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Abstract

Sensitivity analysis investigates the effect of parameter change on the solution of
mathemnatical models. In chemical kinetics, models are usually based on differential
equations and the results are concentration—time curves, reaction rates, and various kinetic
features of the reaction, This review discusses in detail the concentration sensitivity, rate
sensitivity, and feature sensitivity analysis of spatially homogeneous constant-parameter
reaclion systems. Sensitivity analyses of distributed parameter sysiems and of stochastic
systems are also briefly described. Special atiention is paid 1o the interpretation of
sensitivity coefficients which can provide information about the importance and
interconnection of parameters and variables. Applications of sensitivity analysis to
uncertainty analysis, parametric scaling, parameter estimation, experimental design,
stability analysis, repro-modeling, and investigation and reduction of complex reaction
mechanisms are discussed profoundly.

1. Introduction

Complex mathematical models have been used from the very beginnings of
reaction kinetics for the description of dynamic phenomena. The greatest practical
problem, the numerical solution of stiff differential equations, was solved in the early
seventies, and then new questions were raised: What is the nature of the connections
between solution and parameters and would it not be possible to describe the
phenomena by fewer parameters? These are the topics of sensitivity analysis. In the
last fifteen years, the theory of sensitivity analysis became very widespread and its
practical usefulness was demonstrated in many fields.

In a number of recent papers dealing with the art of kinetic modeling, sensitivity
analysis is discussed more [1,2] or less [3—7] profoundly. The single comprehensive
review on sensitivity analysis was written by Rabitz et al. (8] and appeared in 1983.
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Since that time, new concepts appeared as a result of the rapid development of
sensitivity theory. There are several reviews on the various subfields of sensitivity
analysis: Tilden et al. overviewed the local and global methods [9], Cukier et al.
summarized the FAST method [10], and other non-comprehensive reviews can also be
found in the literature {11-17].

Sensitivity methods developed for the study of spatially homogeneous constant-
parameter reaction systems are discussed in section 2. Other methods, described in
section 3, are suitable for the calculation of the sensitivity of special systems which
occur when the kinetic model has space- and time-dependent parameters or when the
kinetics is described by a stochastic or by a network model, or when experimental data
are processed. The numbers obtained by the sensitivity methods have to be converted
into chemical knowledge by the interpretation of sensitivity information (section 4).
Nowadays, diverse advanced software (listed in section 5) is available for those who
wish to use the above described tools of sensitivity analysis. The applications of the
theory are described in detail in section 6.

In this review, sensitivity analysis will be discussed from the point of view of
reaction Kinetics. Mathematical tools used in sensitivity theory are usually not new, and
some computational methods have even appeared in engineering science [18,19). In
this paper, the first appearance of methods in chemical kinetics is cited, but their mathe-
matical and engineering roots are not searched. Such references can be found in the
original papers and in refs. [8] and {9].

Sensitivity methods elaborated primarily for reaction kinetics can usually
be used without changes in other fields where dynamic models described by
differential equations are applied. However, application of the theory in other
disciplines is not discussed here. A large part of the sensitivity methods used in the
investigation of complex mechanisms was also applied to molecular dynamics.
Although molecular dynamics and chemical kinetics are related disciplines, applica-
tions of sensitivity analysis in those fields will not be cited here, and the reader is
referred to the following reviews: [14], [20] and [21].

2.  Basic sensitivity methods

The kinetics of a spatially homogeneous reaction system is usually modeled by
an initial value problem:

de/dt = f(c, k), c(@ = ¢° M

where ¢ is the n-vector of concentrations and k is the m-vector of system parameters.
These parameters may include rate coefficients, Arrhenius parameters, temperature,
pressure, efc., but initial concentrations are not considered in vector k. The solutions
of the system of ordinary differential equations (1) are concentration—time curves.
Rates of production of species can also be calculated from concentrations. Often,
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certain kinetic features of the modeled systems, deduced from concentration curves,
are more important for the investigator than the concentration—time curves themselves.
Sensitivity analysis can be classified on the basis of the output of the kinetic model
investigated as a function of parameters. Thus, concentration sensitivity, rate sensi-
tivity, various feature sensitivities, etc. may be distinguished. Sensitivity methods may
be divided from another point of view as well. Local methods refer to the small changes
of parameters, while global methods refer to the effect of simultaneous, possibly
orders-of-magnitude parameter changes.

21. LOCAL CONCENTRATION SENSITIVITIES

The effect of a parameter change on the solution can be expressed by a Taylor
series expansion:

m

ci(t, k +Ak)=c;(r,k)+z 9—3" %2 i
i=1 j=1

A 2
a%; ki+ .. (2)

In this equation, the partial derivatives dc, /ak are called the first-order local concen-
tration sensitivity coefficients, while d*c. /ék ka are the second-order local concentra-
tion sensitivity coefficients, etc. Usually, only the first-order (or linear) sensitivity
coefficients dc /dk; are computed and studied. They constitute the sensitivity matrix S,
which represents a linear approximation of the dependence of the solutions on para-
meter changes.

Assume that system (1) of ODEs is solved from ¢ = 0 to ¢ = ¢,. Then the
parameters are changed by Ak and the solution is continued t ¢,. The difference
between the original ¢ and the perturbed ¢’ solutions can be approximated by the
sensitivity matrix:

¢'(1,) = e(t) + S(,, ‘1)‘3":1- (3)

This equation shows that the sensitivity matrices have a double time dependence:
S(tz, t)= Bc(r?_)lak(tl ). Usually, ¢, =0 is selected. It seems natural to identify the initial
time of the ODE solution with the initial time of the sensitivity calculation, but this
selection implies a loss of generality. In some cases when, for example, combustion
reactions are studied in a batch reactor, there is a natural zero time of reaction (the time
of ignition) but, for example in the case of atmospheric chemistry, the selection of ¢, and
t, i8 arbitrary.

Matrix S can be obtained by differentiation if the analytical solution of an ODE
is known. Unfortunately, in chemical kinetics such simple systems are rarely met and
numerical methods have to be applied. In sections 2.1.1-2.1.5, five methods will be
described for the numerical calculation of the local concentration sensitivity matrix, The
methods are compared briefly in section 2.1.6. In the case of stationary systems, the
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limit in time of the sensitivity matrix can be calculated by an algebraic expression
(section 2.1.7). Two methods, discussed in sections 2.1.8 and 2.1.9, were developed for
for an approximate calculation of the sensitivity mairix.

2.1.1. Brute force method

The simplest way of calculating local concentration sensitivities is the use of the
finite difference approximation. This technique is also called the brute force method or
the indirect method. Applying this method, the jth parameter is changed at time t by
Ak while all other parameters are held fixed. Matrix S is calculated from the dlfference
of the original and perturbed solutions:

aC(Iz) _ c(ty, kj + ﬂkj) -clf, kj)
akj(tl) Akj

j=1,...,m. @)

Equation (4) shows that the application of the brute force method requires the solution
of the differential equation (1) using the nominal value of parameters and m solutions
of the equation using perturbed parameter sets. The sensitivities obtained belong to
the (k + Ak/2) parameter set. If the sensitivity coefficients were desired to belong to the
nominal parameter set k, eq. (4) should be modified by replacing the second term in the
numerator by ¢(z,, k, — Ak.) and the denominator by 2ak [22-24]. Nevertheless, when
using this centercd fonnulla 2m solutions are required.

‘The brute force method is widely used since no extra code beyond the original
ODE solver is needed for the calculation of sensitivities. However, this method is not
recommended because sensitivity coefficients can be calculated consuming much less
computer time by other methods, e.g. the direct method [23,24). Moreover, the estima-
tion of the errors of sensitivity coefficients calculated by eq. (4) requires at least as much
computer time as the calculation itself. The errors can be minimized by an appropriate
selection of Akj (see [8], p. 422). If Ak is large, the linearity of approximation fails, but
if Ak is too small, the round-off error is high,

Very often, a heuristic sensitivity measure is obtained using eq. (4) by changing
the parameters by 50% {25], or by a factor of 2 [26—30] or 5 [31,32,173], respectively.
The sensitivity coefficients obtained in this way are neither local nor global sensitivity
measures.

2.1.2. Determination of sensitivities using approximate empirical models

The method of Miller and Frenklach {33-35] is based on approximations by
empirical models of the solution of system (1) of ODEs in a parameter region at
time 2. Sensitivity information is obtained by differentiating the empirical equations.
The approximation requires much more computational effort than the computation of
sensitivities for a single-parameter set. It is, however, a good investment if a parameter
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estimation procedure requires the knowledge of sensitivities at several points of a
parameter region. Approximate values of local sensitivity coefficients belonging to
these points can be calculated from the obtained S(k) functions, but significant dif-
ferences may occur between the exact and approximated sensitivity coefficients.

A similar procedure was also applied by Derwent and Hov [36].

2.1.3. Direct method

Differentiation of eq. (1) with respect k; yields the following set of sensitivity
differential equations [37]: '

§h gl Ul
dr 3k; A ok

(5)

where J(t) = df/dc and the initial condition for d¢/dk. is a zero vector.

A number of methods for computing the local concentration sensitivity co-
efficients are based on eq. (5). The three strategies described in this section are com-
monly referred to as the direct method. Other, more sophisticated, methods proposed for
the solution of eq. (5) have different names, such as the Green function method,
polynomial approximation method, etc., and they will be treated separately below.

Higher-order sensitivities can be calculated by further differentiation of eq. (5).
The generic expression for the calculation of arbitrary-order sensitivities is the follow-
ing linear differential equation [38]:

w=Jw+s, (6)

where the inhomogeneous term s is independent of w. In the case of second-order
sensitivities [39]:

W= a"cfak‘. 8kj N

and

= 3%f 10k;dk; + (3] /3k,)(3c /9k; )+ (3 13k; )(De [9k:)

+ 2, X (3J;/3c; M dc/ok; ) de [ok;), (8)

j=1

—

where J. is the ith column of the Jacobian. Since the structure of the differential
equatlons for the higher-order sensitivities is very similar to eq. (5), these higher-order
sensitivities can be calculated by most of the methods described below (cf.
(12,13,22,38-41]).
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Equations (5) and (1) are coupled through matrices df /d¢ and 9f /0k, that is, the
solution of eq. (5) requires the knowledge of the solution of eq. (1) in all the points
where the ODE solver calculates the right-hand side of eq. (5). Connections between
these two equations can be made in one of the following ways:

(1) Solve the couple of equations (1) and (5) for j= 1, ..., m, which requires the
solution of 2n ODEs m times [42). This version is the simplest to code, but is the least
economical and may cause numerical difficulties [43—45].

(2) The solutions of systems (1) and (5) can be decoupled. First, differential
equation (1) is solved and the concentration—time curves obtained are stored in a table.
Concentration values desired for the solution of eq. (5) at times when there is no
tabulated value are obtained by interpolation {12,45,46].

An improved version of the decoupled direct method was presented by
Dunker [22,23]. He called attention to the fact that eqs. (1) and (5) have the same
Jacobian, therefore a stiff ODE solver will use the same step size and order of approxi-
mation in the solution of eqs. (1) and (5). His method first manages a step for the
solution of eq. (1), and also performs steps for the solution of eq. (5) forj=1,...,m.
The procedure is repeated in the next step. This approach is applicable only in the case
where the ODE solution method is fully implicit. Since the Jacobians of the equations
are the same, it has to be triangularized only once for each time interval.

Dunker’s implementation was based on the numerical integration program LSODE
of Hindmarsh. Recently, a new coding of this algorithm, also based on the LSODE
program, was eclaborated by Leis and Kramer [47,48). Their previous realization
was based on the program LSODI, which was valid only for restricted systems
of differential/algebraic equations [49]. The implementation by Caracotsios and
Stewart [50] is written for general systems of differential/algebraic equations. Their
work is based on the code DASSL.

(3) Solve eq. (1) and eq. (5) for all = 1,...,m simultaneously, which
requires the solution of (m+ 1)n ODEs. Since implicit or semi-implicit algorithms
appropriate for solving stiff differential equations require the decomposition of
the {m + 1)n X (m +1)n Jacobian in each step, the direct solution of this large system
of ODEs is inefficient. However, Dickinson and Gelinas [42] called attention to the fact
that this large Jacobian has an almost block-diagonal structure, and Valké and
Vajda [51] constructed a fast algorithm — called the decomposed direct method — for the
efficient solution of this large system of ODEs. Similarly to the method of Dunker, only
the Jacobian of eq. (1) has to be decomposed and only once in each step.

The application of the direct method was discussed in refs. [12,22,24,37,38,41-43,
45,47,50-63).

2.14. The Green function method

Differentiating eq. (1) with respect to initial concentrations ¢° the following
equation is obtained:
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d de() de(d) a
T R T
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where 7, is the initial time of sensitivity calculation and de(,)/d ¢Xt,) = .. The symbol
&. represents a vector of zeroes except in the ith position, where it has 1, Rewriting this
equation in terms of the matrix formalism, one obtains:

d
7, K a)=J0K@4), (10)

where K is the initial concentration sensitivity matrix. K(t, 1) = {Bcf(t)lacf(tl)}, with
K@,t)=Tandt21,.

Since eq. (5) is a linear inhomogeneous equation with time-dependent co-
efficients, it can be solved by first calculating the solution of the homogeneous part
(eq. (10)) and then determining the particular solutions corresponding to each para-
meter:

de(r) ? af(s)
k() ,J: Kz,s) ak;

ds. (11)

In the above equation, K is known as the Green function matrix or kernel. The
sensitivity method that is based on eq. (11) is named the Green function method. This
technique is also called the variational method. It was first applied to solve problems
in chemical kinetics by Rabitz et al. [39]. There are several variants of the Green
function method and they differ from each other in the calculation of the matrix K:

(1) Equation (11) requires K as the function of the second argument, and this
matrix can be determined via the calculation of the adjoint Green function K' using the
identities K*(rl, N =K@ t) and K@, 1) = K, 2,)K(1,, 1,). The adjoint Green
function is obtained by the solution of the following differential equation:

d
yy K'¢,0=-K'@,nia), (12)

where K'(,1) =Tand 7, <.

(2) The Green function for ¢ 2 ¢, can also be expressed as

K1) = G0 G7'@)), (13)
where

d/de G(») = J(2) G(1); Gl =L (14)
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The matrix G is not invertible numerically in all cases {39], but Hwang proposed a
solution for this problem [40]. His algorithm investigates the determinant of the matrix
G during the solution of eq. (14) and when the value of |detG| goes below a certain
bound, the calculation of G is restarted. The procedure divides the time interval into
parts; in other words, it rescales it. The matrix G is given as a product of matrices G’
calculated in the subintervals. This variant of the Green function method — called the
scaled Green function method — was elaborated in two versions: in the first version,
called the SGFM/I method, the rescaling is done when a numerical singularity of G is
detected [40]. According to the second version (SGFM/II), rescaling is carried out at the
beginning of each step in the numerical integration of eq. (14) [64,65] and the
exponential character of G is also taken into account [66].

(3) Rabitz et al. introduced the analytically integrated Magnus version of the
Green function method (45]. In the GEM/AIM method, the piecewise Magnus method
is applied, i.e. matrix K is approximated by a matrix exponential:

t+ AL

K{t+ Az, 1) = exp j J(s)ds. (15)

!

The sensitivities are then calculated from the kemel by analytical approximations to the
corresponding integral. The GFM/AIM method was found to be several times faster
than the original Green function method [12].

In all the Green function methods, the numerical effort is proportional to the
number of variables and not to the number of parameters. The Green function method
is particularly suitable if the sensitivities of one concentration to several parameters are
to be determined. In this case, the total effort is in the order of one kinetic solution.
However, the algorithms of the Green function methods are very involved, requiring not
only the solution of stff differential equations but also interpolation of functions,
integration using quadratures, and matrix operations. These are hardly controllable
sources of numerical errors.

The Green function matrix technique was extended to provide the sensitivities of
objective functions [67,68].

Useful advice for the computational implementation of the Green function method
(version (1)) is given in [69). Edelson et al. coded the Green function algorithm for a
vector machine [70]. The Green function method was applied to solve kinetic problems
in a number of papers [12,15,22,39,40,43—-45,64,66—68,70-88).

2.1.5. The polynomial approximation method

The polynomial approximation method elaborated by Hwang [38) transforms the
sensitivity differential equations (5) to a set of algebraic ones. The original time interval
is divided into subintervals. The variation of sensitivity coefficients with time is
approximated by Lagrange interpolation polynomials of degree L:
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Bc(t)

&) j=1,2,...,m. (16)

The value of 8cfak is known at z;and the values of 80/815 for L prescribed times
(<t <...<y ) are determmed by requmng that eq. (16) satisfy eq. (5) at these points.
This oondmon can be expressed by an algebraic equation [38] and the values are given
by its solution.

Information is needed for the appropriate division of the time domain and there-
fore a preliminary study of the behavior of eq. (1) is necessary, which makes the
polynomial approximation method slightly uncomfortable. However, as in the case of
the Green function method, the main computational effort is proportional 0 the number
of species and not to the number of parameters, Hwang demonstrated the high compu-
tational speed and good numerical stability of the method. A computational algorithm
and a FORTRAN code list were also provided {89]. The method was extended to
spatially inhomogeneous systems, too [1].

2.1.6. Which method to choose?

There are a number of articles (cf. [12,22,24,38,43,45,47,51]) in which the
above discussed methods are compared. The conclusion of each article is that the
authors’ own method is faster and maybe more accurate than the previously pubished
methods. Indeed, the methods are different from each other in accuracy and computer
time requirements, but these characteristics may be different for different problems. The
improved direct methods seem to provide highly accurate sensitivities and they
consume relatively little computer time; therefore, the use of such methods is recom-
mended in general. If the number of parameters is large in comparison with the number
of state variables, the use of the GFM/AIM method or that of the polynomial approx-
imation method is advisable.

2.1.7. Stationary systems

In equilibrium and in stationary state, concentrations are constant. Sensitivity
coefficients are, however, dynamic quantities governed by eq. (5). The time profiles of
the sensitivity coefficients give the dynamic response of the system to a differential
change in k, (sce the analytical expression in [8], p. 426), and the stationary sensitivity
coeffi c:ents are the limits in time of the dynamic quantities [46]. (This latter statement
is valid only if the steady state is asymptotically stable.} For stationary conditions,
species concentrations as well as matrices J and F are time invariant; thus, the stationary
sensitivity coefficients may be obtained from algebraic equations:

dc i
—|=- : f= 17
[akjj IF, j=1,...m, (a7
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where J is the Jacobian and F is the jth column of matrix F = {af/Bk }. Equation (17)
follows from eq. (5) by takmg the lefi-hand sides equal to zero,

The stationary sensitivity matrix represents the change of stationary species
concentrations as a result of a differential change in parameters. This sensitivity
measure is well applicable in the parameter estimation of stationary kinetic
systems [90).

2.1.8. Quasi-stationary sensitivity

All sensitivity coefficients are zero at ¢, (according to the initial condition of the
sensitivity equation (5)), and they usually change very rapidly only in a short time
interval. An experience of numerical calculations is that at times t, >t , the change of
local concentration sensitivities is not dramatic unless the change of concentranons is
rapid. This behavior is similar to the change of the concentrations of free radicals having
a short lifetime. This fact gave the idea to approximate local concentration sensitivities
with quasi-stationary sensitivities:

Bcl.(rz)fakj(ti) =iy 4=, (18)

The structure of sensitivity differential equations (5) allows the use of the
Tihonov theorem (91}, and quasi-stationary sensitivities can be calculated by an alge-
braic equation:

0=J8S9+F, (19)

= -J7'F. (20)

The matrix 89 is a poor approximation of the sensitivity matrix S, yet it can be
successfully applied to reveal important reactions in complex reactions systems [91].

2.1.9. Scaling relations and self-similarity conditions

Another way of approximately calculating sensitivity coefficients is based on the
observation that the shapes of calculated sensitivity curves are in most cases very
similar to each other. This is usually the case when a dependent variable plays a
dominant controlling role in the kinetics. Such a dominant variable (denoted by ¢,)
might be a radical concentration or the temperature in flame systems. The controlling
role can be formulated by

¢t k) ~Flc (k) izl 21)

The functional dependence between concentrations (variables) leads to the scaling
relations [14,92] between sensitivities:
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9 (4)/3k (1)) = (¢, (4,)/0k 1)) (£ (1,)if, (). (22}

A consequence of these relations is that sensitivity coefficients fulfill the self-similarity
condition:

e Rkt = ALt 08, @3

where the characteristic constants g, scale the sensitivity coefficients for a given
dependent variable with respect to the various parameters.

Both the scaling and self-similarity relations were elaborated for space—time
systems [14,61,92,93]. Similar equations can be derived for multidominant dependent
variable systems.

22, GLOBAL CONCENTRATION SENSITIVITY

In global methods, the parameter vector k is considered to be a random vector
with probability density function p. Therefore, the solutions of the models such as, for
instance, the concentrations, are also random variables at any time. The methods of
global concentration sensitivity analysis determine the mean and the variance or the
probability density function of concentrations, given the probability density function of
parameters and initial concentrations. Usually, the probability density function of para-
meters is not known, and a presumed probability density function has to be calculated
from the known means and variances of parameters by assuming a physically reason-
able distribution.

The single non-stochastic global sensitivity method is based on the Lie algebraic
and group methods. Nevertheless, the Lie group method [94,95,169,170] was only
limitedly applied for systems of nonlinear differential equations and therefore this
method will not be discussed in detail.

2.2.1. The FAST and the WASP methods

The most widely used global method is the Fourier amplitude sensitivity test
(FAST) method, which was developed by Cukier et al. [10,96-99].

Assuming that the concentrations are random variables, their mean value at
time ¢ is given by

e = [ ee. 10 py d, @4

where p(k) is the probability density function of k. This m-dimensional integral can be
converied into an equivalent one-dimensional integral using the following transforma-
tions:
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k=Geinas), j=12,....m (25)

where the functions G,. are unambiguously determined by the probability density func-
tion p, o, is a frequency which belongs to the jth parameter, and s is a scalar variable
called the search parameter. Expression (25) shows that parameter kj varies as a periodic
function of the search variable s. If the frequencies @, are incommensurate, the curve
defined by eq. (25) fills the m-dimensional parameter space in the range —oo < § < +<0,
For computational reasons, it is practical to use appropriate integer frequencies instead,
and therefore the concentrations will be 2 7 periodic functions of s at time ¢ and they can
be Fourier analyzed. The variance of concentration ¢; at time ¢ can be expressed by:

o) =2 T (410 + B, (26)

where A (r) and B, (1) are the Fouricr coefficients:

n

Au(d= 5= [ciasyoostsds,  1=0,1,... ; @7
-
n

By = —21—7-: jeas)sinisds,  I=1,2,... . (28)

-

If the Fourier coefficients arc evaluated with the fundamental frequencies of
transformation (25) or with its harmonics (I = rcuj, r=1,2,...), then the obtained
variances

oh( =2 f(A?,m,- () + B o, (1)) (29)

r=1

are part of the total variance of(r) and correspond to the variance of ¢, arising from the
uncertainty in the jth parameter. The ratio S.() = of(r)/o;.z(t), called partial variance,
is the basic measure of sensitivity in the FAST method. The partial variance matrix is
a normed matrix and therefore it is independent of the units used.

The FAST method was generalized by Kanatani [100], and he developed its
further mathematical foundations. An algorithmic improvement of the FAST method
was proposed in [101].

Contrary to its name, the FAST method requires much computer time. If there are
m parameters in the model and they are varied over orders of magnitude, the system of
ODEs has to be solved about N = 1.2 x m?> times [99]. In the case of a 50-parameter
model, this means 21,200 runs.

Computational implementations of the FAST method were reported by Seinfeld
et al. [102,103] and by Pierce et al. [104]). Applications of the FAST method are also
found in refs. [9,10,52,97,101,104—-110].
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The point of the FAST method is that the {(cos ns), (Sinas), n=0,1,2,... } set
of functions can serve as a basis for the decomposition of the corresponding function
¢(s). A similar decomposition can be carried out with other functions of similar proper-
ties. An example of this was shown by Pierce and Cukier [111], using Walsh functions.
The Walsh functions form a complete orthogonal sysiem of two-valued functions.

The Walsh amplitude sensitivity procedure (WASP) is very similar to FAST. In
the WASF method, the parameters are assumed to have two values with "equal proba-
bility", and the effect of parameter change from the first value to the second value on
the output is investigated. A practical choice for the parameters is the selection of
extreme values, maximum and minimum, of the parameter uncertainty range. Thus, the
WASP method provides an upper limit of the model sensitivity with respect to other
choices of parameter distribution functions. The WASP method is suitable for studying
the effect of a model reduction, i.e. setting zero the value of part of the parameters. In
such an investigation, the upper value is the nominal value of the parameter and the
lower value is zero. The WASP method is numerically simpler than the FAST method,
but consumes much more computer time. The investigation of a 50-parameter model
would require 2*° = 10'° muns.

2.2.2. Stochastic sensitivity analysis

The method of stochastic sensitivity analysis is a global sensitivity method based
on the solution of a panial differential equation. This technique was elaborated by
Costanza and Seinfeld [9,112]. The name "stochastic sensitivity analysis” is not
fortunate, since all the global methods deal with stochastic measures. Moreover, a
different technique, for the investigation of gas—surface cotlisions [113,114}, has the
same name.

The initial value problem (1) can be reformulated by joining the concentration
and parameter space:

x=F(x);, x(0) = xq, (30)

where F(x) = (f,....f,0,....,0) and x; = (c?.....c:,kl,...,km). The joint
concentration—parameter probability density function can be obtained by the solution of
the following equation:;

%

3 +V(Fp)=0; p(0,x) = po(x), (31)

where p,(x) is the probability density function of x,.

This method requires considerable computer time since the numerical effort
needed to obtain the desired probability density function is comparable to that required
in the FAST method.
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2.2.3. Monte Carlo methods and Latin hypercube sampling

All the global methods described previously require complex computer codes,
Monte Carlo methods do not require special programs, but they also consume consider-
able computer time. A random number generator is used to select values of parameters
in the domain of uncertainty according to their probability density function. The system
is then solved for each of the parameter combinations. The computed concentration
values are analyzed by standard statistical methods at any given time &.

Using this method, the original ODE sclver has to be supplemented by two
segments for selecting new parameter values and for a statistical analysis of solutions.
The convergence of statistical characteristics has to be checked, say, after every
thousand runs. Applications of the Monte Carlo methods are given in [115-117].

The Latin hypercube sampling can be considered as an improvement of the
Monte Carlo methods. In this procedure, the input parameter sets are not selected
randomly, but are planned in advance according to a Latin hypercube. The means,
variances and cumulative frequency distributions obtained by Latin hypercube sampling
are insignificantly different from those generated by Monte Carlo methods, while the
compuier time demand is about an order of magnitude less {36,118).

23. RATE SENSITIVITY

Investigation of the production rate of species is very important in chemical
kinetics and their sensitivity is very informative, too. According to the Young theorem,
the derivative of concentration sensitivities with respect to time, (a!ar)(aci(rz)/akj(rl))
is identical to rate sensitivities: (Bél.(tz)lakj(tl) = aj;(:z)/akj(:l). Once local concentra-
tion sensitivities have been computed, the values of rate sensitivity coefficients are
given by the sensitivity differential equation (5):

S(t,0) = J(5)S (12,11 ) + F(1). (32)

Rate sensitivity coefficients df; /ak, supply further mechanistic details about a reaction
system which are not inherent in lfle concentration sensitivity coefficients [77,119].

A particular case of rate sensitivities is obtained when , = z,. Then,
d fl.(tz)lakj(tz) = g j:.(tz)fakj, which is an element of matrix F. The matrix F is an
algebraic sensitivity measure in contradistinction to the dynamic sensitivities discussed
so far. If k denotes the vector of rate coefficients, then the log-normalized algebraic rate
sensitivity matrix ¥ can be computed by the following equation [120):

F= {(9Inf/oInk} = {v,R,/f]}. (33)

where Vv is the stoichiometric matrix, R is the rate of reaction j, and fl is the production
rate of species {. Thus, an element of matrix F is the ratio of the rate of
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formation or consumption of species i in reaction j and the net rate of concentration
change of species i.

The matrix F represents the link between concentration sensitivity analysis and
rate-of-production analysis, This matrix can be treated like other sensitivity matrices, as
discussed in section 4.2, while the connection between the log-normalized local concen-
tration sensitivity matrix § and matrix ¥ provides a mathematical basis for the use of
various forms of reaction rate analyses [120]. The investigation and reduction of
complex reaction mechanisms can be based very effectively on the study of the matrix
F [120-122,164,166,168).

24,  FEATURE SENSITIVITY ANALYSIS

Results of kinetic modeling are usually concentration—time curves. However,
often certain kinetic features of the investigated systems, which are functions of the
concentrations, are more important for the investigator than the concentration—time
functions themselves. Such features are, for instance, the maximum concentration of a
species, the corresponding reaction time, the length of the induction period, or the
period time 7 of an oscillating reaction.

Feature sensitivities can be determined approximately by the brute force
method [2]. However, since concentration—time curves contain all information about
features, feature sensitivities can be calculated from concentration sensitivities and con-
centrations. The first example of this was given by Edelson and Thomas [81], who
derived the following equation (without the comection term Q) for the calculation of the
period sensitivities of an oscillating reaction:

T _ dci(ty)/ok; (1)) — dc; (8, + T)/3k; (1y) .

dk; dc; () /dt

Q. (34)

The correction term @ may be negligible in some practical calculations [123,124].
This correction term tends to zero as (¢, — ¢,) ~> o, which was shown for the general
case [123,125] and for an explicit form [126].

Larter et al. [82] proposed a different but related equation for the calculation of
a‘rlakj. They pointed out that the accuracy of the computation depends on the
species § selected. GyOrgyi et al. (57} applied Edelson's treatment for the computation
of sensitivities in the time periods from minimum to maximum and from maximum to
minimum of the concentration of a species. They also suggested a method to select the
most appropriate time ¢, and component  for period sensitivity calculations in order to
minimize numerical errors,

Rabitz et al. proposed two methods for the computation of sensitivities of
arbitrary features from local sensitivities. According to the first method — called point-
wise feature sensitivity analysis [127] — the feature in question is characterized by a
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mathematical equation and feature sensitivities are derived from it. Equation (34) was
obtained in a similar way, and also an equation for the calculation of induction period
sensitvities was given in ref. [72]. If the investigated feature is the location * of the
concentration maximum of species i [8,13,72], the corresponding mathematical equa-
tion is

ék, eyl _ . =0. (35)

Differentiation of eq. (35) with respect to kj yields:

T _—azcg(t*)/atakj((])
W) = e (1)

(36)

Equation (36) indicates that d¢*/dk, is the ratio of the appropriate rate sensitivity
coefficient and the second derivative of the concentration ¢, with respect to time, which
can be calculated from the Jacobian and from the first derivative: 9%/3¢* = J £ (¢).

The second approach — called force-fit feature sensitivity analysis [128) — is based
on fitting by a least-squares procedure the concentration curve ¢; (k, t) to a chosen
function ¢(f, 1) (where B is the vector of feature parameters) in a time interval (4,2,
contalmng the features of interest. The coefficient d8,/dk. is then obtained as a functlon
of de(B,1)/ap and delk, £)/dk. This approach was applxed in a parameter scaling
procedure [76] and in the transformation of an elementary chemical kinetic mechanism
to a global mechanism [129].

Note that, unless there is an a priori reason for selecting a particular functional
form for ¢,(B, ¢), finding a suitable function may require significant effort and the first
approach is preferable.

Feature sensitivities give a different insight into the operation of a kinetic
mechanism than concentration sensitivities do. However, the interpretation of feature
sensitivities is not straightforward in general. Recently, artificial intelligence was shown
{58] to provide a considerable help in the extraction of kinetic information from feature
sensitivities. Most applications of feature sensitivities occur in the fields of oscillating
reactions [57,58,71,79,80-82], and of combustion kinetics (mostly using the brute
force method) [2,28,72,88,130-132].

3.  Sensitivity analysis of special systems

The basic case of kinetic modeling is the deterministic simulation of spatially
homogeneous constant-parameter systems. Sensitivity methods devoted to the study of
reaction systems described by eq. (1) have been discussed in the previous section. In this
section, other sensitivity methods, suitable for the investigation of more special systems,
are given.
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3.1. FUNCTIONAL SENSITIVITY ANALYSIS

In most kinetic modeling studies, parameters are assumed to be constant. In a
number of problems of great practical importance, however, parameters are functions
of time and/for space. In models of atmospheric chemistry, rate coefficients of photo-
chemical processes are changing with the intensity of sunshine; also in non-isotherm
reactors, rate coefficients are functions of time (and space). If the parameters are
functions, the appropriate sensitivity analysis is based on their perturbation by another
function using the principles of nonlinear functional analysis. Functional sensitivity
analysis has been used for a long time in control theory and in computational physics.
A necessary and sufficient condition of functional sensitivity analysis is the existence
of the Géteaux differentials of the operators appearing in the problem [133,134].
Operators used in chemical problems are usually "well-behaved” (e.g. parameters are all
continuous functions) and therefore special techniques are applicable, too.

In chemical kinetics, Dickinson and Gelinas [42] were the first to face the
problem of parameter functions in the study of an atmospheric chemical mechanism. In
their model, k. (t) denoted the rate coefficient function of photochemical reaction j and
2.(f) was an appropnately chosen perturbing function. Functional sensitivities were
defined by

. dei(k; (1) + €8 (1))
Y de e=0’

(37)

A similar sensitivity definition was also used by Dunker [23,135] in the study of an air
pollution model.

The sensitivity measure S; depends on the perturbing function g- In the general
case, this measure can only be calculated by a procedure similar to "the brute force
method. Therefore, another functional sensitivity measure that is unambiguous and can
be calculated by more sophisticated methods was searched for. The sensitivity measure
which meets these requirements was named sensitivity density [136]. As a first step,
sensitivity densities will be shown as applied for constant-parameter models, since in
this case a direct comparison to local concentration sensitivities can be made.

The basic idea of local sensitivity analysis is that a2 constant parameter kj is
changed to a new value at t, (and kept at this new value) and the effect of a parameter
change on the concentration of species { is observed at t,- The essence of sensitivity
densities is that the parameter k. is perturbed by Sk, just at time ¢, and the response at
¢, is characterized by a functional derivative &c,/ k‘ The sensitivity density matrix
D@, t) = {60 (¢, )/5k (t,)} can be simply evaluatcd if the initial concentration sensi-
tivuy matrix K( t, )= [Bc( ,)/3¢%¢,)} and the matrix F(¢,) = {3 f (z,)/0k} are known:

D@, 1) = K(t,, 1)) F(¢)). (38)
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The relation to the local concentration sensitivities is given (for the case of constant
parameters) by an integral:

12
S(a,0)= [ D, ). (39)

131

Note that when the sensitivity densities are integrated according 1o eq. (39) to give local
concentration sensitivities, the Green function method is regained. The sensitivity
density matrix can also’ be related [120] simply to the algebraic rate sensi-
tivity matrix. As is apparent from eq. (38), the matrix F is a limit in time of the
sensitivity density matrix D:

F(Ig) = lim D(tz y B ) (40)

11— 12

Based on sensitivity densities, a parallel local sensitivity analysis theory for
the investigation of constant parameter models can be elaborated. Higher-order
sensitivity densities [137], derived sensitivity densities (see section 4.2.2) [138,139],
sensitivity densities of objective functions {67], and experimental sensitivity densities
(see section 3.4) [8] were also calculated. However, in the investigation of constant
para-meter models, sensitivity densities have played only a minor role so far [82].

The use of sensitivity densities is of basic importance in the study of
models with space- and time-dependent parameters. Concentration changes in a
spatially inhomogeneous chemical system can be described by a set of coupled non-
linear partial differential equations:

3c. /3t = Vulx, i, + VDLx, DVc, + f e, k(x, D) + S, ) i=1,...,n, (@1
with initial and boundary conditions:

c {0, x) = cX(x), (42)

Alx,HVc + Al(x, fyc, = AXx, 1), 43)

where the x space coordinate vector is an element of the space domain D, u(x, #) is the
advection speed field, D.(x, #) is the matrix of physical or turbulent diffusion, f (¢, k(x, #))
is the right-hand side of the kinetic differential equation with space- and time-dependent
parameters due to space- and time-dependent temperature and/or light flux, and S.(x, £)
represents the sources and sinks of the species in the system.

Sensitivity equations have so far been derived only for a special case of the above
problem:
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acilar = VD,(x, V¢, + f (¢, k(x, 1)) i=1,...,n 44)
c(0, x) = cX(x), (45)
Al(x,DVc, + Af(x. te, = A‘?(x, 1). (46)

An appropriate sensitivity measure for an inhomogeneous reaction system is the
generalized sensitivity density:

D(x,, t,, X', r'_) = {6c(x,, rz)ISkj(x', ')} @7

It is a response function which gives the linear response of the concentration of species
i at (x,,t,) to a small variation in the parameter k. at (x’ t"). The change in the
concentration c(x, ¢,) due to a small variation of k — & + ok in the parameters is:

oc(x, )= f &[)D(x'. v, x, 5)0k(x’, tydx"de’. (48)

Functional derivatives for the study of reaction—diffusion systems were first
computed by Koda et al. [52,140). Rabitz and coworkers showed [136,137,141,142})
how a sensitivity analysis of the system described by eqgs. (44)—(46) has to be carried
out. They introduced the generalized initial concentration sensitivity matrix K (this is
also called the Green function):

K, 6,x,¢) = {&i(x, r)lﬁcj(x', )] (49)

This measure gives the linear response of the concentration of species i at (x, ¢) if the
concentration of species j is perturbed by 6 8t — ") &x — x") at (x’, ¢'). This concen-
tration response function plays a central role in functional sensitivity analysis since all
other response functions can be calculated from it.

Expressions for derived sensitivity densities {138,139], higher-order sensitivity
densities [137], and for the sensitivity of objective functionals [143] are also given for
reaction-diffusion systems.

Frequently, the space and time dependences of parameters are given by functions
with constant parameters. Incorporating these functions into the system of differential
equations, the resulting, more involved system, has only constant parameters. For
example, in the model of a non-isotherm reaction, rate coefficients are functions but
Arrhenius parameters are constant values.

If the parameters of a reaction—diffusion system are not space—time dependent,
the non-functional sensitivities can be calculated by the methods described in section 2
Such examples are given in refs. [1,41,52,55,93].
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3.2. INVESTIGATION OF STOCHASTIC MODELS

In order o take into consideration the randomness of the molecular events
responsible for chemical reactions, the concentrations have to be represented by
stochastic variables. In macroscopic systems, the fluctuations are often negligible and
the deterministic kinetic equations provide an accurate description of the behaviour of
the concentrations. In such systems, the fluctuations are important if chemical
instabilities exist which lead to the amplification of fluctuations. In the description of
chemical reactions involving a small number of molecules inside a small volume, as in
the case of reactions in micelles or cells, the stochastic handling of kinetics is essential.

The use of stochastic differential equations is a convenient way for the descrip-
tion of concentration fluctuations in chemical kinetics. These equations differ from the
deterministic ones in a noise term:

dpfde = f(p. k) + PET,  p(0) = p°, (50)

where p is the stochastic vector of concentrations, & is a delta correlated Gaussian
stochastic variable vector (white noise), and the matrix P is determined by the reaction
mechanism and by the volume of the system. All the information on the stochastic
variable p is surnmarized in the multiple time probability distribution function
plc,, rl; .+ .3 €, ¢ ). This multi-variable function is difficult to look over and the con-
centration fluctuations can be characterized by other measures which can be calculated
from p Such measures (denoted jointly by F{ p.]) are, for instance, the expected value
and the variance of p(t) Concentration fluctuations can also be characterized by the
deviation from the deferministic value f(#) = p(#) - c{r) and by the correlation of such
deviations: C_ (tl, t) ={ JACRYS (rz))

All of the above functlons depend on the parameters and initial concentrations of
the kinetic system, and a sensitivity analysis of these functions was elaborated by Dacol
and Rabitz [144]. They gave analytical expressions for the evaluation of the local
sensitivity and the sensitivity density of the probability distribution function, dp, /ak.
and p / 6k Calculations of 3(F[ p, ])jak and &(F[ p.1)/ 6k are possible from the former
sensmvuy functlons

In the case of more involved systems, only numerical calculation of p, is
possible. Therefore, a different way was presented for the numerical calculation of
HF( p 1Mok and &F1 p])/Sk,.

Applymg a quasi- Hinear approximation in the reciprocal volume, Dacol and
Rabitz obtained closed expressions for { p.(0)} and { p(s)) P, )} as well as for their
sensitivity coefficients and densities in terms of the detcrmmlsnc concentrations ¢ and
the (deterministic) initial concentration sensitivity matrix K. These expressions allow an
investigation of fluctuation phenomena without stochastic simulation. However, this
quasi-linear approximation is applicable only in macroscopic systems and far from
chemical instability.
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33. REACTION NETWORK SENSITIVITY ANALYSIS

The network anatysis as developed by Clarke reparametrizes the kinetic differen-
tial equations using new parameters j and 4 instead of rate coefficients. The components
of the parameter vector j represent the weights assigned to elementary flows in the
reaction network, while the parameter vector k can be interpreted as the reciprocal
steady state of concentrations. Network analysis relates the dynamics of complex
chemical reaction systems to feedback loops in the reaction network.

A combination of network theory and sensitivity analysis, presented by Larter
and Clarke [83], investigates the sensitivity of concentrations on the change of new
parameters. The new sensitivity matrices de/dj and de/dh carry information on the
effect of these new parameters, as well as on their relative importance and inter-
connection. As an example, the Brusselator was analyzed [83] and the period sensi-
tivities of the new parameters were studied.

34. EXPERIMENTAL SENSITIVITY ANALYSIS

In sensitivity analysis, parameters are considered as the input of models. How-
ever, in a parameter estimation procedure the experimental results are the input and
t.he estimated parameters are the output. The experimental elementary sensitivities,

= {ak {9c’} show how the estimated parameters change when the experimentally
measuned concentrations ¢° change. (One could use any experimental observable
instead of concentrations.)

Parameters are usually determined by a least-squares procedure, i.e. by minimi-
zing the function

0= 5 (-aletf, 51)

where #_is the number of experimental data and c is the ith calculated concentration
commesponding to the ith measured conceniration c From eq. (51), a simple procedure
[145,87] yields the following expression for the calculation of log-normalized experi-
mental sensitivities:

ZMj;(BMk;/ahlcﬁ):—jh, j= 1,...,m', (52)
=1
where m’ is the number of estimated parameters,
My = Y {(3*Inc; /3Ink;dInk)c; /ef)(1 - c; fef)
i=1

+(1=2¢;/cf)cifcf)@Inci/oInk; ) dInc; /dInk ) (53)
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and
Ly = (1=2cp/ci)cp/cg)(@Ine, /O 1nk;). (54)

Equation (52) represents a system of »_ linear inhomogeneous equations and its solution
requires the prior calculation of the corresponding first- and second-order local concen-
tration sensitivity coefficients.

Experimental sensitivities can be used to identify parameters which are highly
sensitive to noise in the experimental data. These sensitivity coefficients also appear in
expressions for parameter deviation arising from uncertainties in and discrepancies
between model and measured observables [145].

4, Interpretation of sensitivity information

41. IMPORTANCE AND INTERDEPENDENCE OF PARAMETERS

Sensitivity coefficients must have the same physical dimensions or they must be
dimensionless if a comparison of them is required. However, the parameters may have
different units and then the sensitivity coefficients are directly incomparable. The usual
treatment of this problem is to introduce normalized sensitivity matrices [37,43,130].
The elements of the normalized local concentration sensitivity matrix § are dimension-
less and therefore their values are independent of the dimensions of the original kinetic
model:

S = ((;/c)) @e )Rk ()} = (I c(t,)/d Ink(r)). (55)

These coefficients represent the percentage change in concentration ¢; caused by a
percentage change of k.

The study of a normalized sensitivity matrix allows one to determine the rank
order of parameters on the basis of the effect on ¢, at time ¢, as a result of a small
parameter change at time 7,. In the case of another species or different times, a different
rank order can be obtained.

Frequently, one is interested in the effect of parameter change on the
concentrations of several species. The need for such information has been realized by
Edelson [75], and he applied a heuristic measure. Mathematically more established
methods can be introduced by using objective functions, which show the deviation of
a perturbed solution ¢* from the nominal solution ¢; considering a group of species.
Such objective functions are, for instance,

e = ; I(ef = ciMeil,

e = ';1 (e — e}l



