
MC
FAST
DM, (AIM, BF)

ssA

soF
AIM
BF, FAST
QSA, PCA
DM. RA, PCA
BF, DM

m@haism invgdgadon
m@heism invetiSation

m@h. invesl & redwt.
m€ch. invest. & redwt.
rn€.hanbm invstigatio
n@han;m invsrigation
m@hdism inveti8ltion
meheism invgtigation
me.hanirm invGtigation

m@h, inves!, u@n. dal.

mechdism hvstiS.tid
methutun invstiSatio
meheism invedS.tion

mech. invest. & redEt.

t 2
5

19
25
8
8

l 9

t3
l9

2 l

52 I12l
I72l
I47l
t15l

l0 I74l
s4 1162l
t0 t1011

t15l
302 t15l
128 Ir32)
\74 126l
38 l93l
38 t6U

rlE t85l
I66l

16 t1631
6r t1711

I\72'l
69 Il?31

3l i25l
4 142|

t43l
t64l
I77l
t38l
t51l

55 ! l5 l
l l  l6 l

56 [0?]
I22l

10 ul2l

130 t68l
34 [78]

tr  l0 l
60 [9ll

I1641
r82 IU)

tl65l

At bsphcnc ch.nist., aad photthenicd sfug

smor m@hdis'n (Dodse e(.1.) 20
Chapmu mah.nism 3

Smos neh.nism (McRe er al.) 3l

Phololysis of CO-Nor-H,O
mt(ture h &ir 13

(s!@kwell and Cslven) 62
Sulfat€ producdon in clouds 30
Shos m@hsnism (CAM-IV)
Re&rions of unpotlur.d lir 22

Re&tioN in clouds 69
Sufat€ productim h clou&
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(6)(5)( t ) @ (3) (4)

s€nsiriv y of limit cycles
wiihout numdical sludon
neteort sitivity dullsi!

replradd of fie *culd lom

mech. inv€$. &rducr
'neh. inv€sl. & rcdet.

m@h. invst. & reduct.

mechrnism inv6tiSlrio
n@haism invetiSltio
n€ch. invsr. & redwt.
m€chlnisn invedgad@

m€.h. invest, & rcdrrt.

BR re&tion

BZ reaction (EFN mod€l)

RZ rcen6
(both hiSh md low sets)

BZ r€r.tion

Mich@lb-Menlen nodel

Frieden eMyme model

HrJr, relctim
cq/o, sys'.m
Ilco + OH reacdon
lignin yellowins

12 36
8 1 5

Iel
t82l
Ir43l
t83l
t84l
1126)
t8u
I51l
t89l
tr28l
t80l
t?91
Il66l
ITl l
t54l
lr2l l
IsTl
Issl
I1681

t10l
tl04l
t1041
tro4l
I66l
1531
I73\
t87l
I1671

FAST
FS. CFM
FS
CFM
GFM
F
GFM
DM
PAM
GFA
GFM
GFM
RA
OFM
DM, rcA
RA, rcA
DM
DM
RA, PCA

FAST
FAST
FAST
FAST
SGFM,fl
DM, PCA
AIM
AIM
BF

l t ll

8025

15 136
4 3
8 1 6
6 t 2
7 9
5 5
5 8

15 I?
58 91

List of lbbreviarins: AEM: apprcximat! empiri@l rnodel nethod; Al .nificial intellitqce; AIM:
Mtylicalty integratld MaSnus modificdim of th€ CFM; ASN: Aitulie, Shill�nc
Neeq BF: brule force metlodi BR: Bri$s-RausclFri BZ: B€lousv-Zhsbotirslqr
DM: dn@! rethod; EFN: Edelsn-Field-NoyBi F: Floquer theoi€rni FAST: Fouiet
amplitud. sa$iiviry t€s!; FS: fumdonal sensitiviry inv6tigarion (iflctudinS 56i
tiviry dmi!,; GFA: globd f.atuc s€$itiviry malysiii GFM: Grcltt fimcrior
nedD4 MC: Mote Cdlo method; NM: Nceton method for the lolution ot
sGitivity equarios fd r two'loint boundary value Fobld; rcA principaL
cornponot ualysis; QSA: qusi strtio|ary sensitivity snlysis; RA: !d! analysi,
(brlysis of msr'ix F); SGFM: sc!.led Gren tuEdon lned|od; soF: dn@t cdculatiq.
of th! sitivity of objetiv€ fimti@; SS: srationary sasitiriries; SSA. st@hstic
s@ilivity drlysis.
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7. Concluding r€nrarks

At present fte ttrcory of sensitivity analysis has achieved an advanced level, and
efficient numerical realizations are also available. However, sgnsitivity analysis has not
been applied as extensively as would be desirable and possible. AltlDugh in the last few
years seveml papers were published in which sensitivity methods were applied, in most
of the papers that have so far appeared in this field, the sensitivity methods and not fte
reaction systems rrere the subjects of investigation. In this review, not only ar€
the theoretica.l and num€rical tools of sensitivity analysis €numerated, but also their
practical applications arc dealt with in deiail. Hence, it is hopei lhat this paper may help
to bridge the gap between theory and application of sensitivity analysis in chemical
kinetics.
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