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Abstract

Sensitivity analysis investigates the effect of parameter change on the solution of
mathemnatical models. In chemical kinetics, models are usually based on differential
equations and the results are concentration—time curves, reaction rates, and various kinetic
features of the reaction, This review discusses in detail the concentration sensitivity, rate
sensitivity, and feature sensitivity analysis of spatially homogeneous constant-parameter
reaclion systems. Sensitivity analyses of distributed parameter sysiems and of stochastic
systems are also briefly described. Special atiention is paid 1o the interpretation of
sensitivity coefficients which can provide information about the importance and
interconnection of parameters and variables. Applications of sensitivity analysis to
uncertainty analysis, parametric scaling, parameter estimation, experimental design,
stability analysis, repro-modeling, and investigation and reduction of complex reaction
mechanisms are discussed profoundly.

1. Introduction

Complex mathematical models have been used from the very beginnings of
reaction kinetics for the description of dynamic phenomena. The greatest practical
problem, the numerical solution of stiff differential equations, was solved in the early
seventies, and then new questions were raised: What is the nature of the connections
between solution and parameters and would it not be possible to describe the
phenomena by fewer parameters? These are the topics of sensitivity analysis. In the
last fifteen years, the theory of sensitivity analysis became very widespread and its
practical usefulness was demonstrated in many fields.

In a number of recent papers dealing with the art of kinetic modeling, sensitivity
analysis is discussed more [1,2] or less [3—7] profoundly. The single comprehensive
review on sensitivity analysis was written by Rabitz et al. (8] and appeared in 1983.
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Since that time, new concepts appeared as a result of the rapid development of
sensitivity theory. There are several reviews on the various subfields of sensitivity
analysis: Tilden et al. overviewed the local and global methods [9], Cukier et al.
summarized the FAST method [10], and other non-comprehensive reviews can also be
found in the literature {11-17].

Sensitivity methods developed for the study of spatially homogeneous constant-
parameter reaction systems are discussed in section 2. Other methods, described in
section 3, are suitable for the calculation of the sensitivity of special systems which
occur when the kinetic model has space- and time-dependent parameters or when the
kinetics is described by a stochastic or by a network model, or when experimental data
are processed. The numbers obtained by the sensitivity methods have to be converted
into chemical knowledge by the interpretation of sensitivity information (section 4).
Nowadays, diverse advanced software (listed in section 5) is available for those who
wish to use the above described tools of sensitivity analysis. The applications of the
theory are described in detail in section 6.

In this review, sensitivity analysis will be discussed from the point of view of
reaction Kinetics. Mathematical tools used in sensitivity theory are usually not new, and
some computational methods have even appeared in engineering science [18,19). In
this paper, the first appearance of methods in chemical kinetics is cited, but their mathe-
matical and engineering roots are not searched. Such references can be found in the
original papers and in refs. [8] and {9].

Sensitivity methods elaborated primarily for reaction kinetics can usually
be used without changes in other fields where dynamic models described by
differential equations are applied. However, application of the theory in other
disciplines is not discussed here. A large part of the sensitivity methods used in the
investigation of complex mechanisms was also applied to molecular dynamics.
Although molecular dynamics and chemical kinetics are related disciplines, applica-
tions of sensitivity analysis in those fields will not be cited here, and the reader is
referred to the following reviews: [14], [20] and [21].

2.  Basic sensitivity methods

The kinetics of a spatially homogeneous reaction system is usually modeled by
an initial value problem:

de/dt = f(c, k), c(@ = ¢° M

where ¢ is the n-vector of concentrations and k is the m-vector of system parameters.
These parameters may include rate coefficients, Arrhenius parameters, temperature,
pressure, efc., but initial concentrations are not considered in vector k. The solutions
of the system of ordinary differential equations (1) are concentration—time curves.
Rates of production of species can also be calculated from concentrations. Often,
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certain kinetic features of the modeled systems, deduced from concentration curves,
are more important for the investigator than the concentration—time curves themselves.
Sensitivity analysis can be classified on the basis of the output of the kinetic model
investigated as a function of parameters. Thus, concentration sensitivity, rate sensi-
tivity, various feature sensitivities, etc. may be distinguished. Sensitivity methods may
be divided from another point of view as well. Local methods refer to the small changes
of parameters, while global methods refer to the effect of simultaneous, possibly
orders-of-magnitude parameter changes.

21. LOCAL CONCENTRATION SENSITIVITIES

The effect of a parameter change on the solution can be expressed by a Taylor
series expansion:

m

ci(t, k +Ak)=c;(r,k)+z 9—3" %2 i
i=1 j=1

A 2
a%; ki+ .. (2)

In this equation, the partial derivatives dc, /ak are called the first-order local concen-
tration sensitivity coefficients, while d*c. /ék ka are the second-order local concentra-
tion sensitivity coefficients, etc. Usually, only the first-order (or linear) sensitivity
coefficients dc /dk; are computed and studied. They constitute the sensitivity matrix S,
which represents a linear approximation of the dependence of the solutions on para-
meter changes.

Assume that system (1) of ODEs is solved from ¢ = 0 to ¢ = ¢,. Then the
parameters are changed by Ak and the solution is continued t ¢,. The difference
between the original ¢ and the perturbed ¢’ solutions can be approximated by the
sensitivity matrix:

¢'(1,) = e(t) + S(,, ‘1)‘3":1- (3)

This equation shows that the sensitivity matrices have a double time dependence:
S(tz, t)= Bc(r?_)lak(tl ). Usually, ¢, =0 is selected. It seems natural to identify the initial
time of the ODE solution with the initial time of the sensitivity calculation, but this
selection implies a loss of generality. In some cases when, for example, combustion
reactions are studied in a batch reactor, there is a natural zero time of reaction (the time
of ignition) but, for example in the case of atmospheric chemistry, the selection of ¢, and
t, i8 arbitrary.

Matrix S can be obtained by differentiation if the analytical solution of an ODE
is known. Unfortunately, in chemical kinetics such simple systems are rarely met and
numerical methods have to be applied. In sections 2.1.1-2.1.5, five methods will be
described for the numerical calculation of the local concentration sensitivity matrix, The
methods are compared briefly in section 2.1.6. In the case of stationary systems, the
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limit in time of the sensitivity matrix can be calculated by an algebraic expression
(section 2.1.7). Two methods, discussed in sections 2.1.8 and 2.1.9, were developed for
for an approximate calculation of the sensitivity mairix.

2.1.1. Brute force method

The simplest way of calculating local concentration sensitivities is the use of the
finite difference approximation. This technique is also called the brute force method or
the indirect method. Applying this method, the jth parameter is changed at time t by
Ak while all other parameters are held fixed. Matrix S is calculated from the dlfference
of the original and perturbed solutions:

aC(Iz) _ c(ty, kj + ﬂkj) -clf, kj)
akj(tl) Akj

j=1,...,m. @)

Equation (4) shows that the application of the brute force method requires the solution
of the differential equation (1) using the nominal value of parameters and m solutions
of the equation using perturbed parameter sets. The sensitivities obtained belong to
the (k + Ak/2) parameter set. If the sensitivity coefficients were desired to belong to the
nominal parameter set k, eq. (4) should be modified by replacing the second term in the
numerator by ¢(z,, k, — Ak.) and the denominator by 2ak [22-24]. Nevertheless, when
using this centercd fonnulla 2m solutions are required.

‘The brute force method is widely used since no extra code beyond the original
ODE solver is needed for the calculation of sensitivities. However, this method is not
recommended because sensitivity coefficients can be calculated consuming much less
computer time by other methods, e.g. the direct method [23,24). Moreover, the estima-
tion of the errors of sensitivity coefficients calculated by eq. (4) requires at least as much
computer time as the calculation itself. The errors can be minimized by an appropriate
selection of Akj (see [8], p. 422). If Ak is large, the linearity of approximation fails, but
if Ak is too small, the round-off error is high,

Very often, a heuristic sensitivity measure is obtained using eq. (4) by changing
the parameters by 50% {25], or by a factor of 2 [26—30] or 5 [31,32,173], respectively.
The sensitivity coefficients obtained in this way are neither local nor global sensitivity
measures.

2.1.2. Determination of sensitivities using approximate empirical models

The method of Miller and Frenklach {33-35] is based on approximations by
empirical models of the solution of system (1) of ODEs in a parameter region at
time 2. Sensitivity information is obtained by differentiating the empirical equations.
The approximation requires much more computational effort than the computation of
sensitivities for a single-parameter set. It is, however, a good investment if a parameter
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estimation procedure requires the knowledge of sensitivities at several points of a
parameter region. Approximate values of local sensitivity coefficients belonging to
these points can be calculated from the obtained S(k) functions, but significant dif-
ferences may occur between the exact and approximated sensitivity coefficients.

A similar procedure was also applied by Derwent and Hov [36].

2.1.3. Direct method

Differentiation of eq. (1) with respect k; yields the following set of sensitivity
differential equations [37]: '

§h gl Ul
dr 3k; A ok

(5)

where J(t) = df/dc and the initial condition for d¢/dk. is a zero vector.

A number of methods for computing the local concentration sensitivity co-
efficients are based on eq. (5). The three strategies described in this section are com-
monly referred to as the direct method. Other, more sophisticated, methods proposed for
the solution of eq. (5) have different names, such as the Green function method,
polynomial approximation method, etc., and they will be treated separately below.

Higher-order sensitivities can be calculated by further differentiation of eq. (5).
The generic expression for the calculation of arbitrary-order sensitivities is the follow-
ing linear differential equation [38]:

w=Jw+s, (6)

where the inhomogeneous term s is independent of w. In the case of second-order
sensitivities [39]:

W= a"cfak‘. 8kj N

and

= 3%f 10k;dk; + (3] /3k,)(3c /9k; )+ (3 13k; )(De [9k:)

+ 2, X (3J;/3c; M dc/ok; ) de [ok;), (8)

j=1

—

where J. is the ith column of the Jacobian. Since the structure of the differential
equatlons for the higher-order sensitivities is very similar to eq. (5), these higher-order
sensitivities can be calculated by most of the methods described below (cf.
(12,13,22,38-41]).
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Equations (5) and (1) are coupled through matrices df /d¢ and 9f /0k, that is, the
solution of eq. (5) requires the knowledge of the solution of eq. (1) in all the points
where the ODE solver calculates the right-hand side of eq. (5). Connections between
these two equations can be made in one of the following ways:

(1) Solve the couple of equations (1) and (5) for j= 1, ..., m, which requires the
solution of 2n ODEs m times [42). This version is the simplest to code, but is the least
economical and may cause numerical difficulties [43—45].

(2) The solutions of systems (1) and (5) can be decoupled. First, differential
equation (1) is solved and the concentration—time curves obtained are stored in a table.
Concentration values desired for the solution of eq. (5) at times when there is no
tabulated value are obtained by interpolation {12,45,46].

An improved version of the decoupled direct method was presented by
Dunker [22,23]. He called attention to the fact that eqs. (1) and (5) have the same
Jacobian, therefore a stiff ODE solver will use the same step size and order of approxi-
mation in the solution of eqs. (1) and (5). His method first manages a step for the
solution of eq. (1), and also performs steps for the solution of eq. (5) forj=1,...,m.
The procedure is repeated in the next step. This approach is applicable only in the case
where the ODE solution method is fully implicit. Since the Jacobians of the equations
are the same, it has to be triangularized only once for each time interval.

Dunker’s implementation was based on the numerical integration program LSODE
of Hindmarsh. Recently, a new coding of this algorithm, also based on the LSODE
program, was eclaborated by Leis and Kramer [47,48). Their previous realization
was based on the program LSODI, which was valid only for restricted systems
of differential/algebraic equations [49]. The implementation by Caracotsios and
Stewart [50] is written for general systems of differential/algebraic equations. Their
work is based on the code DASSL.

(3) Solve eq. (1) and eq. (5) for all = 1,...,m simultaneously, which
requires the solution of (m+ 1)n ODEs. Since implicit or semi-implicit algorithms
appropriate for solving stiff differential equations require the decomposition of
the {m + 1)n X (m +1)n Jacobian in each step, the direct solution of this large system
of ODEs is inefficient. However, Dickinson and Gelinas [42] called attention to the fact
that this large Jacobian has an almost block-diagonal structure, and Valké and
Vajda [51] constructed a fast algorithm — called the decomposed direct method — for the
efficient solution of this large system of ODEs. Similarly to the method of Dunker, only
the Jacobian of eq. (1) has to be decomposed and only once in each step.

The application of the direct method was discussed in refs. [12,22,24,37,38,41-43,
45,47,50-63).

2.14. The Green function method

Differentiating eq. (1) with respect to initial concentrations ¢° the following
equation is obtained:
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d de() de(d) a
T R T
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where 7, is the initial time of sensitivity calculation and de(,)/d ¢Xt,) = .. The symbol
&. represents a vector of zeroes except in the ith position, where it has 1, Rewriting this
equation in terms of the matrix formalism, one obtains:

d
7, K a)=J0K@4), (10)

where K is the initial concentration sensitivity matrix. K(t, 1) = {Bcf(t)lacf(tl)}, with
K@,t)=Tandt21,.

Since eq. (5) is a linear inhomogeneous equation with time-dependent co-
efficients, it can be solved by first calculating the solution of the homogeneous part
(eq. (10)) and then determining the particular solutions corresponding to each para-
meter:

de(r) ? af(s)
k() ,J: Kz,s) ak;

ds. (11)

In the above equation, K is known as the Green function matrix or kernel. The
sensitivity method that is based on eq. (11) is named the Green function method. This
technique is also called the variational method. It was first applied to solve problems
in chemical kinetics by Rabitz et al. [39]. There are several variants of the Green
function method and they differ from each other in the calculation of the matrix K:

(1) Equation (11) requires K as the function of the second argument, and this
matrix can be determined via the calculation of the adjoint Green function K' using the
identities K*(rl, N =K@ t) and K@, 1) = K, 2,)K(1,, 1,). The adjoint Green
function is obtained by the solution of the following differential equation:

d
yy K'¢,0=-K'@,nia), (12)

where K'(,1) =Tand 7, <.

(2) The Green function for ¢ 2 ¢, can also be expressed as

K1) = G0 G7'@)), (13)
where

d/de G(») = J(2) G(1); Gl =L (14)
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The matrix G is not invertible numerically in all cases {39], but Hwang proposed a
solution for this problem [40]. His algorithm investigates the determinant of the matrix
G during the solution of eq. (14) and when the value of |detG| goes below a certain
bound, the calculation of G is restarted. The procedure divides the time interval into
parts; in other words, it rescales it. The matrix G is given as a product of matrices G’
calculated in the subintervals. This variant of the Green function method — called the
scaled Green function method — was elaborated in two versions: in the first version,
called the SGFM/I method, the rescaling is done when a numerical singularity of G is
detected [40]. According to the second version (SGFM/II), rescaling is carried out at the
beginning of each step in the numerical integration of eq. (14) [64,65] and the
exponential character of G is also taken into account [66].

(3) Rabitz et al. introduced the analytically integrated Magnus version of the
Green function method (45]. In the GEM/AIM method, the piecewise Magnus method
is applied, i.e. matrix K is approximated by a matrix exponential:

t+ AL

K{t+ Az, 1) = exp j J(s)ds. (15)

!

The sensitivities are then calculated from the kemel by analytical approximations to the
corresponding integral. The GFM/AIM method was found to be several times faster
than the original Green function method [12].

In all the Green function methods, the numerical effort is proportional to the
number of variables and not to the number of parameters. The Green function method
is particularly suitable if the sensitivities of one concentration to several parameters are
to be determined. In this case, the total effort is in the order of one kinetic solution.
However, the algorithms of the Green function methods are very involved, requiring not
only the solution of stff differential equations but also interpolation of functions,
integration using quadratures, and matrix operations. These are hardly controllable
sources of numerical errors.

The Green function matrix technique was extended to provide the sensitivities of
objective functions [67,68].

Useful advice for the computational implementation of the Green function method
(version (1)) is given in [69). Edelson et al. coded the Green function algorithm for a
vector machine [70]. The Green function method was applied to solve kinetic problems
in a number of papers [12,15,22,39,40,43—-45,64,66—68,70-88).

2.1.5. The polynomial approximation method

The polynomial approximation method elaborated by Hwang [38) transforms the
sensitivity differential equations (5) to a set of algebraic ones. The original time interval
is divided into subintervals. The variation of sensitivity coefficients with time is
approximated by Lagrange interpolation polynomials of degree L:
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Bc(t)

&) j=1,2,...,m. (16)

The value of 8cfak is known at z;and the values of 80/815 for L prescribed times
(<t <...<y ) are determmed by requmng that eq. (16) satisfy eq. (5) at these points.
This oondmon can be expressed by an algebraic equation [38] and the values are given
by its solution.

Information is needed for the appropriate division of the time domain and there-
fore a preliminary study of the behavior of eq. (1) is necessary, which makes the
polynomial approximation method slightly uncomfortable. However, as in the case of
the Green function method, the main computational effort is proportional 0 the number
of species and not to the number of parameters, Hwang demonstrated the high compu-
tational speed and good numerical stability of the method. A computational algorithm
and a FORTRAN code list were also provided {89]. The method was extended to
spatially inhomogeneous systems, too [1].

2.1.6. Which method to choose?

There are a number of articles (cf. [12,22,24,38,43,45,47,51]) in which the
above discussed methods are compared. The conclusion of each article is that the
authors’ own method is faster and maybe more accurate than the previously pubished
methods. Indeed, the methods are different from each other in accuracy and computer
time requirements, but these characteristics may be different for different problems. The
improved direct methods seem to provide highly accurate sensitivities and they
consume relatively little computer time; therefore, the use of such methods is recom-
mended in general. If the number of parameters is large in comparison with the number
of state variables, the use of the GFM/AIM method or that of the polynomial approx-
imation method is advisable.

2.1.7. Stationary systems

In equilibrium and in stationary state, concentrations are constant. Sensitivity
coefficients are, however, dynamic quantities governed by eq. (5). The time profiles of
the sensitivity coefficients give the dynamic response of the system to a differential
change in k, (sce the analytical expression in [8], p. 426), and the stationary sensitivity
coeffi c:ents are the limits in time of the dynamic quantities [46]. (This latter statement
is valid only if the steady state is asymptotically stable.} For stationary conditions,
species concentrations as well as matrices J and F are time invariant; thus, the stationary
sensitivity coefficients may be obtained from algebraic equations:

dc i
—|=- : f= 17
[akjj IF, j=1,...m, (a7
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where J is the Jacobian and F is the jth column of matrix F = {af/Bk }. Equation (17)
follows from eq. (5) by takmg the lefi-hand sides equal to zero,

The stationary sensitivity matrix represents the change of stationary species
concentrations as a result of a differential change in parameters. This sensitivity
measure is well applicable in the parameter estimation of stationary kinetic
systems [90).

2.1.8. Quasi-stationary sensitivity

All sensitivity coefficients are zero at ¢, (according to the initial condition of the
sensitivity equation (5)), and they usually change very rapidly only in a short time
interval. An experience of numerical calculations is that at times t, >t , the change of
local concentration sensitivities is not dramatic unless the change of concentranons is
rapid. This behavior is similar to the change of the concentrations of free radicals having
a short lifetime. This fact gave the idea to approximate local concentration sensitivities
with quasi-stationary sensitivities:

Bcl.(rz)fakj(ti) =iy 4=, (18)

The structure of sensitivity differential equations (5) allows the use of the
Tihonov theorem (91}, and quasi-stationary sensitivities can be calculated by an alge-
braic equation:

0=J8S9+F, (19)

= -J7'F. (20)

The matrix 89 is a poor approximation of the sensitivity matrix S, yet it can be
successfully applied to reveal important reactions in complex reactions systems [91].

2.1.9. Scaling relations and self-similarity conditions

Another way of approximately calculating sensitivity coefficients is based on the
observation that the shapes of calculated sensitivity curves are in most cases very
similar to each other. This is usually the case when a dependent variable plays a
dominant controlling role in the kinetics. Such a dominant variable (denoted by ¢,)
might be a radical concentration or the temperature in flame systems. The controlling
role can be formulated by

¢t k) ~Flc (k) izl 21)

The functional dependence between concentrations (variables) leads to the scaling
relations [14,92] between sensitivities:
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9 (4)/3k (1)) = (¢, (4,)/0k 1)) (£ (1,)if, (). (22}

A consequence of these relations is that sensitivity coefficients fulfill the self-similarity
condition:

e Rkt = ALt 08, @3

where the characteristic constants g, scale the sensitivity coefficients for a given
dependent variable with respect to the various parameters.

Both the scaling and self-similarity relations were elaborated for space—time
systems [14,61,92,93]. Similar equations can be derived for multidominant dependent
variable systems.

22, GLOBAL CONCENTRATION SENSITIVITY

In global methods, the parameter vector k is considered to be a random vector
with probability density function p. Therefore, the solutions of the models such as, for
instance, the concentrations, are also random variables at any time. The methods of
global concentration sensitivity analysis determine the mean and the variance or the
probability density function of concentrations, given the probability density function of
parameters and initial concentrations. Usually, the probability density function of para-
meters is not known, and a presumed probability density function has to be calculated
from the known means and variances of parameters by assuming a physically reason-
able distribution.

The single non-stochastic global sensitivity method is based on the Lie algebraic
and group methods. Nevertheless, the Lie group method [94,95,169,170] was only
limitedly applied for systems of nonlinear differential equations and therefore this
method will not be discussed in detail.

2.2.1. The FAST and the WASP methods

The most widely used global method is the Fourier amplitude sensitivity test
(FAST) method, which was developed by Cukier et al. [10,96-99].

Assuming that the concentrations are random variables, their mean value at
time ¢ is given by

e = [ ee. 10 py d, @4

where p(k) is the probability density function of k. This m-dimensional integral can be
converied into an equivalent one-dimensional integral using the following transforma-
tions:
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k=Geinas), j=12,....m (25)

where the functions G,. are unambiguously determined by the probability density func-
tion p, o, is a frequency which belongs to the jth parameter, and s is a scalar variable
called the search parameter. Expression (25) shows that parameter kj varies as a periodic
function of the search variable s. If the frequencies @, are incommensurate, the curve
defined by eq. (25) fills the m-dimensional parameter space in the range —oo < § < +<0,
For computational reasons, it is practical to use appropriate integer frequencies instead,
and therefore the concentrations will be 2 7 periodic functions of s at time ¢ and they can
be Fourier analyzed. The variance of concentration ¢; at time ¢ can be expressed by:

o) =2 T (410 + B, (26)

where A (r) and B, (1) are the Fouricr coefficients:

n

Au(d= 5= [ciasyoostsds,  1=0,1,... ; @7
-
n

By = —21—7-: jeas)sinisds,  I=1,2,... . (28)

-

If the Fourier coefficients arc evaluated with the fundamental frequencies of
transformation (25) or with its harmonics (I = rcuj, r=1,2,...), then the obtained
variances

oh( =2 f(A?,m,- () + B o, (1)) (29)

r=1

are part of the total variance of(r) and correspond to the variance of ¢, arising from the
uncertainty in the jth parameter. The ratio S.() = of(r)/o;.z(t), called partial variance,
is the basic measure of sensitivity in the FAST method. The partial variance matrix is
a normed matrix and therefore it is independent of the units used.

The FAST method was generalized by Kanatani [100], and he developed its
further mathematical foundations. An algorithmic improvement of the FAST method
was proposed in [101].

Contrary to its name, the FAST method requires much computer time. If there are
m parameters in the model and they are varied over orders of magnitude, the system of
ODEs has to be solved about N = 1.2 x m?> times [99]. In the case of a 50-parameter
model, this means 21,200 runs.

Computational implementations of the FAST method were reported by Seinfeld
et al. [102,103] and by Pierce et al. [104]). Applications of the FAST method are also
found in refs. [9,10,52,97,101,104—-110].
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The point of the FAST method is that the {(cos ns), (Sinas), n=0,1,2,... } set
of functions can serve as a basis for the decomposition of the corresponding function
¢(s). A similar decomposition can be carried out with other functions of similar proper-
ties. An example of this was shown by Pierce and Cukier [111], using Walsh functions.
The Walsh functions form a complete orthogonal sysiem of two-valued functions.

The Walsh amplitude sensitivity procedure (WASP) is very similar to FAST. In
the WASF method, the parameters are assumed to have two values with "equal proba-
bility", and the effect of parameter change from the first value to the second value on
the output is investigated. A practical choice for the parameters is the selection of
extreme values, maximum and minimum, of the parameter uncertainty range. Thus, the
WASP method provides an upper limit of the model sensitivity with respect to other
choices of parameter distribution functions. The WASP method is suitable for studying
the effect of a model reduction, i.e. setting zero the value of part of the parameters. In
such an investigation, the upper value is the nominal value of the parameter and the
lower value is zero. The WASP method is numerically simpler than the FAST method,
but consumes much more computer time. The investigation of a 50-parameter model
would require 2*° = 10'° muns.

2.2.2. Stochastic sensitivity analysis

The method of stochastic sensitivity analysis is a global sensitivity method based
on the solution of a panial differential equation. This technique was elaborated by
Costanza and Seinfeld [9,112]. The name "stochastic sensitivity analysis” is not
fortunate, since all the global methods deal with stochastic measures. Moreover, a
different technique, for the investigation of gas—surface cotlisions [113,114}, has the
same name.

The initial value problem (1) can be reformulated by joining the concentration
and parameter space:

x=F(x);, x(0) = xq, (30)

where F(x) = (f,....f,0,....,0) and x; = (c?.....c:,kl,...,km). The joint
concentration—parameter probability density function can be obtained by the solution of
the following equation:;

%

3 +V(Fp)=0; p(0,x) = po(x), (31)

where p,(x) is the probability density function of x,.

This method requires considerable computer time since the numerical effort
needed to obtain the desired probability density function is comparable to that required
in the FAST method.
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2.2.3. Monte Carlo methods and Latin hypercube sampling

All the global methods described previously require complex computer codes,
Monte Carlo methods do not require special programs, but they also consume consider-
able computer time. A random number generator is used to select values of parameters
in the domain of uncertainty according to their probability density function. The system
is then solved for each of the parameter combinations. The computed concentration
values are analyzed by standard statistical methods at any given time &.

Using this method, the original ODE sclver has to be supplemented by two
segments for selecting new parameter values and for a statistical analysis of solutions.
The convergence of statistical characteristics has to be checked, say, after every
thousand runs. Applications of the Monte Carlo methods are given in [115-117].

The Latin hypercube sampling can be considered as an improvement of the
Monte Carlo methods. In this procedure, the input parameter sets are not selected
randomly, but are planned in advance according to a Latin hypercube. The means,
variances and cumulative frequency distributions obtained by Latin hypercube sampling
are insignificantly different from those generated by Monte Carlo methods, while the
compuier time demand is about an order of magnitude less {36,118).

23. RATE SENSITIVITY

Investigation of the production rate of species is very important in chemical
kinetics and their sensitivity is very informative, too. According to the Young theorem,
the derivative of concentration sensitivities with respect to time, (a!ar)(aci(rz)/akj(rl))
is identical to rate sensitivities: (Bél.(tz)lakj(tl) = aj;(:z)/akj(:l). Once local concentra-
tion sensitivities have been computed, the values of rate sensitivity coefficients are
given by the sensitivity differential equation (5):

S(t,0) = J(5)S (12,11 ) + F(1). (32)

Rate sensitivity coefficients df; /ak, supply further mechanistic details about a reaction
system which are not inherent in lfle concentration sensitivity coefficients [77,119].

A particular case of rate sensitivities is obtained when , = z,. Then,
d fl.(tz)lakj(tz) = g j:.(tz)fakj, which is an element of matrix F. The matrix F is an
algebraic sensitivity measure in contradistinction to the dynamic sensitivities discussed
so far. If k denotes the vector of rate coefficients, then the log-normalized algebraic rate
sensitivity matrix ¥ can be computed by the following equation [120):

F= {(9Inf/oInk} = {v,R,/f]}. (33)

where Vv is the stoichiometric matrix, R is the rate of reaction j, and fl is the production
rate of species {. Thus, an element of matrix F is the ratio of the rate of
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formation or consumption of species i in reaction j and the net rate of concentration
change of species i.

The matrix F represents the link between concentration sensitivity analysis and
rate-of-production analysis, This matrix can be treated like other sensitivity matrices, as
discussed in section 4.2, while the connection between the log-normalized local concen-
tration sensitivity matrix § and matrix ¥ provides a mathematical basis for the use of
various forms of reaction rate analyses [120]. The investigation and reduction of
complex reaction mechanisms can be based very effectively on the study of the matrix
F [120-122,164,166,168).

24,  FEATURE SENSITIVITY ANALYSIS

Results of kinetic modeling are usually concentration—time curves. However,
often certain kinetic features of the investigated systems, which are functions of the
concentrations, are more important for the investigator than the concentration—time
functions themselves. Such features are, for instance, the maximum concentration of a
species, the corresponding reaction time, the length of the induction period, or the
period time 7 of an oscillating reaction.

Feature sensitivities can be determined approximately by the brute force
method [2]. However, since concentration—time curves contain all information about
features, feature sensitivities can be calculated from concentration sensitivities and con-
centrations. The first example of this was given by Edelson and Thomas [81], who
derived the following equation (without the comection term Q) for the calculation of the
period sensitivities of an oscillating reaction:

T _ dci(ty)/ok; (1)) — dc; (8, + T)/3k; (1y) .

dk; dc; () /dt

Q. (34)

The correction term @ may be negligible in some practical calculations [123,124].
This correction term tends to zero as (¢, — ¢,) ~> o, which was shown for the general
case [123,125] and for an explicit form [126].

Larter et al. [82] proposed a different but related equation for the calculation of
a‘rlakj. They pointed out that the accuracy of the computation depends on the
species § selected. GyOrgyi et al. (57} applied Edelson's treatment for the computation
of sensitivities in the time periods from minimum to maximum and from maximum to
minimum of the concentration of a species. They also suggested a method to select the
most appropriate time ¢, and component  for period sensitivity calculations in order to
minimize numerical errors,

Rabitz et al. proposed two methods for the computation of sensitivities of
arbitrary features from local sensitivities. According to the first method — called point-
wise feature sensitivity analysis [127] — the feature in question is characterized by a
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mathematical equation and feature sensitivities are derived from it. Equation (34) was
obtained in a similar way, and also an equation for the calculation of induction period
sensitvities was given in ref. [72]. If the investigated feature is the location * of the
concentration maximum of species i [8,13,72], the corresponding mathematical equa-
tion is

ék, eyl _ . =0. (35)

Differentiation of eq. (35) with respect to kj yields:

T _—azcg(t*)/atakj((])
W) = e (1)

(36)

Equation (36) indicates that d¢*/dk, is the ratio of the appropriate rate sensitivity
coefficient and the second derivative of the concentration ¢, with respect to time, which
can be calculated from the Jacobian and from the first derivative: 9%/3¢* = J £ (¢).

The second approach — called force-fit feature sensitivity analysis [128) — is based
on fitting by a least-squares procedure the concentration curve ¢; (k, t) to a chosen
function ¢(f, 1) (where B is the vector of feature parameters) in a time interval (4,2,
contalmng the features of interest. The coefficient d8,/dk. is then obtained as a functlon
of de(B,1)/ap and delk, £)/dk. This approach was applxed in a parameter scaling
procedure [76] and in the transformation of an elementary chemical kinetic mechanism
to a global mechanism [129].

Note that, unless there is an a priori reason for selecting a particular functional
form for ¢,(B, ¢), finding a suitable function may require significant effort and the first
approach is preferable.

Feature sensitivities give a different insight into the operation of a kinetic
mechanism than concentration sensitivities do. However, the interpretation of feature
sensitivities is not straightforward in general. Recently, artificial intelligence was shown
{58] to provide a considerable help in the extraction of kinetic information from feature
sensitivities. Most applications of feature sensitivities occur in the fields of oscillating
reactions [57,58,71,79,80-82], and of combustion kinetics (mostly using the brute
force method) [2,28,72,88,130-132].

3.  Sensitivity analysis of special systems

The basic case of kinetic modeling is the deterministic simulation of spatially
homogeneous constant-parameter systems. Sensitivity methods devoted to the study of
reaction systems described by eq. (1) have been discussed in the previous section. In this
section, other sensitivity methods, suitable for the investigation of more special systems,
are given.
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3.1. FUNCTIONAL SENSITIVITY ANALYSIS

In most kinetic modeling studies, parameters are assumed to be constant. In a
number of problems of great practical importance, however, parameters are functions
of time and/for space. In models of atmospheric chemistry, rate coefficients of photo-
chemical processes are changing with the intensity of sunshine; also in non-isotherm
reactors, rate coefficients are functions of time (and space). If the parameters are
functions, the appropriate sensitivity analysis is based on their perturbation by another
function using the principles of nonlinear functional analysis. Functional sensitivity
analysis has been used for a long time in control theory and in computational physics.
A necessary and sufficient condition of functional sensitivity analysis is the existence
of the Géteaux differentials of the operators appearing in the problem [133,134].
Operators used in chemical problems are usually "well-behaved” (e.g. parameters are all
continuous functions) and therefore special techniques are applicable, too.

In chemical kinetics, Dickinson and Gelinas [42] were the first to face the
problem of parameter functions in the study of an atmospheric chemical mechanism. In
their model, k. (t) denoted the rate coefficient function of photochemical reaction j and
2.(f) was an appropnately chosen perturbing function. Functional sensitivities were
defined by

. dei(k; (1) + €8 (1))
Y de e=0’

(37)

A similar sensitivity definition was also used by Dunker [23,135] in the study of an air
pollution model.

The sensitivity measure S; depends on the perturbing function g- In the general
case, this measure can only be calculated by a procedure similar to "the brute force
method. Therefore, another functional sensitivity measure that is unambiguous and can
be calculated by more sophisticated methods was searched for. The sensitivity measure
which meets these requirements was named sensitivity density [136]. As a first step,
sensitivity densities will be shown as applied for constant-parameter models, since in
this case a direct comparison to local concentration sensitivities can be made.

The basic idea of local sensitivity analysis is that a2 constant parameter kj is
changed to a new value at t, (and kept at this new value) and the effect of a parameter
change on the concentration of species { is observed at t,- The essence of sensitivity
densities is that the parameter k. is perturbed by Sk, just at time ¢, and the response at
¢, is characterized by a functional derivative &c,/ k‘ The sensitivity density matrix
D@, t) = {60 (¢, )/5k (t,)} can be simply evaluatcd if the initial concentration sensi-
tivuy matrix K( t, )= [Bc( ,)/3¢%¢,)} and the matrix F(¢,) = {3 f (z,)/0k} are known:

D@, 1) = K(t,, 1)) F(¢)). (38)
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The relation to the local concentration sensitivities is given (for the case of constant
parameters) by an integral:

12
S(a,0)= [ D, ). (39)

131

Note that when the sensitivity densities are integrated according 1o eq. (39) to give local
concentration sensitivities, the Green function method is regained. The sensitivity
density matrix can also’ be related [120] simply to the algebraic rate sensi-
tivity matrix. As is apparent from eq. (38), the matrix F is a limit in time of the
sensitivity density matrix D:

F(Ig) = lim D(tz y B ) (40)

11— 12

Based on sensitivity densities, a parallel local sensitivity analysis theory for
the investigation of constant parameter models can be elaborated. Higher-order
sensitivity densities [137], derived sensitivity densities (see section 4.2.2) [138,139],
sensitivity densities of objective functions {67], and experimental sensitivity densities
(see section 3.4) [8] were also calculated. However, in the investigation of constant
para-meter models, sensitivity densities have played only a minor role so far [82].

The use of sensitivity densities is of basic importance in the study of
models with space- and time-dependent parameters. Concentration changes in a
spatially inhomogeneous chemical system can be described by a set of coupled non-
linear partial differential equations:

3c. /3t = Vulx, i, + VDLx, DVc, + f e, k(x, D) + S, ) i=1,...,n, (@1
with initial and boundary conditions:

c {0, x) = cX(x), (42)

Alx,HVc + Al(x, fyc, = AXx, 1), 43)

where the x space coordinate vector is an element of the space domain D, u(x, #) is the
advection speed field, D.(x, #) is the matrix of physical or turbulent diffusion, f (¢, k(x, #))
is the right-hand side of the kinetic differential equation with space- and time-dependent
parameters due to space- and time-dependent temperature and/or light flux, and S.(x, £)
represents the sources and sinks of the species in the system.

Sensitivity equations have so far been derived only for a special case of the above
problem:
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acilar = VD,(x, V¢, + f (¢, k(x, 1)) i=1,...,n 44)
c(0, x) = cX(x), (45)
Al(x,DVc, + Af(x. te, = A‘?(x, 1). (46)

An appropriate sensitivity measure for an inhomogeneous reaction system is the
generalized sensitivity density:

D(x,, t,, X', r'_) = {6c(x,, rz)ISkj(x', ')} @7

It is a response function which gives the linear response of the concentration of species
i at (x,,t,) to a small variation in the parameter k. at (x’ t"). The change in the
concentration c(x, ¢,) due to a small variation of k — & + ok in the parameters is:

oc(x, )= f &[)D(x'. v, x, 5)0k(x’, tydx"de’. (48)

Functional derivatives for the study of reaction—diffusion systems were first
computed by Koda et al. [52,140). Rabitz and coworkers showed [136,137,141,142})
how a sensitivity analysis of the system described by eqgs. (44)—(46) has to be carried
out. They introduced the generalized initial concentration sensitivity matrix K (this is
also called the Green function):

K, 6,x,¢) = {&i(x, r)lﬁcj(x', )] (49)

This measure gives the linear response of the concentration of species i at (x, ¢) if the
concentration of species j is perturbed by 6 8t — ") &x — x") at (x’, ¢'). This concen-
tration response function plays a central role in functional sensitivity analysis since all
other response functions can be calculated from it.

Expressions for derived sensitivity densities {138,139], higher-order sensitivity
densities [137], and for the sensitivity of objective functionals [143] are also given for
reaction-diffusion systems.

Frequently, the space and time dependences of parameters are given by functions
with constant parameters. Incorporating these functions into the system of differential
equations, the resulting, more involved system, has only constant parameters. For
example, in the model of a non-isotherm reaction, rate coefficients are functions but
Arrhenius parameters are constant values.

If the parameters of a reaction—diffusion system are not space—time dependent,
the non-functional sensitivities can be calculated by the methods described in section 2
Such examples are given in refs. [1,41,52,55,93].
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3.2. INVESTIGATION OF STOCHASTIC MODELS

In order o take into consideration the randomness of the molecular events
responsible for chemical reactions, the concentrations have to be represented by
stochastic variables. In macroscopic systems, the fluctuations are often negligible and
the deterministic kinetic equations provide an accurate description of the behaviour of
the concentrations. In such systems, the fluctuations are important if chemical
instabilities exist which lead to the amplification of fluctuations. In the description of
chemical reactions involving a small number of molecules inside a small volume, as in
the case of reactions in micelles or cells, the stochastic handling of kinetics is essential.

The use of stochastic differential equations is a convenient way for the descrip-
tion of concentration fluctuations in chemical kinetics. These equations differ from the
deterministic ones in a noise term:

dpfde = f(p. k) + PET,  p(0) = p°, (50)

where p is the stochastic vector of concentrations, & is a delta correlated Gaussian
stochastic variable vector (white noise), and the matrix P is determined by the reaction
mechanism and by the volume of the system. All the information on the stochastic
variable p is surnmarized in the multiple time probability distribution function
plc,, rl; .+ .3 €, ¢ ). This multi-variable function is difficult to look over and the con-
centration fluctuations can be characterized by other measures which can be calculated
from p Such measures (denoted jointly by F{ p.]) are, for instance, the expected value
and the variance of p(t) Concentration fluctuations can also be characterized by the
deviation from the deferministic value f(#) = p(#) - c{r) and by the correlation of such
deviations: C_ (tl, t) ={ JACRYS (rz))

All of the above functlons depend on the parameters and initial concentrations of
the kinetic system, and a sensitivity analysis of these functions was elaborated by Dacol
and Rabitz [144]. They gave analytical expressions for the evaluation of the local
sensitivity and the sensitivity density of the probability distribution function, dp, /ak.
and p / 6k Calculations of 3(F[ p, ])jak and &(F[ p.1)/ 6k are possible from the former
sensmvuy functlons

In the case of more involved systems, only numerical calculation of p, is
possible. Therefore, a different way was presented for the numerical calculation of
HF( p 1Mok and &F1 p])/Sk,.

Applymg a quasi- Hinear approximation in the reciprocal volume, Dacol and
Rabitz obtained closed expressions for { p.(0)} and { p(s)) P, )} as well as for their
sensitivity coefficients and densities in terms of the detcrmmlsnc concentrations ¢ and
the (deterministic) initial concentration sensitivity matrix K. These expressions allow an
investigation of fluctuation phenomena without stochastic simulation. However, this
quasi-linear approximation is applicable only in macroscopic systems and far from
chemical instability.
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33. REACTION NETWORK SENSITIVITY ANALYSIS

The network anatysis as developed by Clarke reparametrizes the kinetic differen-
tial equations using new parameters j and 4 instead of rate coefficients. The components
of the parameter vector j represent the weights assigned to elementary flows in the
reaction network, while the parameter vector k can be interpreted as the reciprocal
steady state of concentrations. Network analysis relates the dynamics of complex
chemical reaction systems to feedback loops in the reaction network.

A combination of network theory and sensitivity analysis, presented by Larter
and Clarke [83], investigates the sensitivity of concentrations on the change of new
parameters. The new sensitivity matrices de/dj and de/dh carry information on the
effect of these new parameters, as well as on their relative importance and inter-
connection. As an example, the Brusselator was analyzed [83] and the period sensi-
tivities of the new parameters were studied.

34. EXPERIMENTAL SENSITIVITY ANALYSIS

In sensitivity analysis, parameters are considered as the input of models. How-
ever, in a parameter estimation procedure the experimental results are the input and
t.he estimated parameters are the output. The experimental elementary sensitivities,

= {ak {9c’} show how the estimated parameters change when the experimentally
measuned concentrations ¢° change. (One could use any experimental observable
instead of concentrations.)

Parameters are usually determined by a least-squares procedure, i.e. by minimi-
zing the function

0= 5 (-aletf, 51)

where #_is the number of experimental data and c is the ith calculated concentration
commesponding to the ith measured conceniration c From eq. (51), a simple procedure
[145,87] yields the following expression for the calculation of log-normalized experi-
mental sensitivities:

ZMj;(BMk;/ahlcﬁ):—jh, j= 1,...,m', (52)
=1
where m’ is the number of estimated parameters,
My = Y {(3*Inc; /3Ink;dInk)c; /ef)(1 - c; fef)
i=1

+(1=2¢;/cf)cifcf)@Inci/oInk; ) dInc; /dInk ) (53)
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and
Ly = (1=2cp/ci)cp/cg)(@Ine, /O 1nk;). (54)

Equation (52) represents a system of »_ linear inhomogeneous equations and its solution
requires the prior calculation of the corresponding first- and second-order local concen-
tration sensitivity coefficients.

Experimental sensitivities can be used to identify parameters which are highly
sensitive to noise in the experimental data. These sensitivity coefficients also appear in
expressions for parameter deviation arising from uncertainties in and discrepancies
between model and measured observables [145].

4, Interpretation of sensitivity information

41. IMPORTANCE AND INTERDEPENDENCE OF PARAMETERS

Sensitivity coefficients must have the same physical dimensions or they must be
dimensionless if a comparison of them is required. However, the parameters may have
different units and then the sensitivity coefficients are directly incomparable. The usual
treatment of this problem is to introduce normalized sensitivity matrices [37,43,130].
The elements of the normalized local concentration sensitivity matrix § are dimension-
less and therefore their values are independent of the dimensions of the original kinetic
model:

S = ((;/c)) @e )Rk ()} = (I c(t,)/d Ink(r)). (55)

These coefficients represent the percentage change in concentration ¢; caused by a
percentage change of k.

The study of a normalized sensitivity matrix allows one to determine the rank
order of parameters on the basis of the effect on ¢, at time ¢, as a result of a small
parameter change at time 7,. In the case of another species or different times, a different
rank order can be obtained.

Frequently, one is interested in the effect of parameter change on the
concentrations of several species. The need for such information has been realized by
Edelson [75], and he applied a heuristic measure. Mathematically more established
methods can be introduced by using objective functions, which show the deviation of
a perturbed solution ¢* from the nominal solution ¢; considering a group of species.
Such objective functions are, for instance,

e = ; I(ef = ciMeil,

e = ';1 (e — e}l
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or
2 A’

ey = I Y (e —ci)fei)Pde.

n oi=1

Using these functions, all the species taken into account in the summation have
equal weights. The sensitivity of the objective function can be calculated either
directly [67,68], or from the concentration sensitivity coefficients as, for instance:

Fl

dey /dInk; = Y |dlnc;/olnk|, (36)
i=1
dez Ak = ¥ (dnc;/dm k), (57)
i=1
! n’
desfatnk = 3 ¥ (@lnci(s)/0 k)Y, (58)
h=2 (=1

where the effect of the change of parameter j is studied on n’ species and in the latter
equation, integration is replaced by summation. The sum of the squares of the normal-
ized sensitivities is termed the overall sensitivity [53) and it is closely connected with
the objective function of the least-squares method.

When the importance of parameters is treated, it may be worthwhile to
distinguish two kinds of importance. The kind of parameter importance discussed so far
may be called tuning importance. Tuning importances give a picture about the
effectiveness of parameter changes around their nominal values for the inspected
measure {concentration, objective function). If a parameter has small tuning importance
with respect to the important species or features, this parameter may not necessarily be
eliminated. This striking fact has been indicated several times (e.g. [2,53]). The
reduction importance of a parameter can be determined by setting the parameter to z€ro
and rerunning the model. The rank order of reduction importances obtained may be
quite different from that of tuning importances. Seusitivity methods (except WASP)
give direct information only for uning importances.

Does this mean that there is no way in which to identify redundant reactions on
the basis of sensitivity analysis? Of course not. A reaction can be eliminated if the
sensitivity of all species to the corresponding rate coefficients at any time point in the
considered interval is small [77). An equivalent statement is that a parameter is
eliminable if the norm of the corresponding column of the sensitivity matrix is small,
This norm may be a maximum norm:

a; = max|3 In¢; /2 Ink;, (59)

or a Euclidean norm.
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n 172
=[Z(amc,-/amkj)2) . (60)

=1

Note that the overall sensitivities (when all species are considered) are the squares of
the Euclidean norm and therefore they give the same estimated rank order of reduction
importances.

So far, only the concentration sensitivities have been mentioned and the question
of feature sensitivities has not been discussed. In general, the jth feature sensitivity
coefficient refers only to the tuning importance of the jth parameter considering the
specific feature and it must not serve as a basis for mechanism reduction [2]. If this
feature is closely connected to all the necessary species (see section 4.2), this value
might refer also to reduction importance. Such a dominant feature sensitivity might be
the period sensitivity of an oscillating reaction [121].

Having discussed what the importance of parameters means, one may ask when
is a parameter important. All the sensitivity matrices discussed in the preceding sections
(except matrix F and the quasi-stationary sensitivities) belong to a time interval which
is determined by the time of perturbation 4, and the time of observation ¢, [1,120]. Both
the tuning and the reduction importances deduccd from such matrices belong to the time
interval (4,1

Reducnon importances belonging to a definite reaction time can be obtained by
the study of the algebraic rate sensitivity matrix F. This matrix can be processed like
other sensitivity matrices [120]. If only column i of the matrix F is considered, reactions
having the greatest effect on the rate of production of species  at a given reaction time
are identified. Similarly to the case of concentration sensitivities, the effect of para-
meters on the rate of a group of species can be inspected. If all species are taken into
account, the reduction importances at a given time are obtained. If a reaction proves to
be important at least at a single time point in an interval, this reaction must not be
eliminated from the mechanism. The investigation of the change of reduction
importances as the reaction proceeds can reveal fine details of the operation of the
mechanism.

Hitherto, the importance of individual parameters in a reaction was discussed. In
reality, groups of joint parameters influence the concentrations, These parameter groups
cause functional connections between the sensitivity coefficients and they can be
identified by the mere inspection and comparison of the elements of the normalized
local concentration sensitivity mairix [77,66,38,1]. In the next section, a more ¢on-
venient way is presented for the identification of these parameter groups.

4.1.1. Principal component analysis

Let us use the objective function e, to assess the effect of parameters on a group
of species. Replacing the integral with summation and introducing the nommalized
parameters a, = In k}. (j=1,...,m), the function ¢, is approximated by:
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i n’
es(@) = Y ¥ e ()= coltn))ei(a)P. (61)

=2 i=1
This objective function can also be given [53] by
e,(@) = (A)"§T§ (A ), (62)

where A = o — a° and the matrix S is defined as

2

on Un

3

(63)

7214
I

Y o1
>

where an element of matrix S is d1n ¢, (r )/o lnk ().
Let U denote the malnx of nonnallzed elgenvectors U of §T§ such that
UTU =1,j=1,...,m. Then the new set of parameters

y=Ulg, (64)

called principal components, leads to the canonical form of the objective function e,:

es = 21 A(ay)?, (65)
J=
where Ay=UTAaand 4, 21,2 ... 24 arethe elgrenvalues of STS. It is apparent from

eqs. (64) and (65) that Lhe clgcnvcctors of matrix §° S reveal the related parameters and
the corresponding eigenvalues express the weight of these parameter groups [53].
Principal component analysis should be preferred to other methods which
describe the effect of individual parameters on a group of species concentrations. When
tuning importances are investigated, the method can identify those cases where, for
instance, only the ratio or the product of two parameters influences the objective
function. Moreover, principal component analysis can be very useful in mechanism
reduction. Sometimes, the elimination of the reactions one by one may cause significant
changes in the solution, while elimination of reaction pairs has no significant conse-
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quences [53,122]. Principal component analysis can be used to identify groups of
reactions which can be eliminated.

Although the principal component analysis technique was suggested originally
for the analysis of local concentration sensitivity matrices, it can be adapted to the study
of other sensitivity matrices, t00. The use of principal component analysis for the
investigation of the rate sensitivity matrix F is discussed in [120]. Applications of
principal component analysis are found in refs. [53,54,61,91,120-122,164,166,168].

4.1.2. Derived sensitivities

While principal component analysis provides information about both the
importance and the connection of parameters, calculation of derived sensitivities
might give a deeper insight into the interconnection of parameters.

The change of a concentration vector at ¢, as a result of the change of a
parameter vector at ¢, can be expressed by utilizing the normalized sensitivity mawix S:

dlne) = Sdink(). (66)

Let us rewrite this equation into the following form:

[dll‘l C'(IZ)J_ SI §2 [dlﬂk’(tl)) (67)
dinc”()) |§, 1§, \dm&”(n))
Interchanging variable vectors In ¢’ and In &* leads to
(d In k(1) )J _(P1| Dy [d In c’(tz)) (68)
dine”(n)) (Ds | D, )\dInk”(0))

Ineq. (68), In ¢’ and In k" are independent variables, while In k&’ and In ¢” are dependent
variables, Using the rules of multivariable calculus, the blocks of matrix I} can be
obtained by

D;=§,,
f)g = —ﬁlgz,
By = 35D, )
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If matrix §1 is not a square matrix, a least-squares solution is recommended to
obtain Illatl'ix D, [145]. The blocks of the first-order normalized derived sensitivity
matrix D have the following clements:

alnk'(tl) alnk’(fl)
[ﬁl [’jzjz(alnc'(rz) dlnk”(f) 0
b, D, Lalnc”(rz) dne”(t)

dlne’(ty) | dlnk”(#)

All these derived sensitivity coefficients have an unusual interpretation, as discussed
below.

(1) Matrix iv)lz Parameter—observation interdependence

The coefficients of matrix ﬁl provide information on the accuracy of the deter-
mination of parameters k’ if concentrations ¢’ are monitored. In an experiment, it is
desirable to choose the experimental conditions in such a way as to minimize
dln k;/a In ¢ This ensures that the uncertainty in the monitored species concentration
¢, is not magnified in the estimation of the rate constant kj.

(2) Marrix ﬁzz Parameter—parameter interdependence

If the value of &, is changed at ¢, the derivative dInk,/dIn &, indicates the
direction and magnitude of the necessary change in the rate constant £, at £, which
reproduces the original concentration vector ¢ at £,.

(3) Marix 53: Interdependence of different observations

Let us suppose that in an experiment the concentration profiles for some species
are monitored, but that this information is inadequate to identify the mechanism and
therefore the concentrations of further species have to be monitored. The less the
connection between the old and new observations regarding the parameters k” to be
determined, the greater the information increase. The task is to scan the
observation—observation sensitivities in order to find those observables which are the
least dependent on the already measured concentrations.

4 Matrix 54: Observation—parameter interdependence

One has to realize that the coefficients of matrix ﬁ4 are different from the
elementary sensitivity coefficients d In ¢, /d In k, since in the former case concentra-
tions ¢’ are held fixed. Applications of these derived sensitivities have not been reported
so far.
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Derived sensitivity coefficients were introduced by Dougherty et al. [43],
although the matrix D has been calculated in ref. {131], too. Lanter et al. showed that
derived sensitivities can be computed directly, that is, without a priori evaluation of
elementary sensitivities [139]. Yetter et al. calculated second-order derived sensi-
tivities [74] as well, and Demiralp and Rabitz presented derived sensitivity densi-
ties [138]. Recently, Yetter et al. [74] demonstrated the interpretation of derived local
sensitivity coefficients on the example of a large reaction mechanism. Derived sensi-
tivities were also applied in the investigation of flames [55].

Since partitioning of matrix § in eq. (66) is arbitrary, a number of different
derived sensitivities are possible which may be calculated from the same matrix S.
Therefore, it is not practical to search for parameter dependence in this way. However,
the existence of assumed connections can be proved or refuted by appropriately calcu-
lated derived sensitivities,

Another type of derived sensitivities can be calculated from normalized experi-
mental sensitivities and from the normalized local concentration sensitivities using the
chain rule [145]:

dlnc;/dlncf = 3 (dInc;/dInk)(@nk/dnc]). ')
=1

These coefficients interrelate the calculated and the experimentally measured concen-
trations.

4.2.  IMPORTANCE AND INTERCONNECTION OF VARIABLES

The aim of most kinetic modeling studies is 1o properly describe the concentra-
tion changes of some species considered to be important and/or to reproduce some
kinetic features of the reaction. A reaction mechanism has to contain both the reactions
of these important species and the reactions of those species which are necessary to
accurately calculate the concentration changes of the important species. In a large
reaction mechanism, some species may be redundant and their concentration need not
be calculated. Note that the products of important reactions may be redundant species.

‘The decision about which species and/or features are considered important depends
on the objective of the modeling. Here, two methods [122] are given for the identifica-
tion of redundant species. Both methods are based on the fact that necessary species are
strongly connected to important species and features.

4.2.1. Identification of redundant species via reduced models

According to this method, a species is redundani if the elimination of its
consuming reactions does not cause significant deviations from the solution of the full
model with respect (o the concentration of important species and/or important features.
Some redundant species are formed in fast reversible reactions and they cannot be
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identified by the above test. Therefore, each species has to be reinvestigated by the
simultaneous elimination of its fast forming and consuming reactions; if the solution of
the reduced model is practically identical to the solution of the full model considering
important species and/or features, the investigated species is redundant as well.

4.2.2. Identification of redundant species via the investigation of the Jacobian

A species is redundant if its concentration change has no significant effect on the
production rate of the important species. Such an effect is indicated by an element of
the normed Jacobian ¢ In f;/d In ¢.. The influence of the change of the concentration of
species i on the rate of production of an N-member group of important species can be
taken into account by an overall sensitivity-type measure:

N
Bi= Y. @Inf,/dIng). (72)
n=1

This measure quantifies only the direct effects. Indirect links can be revealed by an
iteration procedure. The important species, together with the best-ranked species by the
merit of their B; values, are taken into account in the summation in eq. (72) o identify
new necessary species. This procedure is repeated until convergence. Redundant
species are those which do not take place in the summation at the end.

The second method is less effective, since redundant species formed in fast
reversible reactions cannot be identified and the effect on important features cannot be
investigated. However, this method is suitable for studying how the categories of
necessary and redundant species change as the reaction proceeds.

43. SEPARATION OF THE SECULAR TERM

When oscillating reactions are studied by sensitivity analysis, one has to face
problems which are unknown in the investigation of other reactions. The change of a
parameter or an initial concentration causes a phase shift in the concentration
waves [82,125]. Moreover, a parameter perturbation in the general case changes not
only the wave form, but also the period time of the oscillator. The consequence of a
change of the period time is that the nominal and the perturbed solutions move away
from each other as the time proceeds. Therefore, the calculated local concentration
sensitivities grow without bound in the limit of large times and they consist of two
terms: The first one (called structural sensitivity) is a periodic function which carries
information about the change of the form of the concentration wave. The second, the
so-called secular term, is proportional to ¢ = ¢, — ¢, and it becomes arbitrarily large as
¢t becomes large.

An important step in the interpretation of the sensitivity coefficients of oscillators
is to reveal the information inherent in structural sensitivities by the separation of the
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secular term. Two ways were proposed for the separation of the secular term. According
to the first [80], the phase lead or lag between the original and perturbed solutions is
calculated by a linear approach from the period sensitivity. Thus, the phase lead or lag
at time ¢, is approached by (¢/7)(d 'r/ak:f ), where 7 is the period time and ¢ = ¢, — ¢,. The
corresponding equation for the separation of the secular term is:

dci(tr) _ (361'(!2)] ¢ 97 de() (73)
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Once the period sensitivities 8':/8!3. have been calculated by eq. (34), the structural
sensitivities (dc, /E)‘kj)t are derived by a simple addition.

Larter [126] also presented a more involved, but more general, way for the
separation of the secular term, based on a Floquet theoretic approach. This method is
also applicable to unstable oscillators.

The second way [125] takes into account the actual phase lead or lag (8tf8kj)q,
at time ¢ instead of the linear approach, The corresponding equation is:

dei(tz) [acf(fz)J N (i‘_] de; () (74)
oki(t1) ~ \ 9Kt} jo Ok Jp di '

where (dc; /ok)y, and (3t/ok), arc called path-independent sensitivity and phase
sensitivity, respectively. The calculation of phase sensitivities is more complicated than
the calculation of af/akj , but path-independent sensitivities can be considered the exact
structural sensitivity coefficients. Kramer et al. [125] also elaborated equations for the
calculation of second-order period, structural, path-independent, and phase sensitivities.

Recently, the concept of the secular term was also applied to non-oscillatory
systems [76]. The secular term of a general sensitivity coefficient corresponds o the
change in the time scale of the reaction caused by the change of a parameter. The secular
term free sensitivity coefficients were applied to the prediction of the mode] solution for
parameter values away from the nominal parameter values.

Short summaries dealing with the handling of the problem of the secular
term based on eq. (73) are found in refs. [146) and [147]. The separation of the
secular term has been illustrated so far only in the case of small model systems,
such as Brusselator (82,126], the Lotka—Volterra model {80], and other simple
systems [76,125].

5. Software

Computer programs make sensitivity tools applicable for the chemist. All
methods discussed so far are reproducible from their announcing articles, but coding a
sophisticated method might be an exhausting task. There are a number of articles in



T. Turdnyi, Sensitivity analysis of complex kinetic systems 233

which the authors report on their efforts for coding a method, and they give tips on how
to construct an efficient program. Such articles are refs. [102] and [103] for the FAST
method, ref. [69] for the Green function method (version (1)), and ref. [65] for the
SGFM/II method.

Unfortunately, only few articles exist in which a ready computer code is
published. FORTRAN codes are presented in [89] for the polynomial approximation
method and in {S51] for the decomposed direct method.

Several programs are offered in the literature for sensitivity calculations. A
computational implementation of the GFM/AIM method is available from the authors
of ref. [148]. Moreover, this software was also combined with the CHEMKIN chemical
kinetics software [149], yielding a production code called CHEMSEN [150] to model
isothermal constant-volume chemical kinetics systems. This program was reproduced
by Hayashi and Fujiwara [15]. Caracotsios and Steward offer a program package named
DASAC [50] which is based on an improved direct method. The combination of this
program with the CHEMKIN package is called SENKIN [151] and is applicable for the
sensitivity study of a homogeneous reacting gas mixture in a closed system. Another
realization of the decoupled direct method is offered under the name ODESSA [48].

The author of this review also offers a program package, named KINAL [152],
which is written for the kinetic analysis of complex reaction mechanisms. The package
includes programs for the integration of kinetic differential equations, for the
construction of the rate sensitivity and quasi-stationary sensitivity matrices, and
for the calculation of the local concentration sensitivily matrix based on the decomposed
direct method. The principal component analysis is applied to reveal information
inherent in these mairices.

6.  Applications

Applications of sensitivity analysis cover very important areas of Kkinetic
modeling, Usually, several sensitivity tools can be used to solve the same problem and
the selection of the appropriate method is based on a trade-off between accuracy and
computer time demand. Most problems may also be solved by methods other than
sensitivity analysis, but they will not be discussed here.

6.1. UNCERTAINTY ANALYSIS AND PARAMETRIC SCALING

All parameters of mathematical models have more or less uncertainty,
Uncertainty analysis methods are addressed to calculate the uncertainty of model
results caused by the uncertainties of the parameters. The uncertainty of a model output
may be so significant that the practical value of the model may be questioned.

In sensitivity analysis, each parameter is perturbed to the same extent, while in
uncertainty analysis (also called sensitivity/uncertainty analysis), the real uncertainty
associated with each parameter is taken into account. Such uncertainty information is
derived from the statistical analysis of experimental data. Laboratory controllable
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parameters (e.g. the temperature of a thermostat) also have an uncertainty, caused by the
experimental apparatus.

Global methods are directly applicable to uncertainty analysis. Such calculations
have been performed by the Monte Carlo method [115-117], by the Latin hypercube
method [36,118], and by the FAST method [107,108].

Local sensitivity information can also be a basis for uncertainty analysis. The
mean value and variance of the concentration ¢, can be determined [46] by the equa-
tions:

(ey=eci+1 'Zl(azc; fakf)o‘z(kj)+jzl 1 }Zl(a"-c,- [0k; ki) covik; ki) (75)
i= = =+
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+ X, (3c; 19k; Y% c; 19k s (k; ), (76)
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where £, is th. .hird central moment. Frequently, only the mean value and the variance
of parameters are known, and in such cases the last term in eq. (75) and the two second
terms of eq. (76) can be neglected. However, knowledge of the covariance matrix is
essential if the parameters are highly correlated.

The use of linear sensitivity information in uncertainty analysis requires orders
of magnitude less computational effort, but the results obtained may be misleading if
the uncertainty of the parameters is large. Non-global uncertainty analyses were also
carried out by Dodge and Hecht [25] and by Butler [153]. Their considerations were
based on sensitivities calculated by the brute force method.

While uncertainty analysis investigates the influence of parameters on the solu-
tons from a stochastic point of view, this problem has a deterministic equivalent: What
will be the new solution of the model at time ¢, if the parameters are changed at
time ¢,? The process of extrapc:ation of a modeling result to new parametric conditions
is called parametric scaling.

The simplest solution of the problem of parametric scaling is based on the
application of the Taylor series, in which the coefficients are the local first- and higher-
order sensitivity matrices (cf. eqs. (2) and (3)). As an example, Taylor series approxi-
mations were used {125] to predict the new amplitude and period time of a limit cycle
oscillator when the parameters are changed significantly,

In chemical kinetics, the exponential behaviour of species concentrations is
ubiquitous and therefore eq. (77) gives a better approximation in most cases than the
first-order Taylor series [43]:

cilk+Ak)= ¢ exp[ i (Ak; [c;)(dc; /ok; )]. (77)
j=1
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Hwang {40] applied a similar equation supplemented by second-order terms, and found
it much better than eq. (77).

Kramer et al. [76] examined several strategies for parametric scaling. They
showed that the previous methods may provide physically unrealistic results when ¢ has
known bounds. First- and higher-order altemative equations are proposed with built-in
constraints, thus expanding the parametric region in which the extrapolation may be
valid. They also demonstrated that secular term free sensitivities can be better applied
for parametric scaling, both in the case of oscillatory and in the case of non-oscillatory
systems.

62. PARAMETER ESTIMATION

A usual task in chemical kinetics is the fitting of model parameiers to experi-
mental data. Suppose that the structure of the regression model allows an adequate fit.
Then the greatest possible pitfall in a parameter estimation procedure is 10
encounter an ill-conditioned problem. Here, we present a procedure [53], based on the
eigenvector—eigenvalue decomposition of matrix B, to avoid such problems. The
definition of this matrix is

N L T _
P=2 R ()W, R(#), (78)
i=1

where matrix R = (9 In #/9 In ¢)(0 In ¢/3 In k), the function k(e) is the instrumental
function, i.e. the function which converts the calculated concentrations into calculated
signals of the experimental apparatus, and L is the humber of measurements. The matrix
W, is the weighting matrix belonging to the /th data set, which may be identical 10 the
unit matrix (unweighted parameter estimation) or is chosen as the inverse of the
covariance matrix.

Parameters which are not related to large eigenvector elemenis of large eigen-
values cannot be determined by parameter estimation. The values of these parameters
have to be fixed to avoid singularity. In addition, very often only the value of the
quotient (or product) of some parameters can be determined. This situation is
indicated by a low-eigenvalued normed eigenvector which has a form similar to
(0.707, £0.707, 0, . .. , 0). In this case, one of the coupled parameters has to be fixed.
However, one has to keep in mind that the ratio of the parameters and not their real
values are determined! This procedure is also a solution for the problem of the deep-
valley-shaped objective functions, which occur often in chemical kinetic modeling [2].

The matrix P depends on the values of parameters. Since the exact values of
parameters are not known, one has to calculate the matrix using estimated parameiers.
It is advisable to carry out the eigenvalue—eigenvector decomposition of the recalcu-
lated matrix P in each cycle of parameter estimation. The list of fixed parameters may
have 10 be revised as the parameter set becomes more and more accurate.



236 T. Turdnyi, Sensitivity analysis of complex kinetic systems

Note that the principal component analysis of matrix STS is obtained when the
concentrations are measured directly (h = ¢) and weights are not used (W =1I).

Having determined which parameters have to be fixed, one can start the para-
meter estimation procedure. The Marquardt algorithm has proved to be the most
effective tool for parameter estimation in chemical kinetics [154]. According to this
method, the parameters are fitted by an iteration and the new parameter set is deter-
mined using the following equation:

BV 14 (P P+ AL B Z R (1) Wil y— he())], (79

where an element of vector 8¢ * ! is the ratio of the new and of the old estimated value
of parameter j, ie. B7*1 = k“"”/kf‘) y, is the vector of measured data in the /th
experiment, and A is the Marquardt pararneter All vectors and matrices on the right-
hand side of eq. (79) are evaluated using the parameter vector k',

Efficient numerical methods, developed for the calculation of local concentration
sensitivities, are well applicable in a parameter estimation. The sensitivity mamces have
10 be computed using the first-guess values of parameters. Then matrices R and P are
calculated, the parameters to be fixed are selected, a new parameter set is obtained by
eq. {79), and the procedure is repeated until convergence is achieved.

Above, it was assumed that the structure of the regression model is adequate for
fitting the data. If not, a discrepancy between the measured and calculated data will
remain even in the case of the best fit. In this case, new parameters (new reactions) have
to be searched for to complement the original model. The values of the assumed new
parameters are set to zero and a sensitivity analysis is carried out. The solution of the
model remains unchanged, but great sensitivity indicates that these parameters might
effectively change the solution. Such calculations were described in refs. [71] and [79].
Note, however, that the effect of a new parameter may be very different if its value is
different from zero.

63. DESIGN OF EXPERIMENTS

Each laboratory experiment should be preceded by experimental design to ensure
the maximal effectiveness of laboratory work. The problem of experimental design can
be interpreted both from strategical and tactical approaches.

If one has a large multi-parameter model to improve, one has to identify those
parameters which should be known more precisely. These parameters are not neces-
sarily the most uncertain parameters, but they are those parameters which cause the
greatest uncertainty in the modeling results. Therefore, the parameters to be investigated
experimentally have to be selected on the basis of the result of an uncertainty analysis.

The next step is the design of an experiment in which more accurate values for
the critical parameters are determined. There are several ways of performing experi-
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ments: often one can select the species’ concentrations to be measured, the time points
of the measurement, and the initial concentrations of reactants. On the basis of a
simulated experiment, matrix P has to be calculated according to eq. (78). The principal
component analysis of matrix P reveals if the value of the parameter in question can be
determined. The matrix P has to be recalculated for different planned reaction circum-
stances until the parameter to be determined is a single dominant element of a principal
component of large eigenvalue.

The above described "tactical experimental design” can also be carried out by
using either derived sensitivities or experimental sensitivities. The appropriate elements
of the derived sensitivity matrix D have to be minimized to decrease the variance of
parameters to be determined. The mamx D gives information about the influence of
the value of fixed parameters on the value of fitted parameters. The selection of new
concentrations to be measured besides the already measured ones can be based either
on matrix D or on the derived experimental sensitivity matrix. Elementary experimen-
tal scnsuwmes can be used to identify those parameters of the assumed model which
are strongly affected by noisy data.

64. REPRO-MODELING

When modeling a spatially inhomogeneous chemical reaction system, the kinetic
equations have to be solved at each grid point. This means several hundreds or
thousands of solutions of large sets of ODEs while their initial conditions cover a
physically reasonable (usually not very large) domain, After the solution of the kinetic
equations, the transport equation has to be solved over the same time interval. This time
interval At is determined by the stability and/or the accuracy of the transport equation
and it is usually not very long, while stiff ODE solvers require time to "start up” and
are therefore not very efficient over a short time interval. The consequence is that an
overwhelming part of the computer time used in modeling a space—time system is con-
sumed by the description of chemical reactions.

The application of initial concentration sensitivities offers a simple and efficient
solution for this problem [60]. This procedure is called “repro-modeling”. The domain
of initial concentrations is covered by a grid of €° vectors. The solution of kinetic
equations F(C®, At) and the first- and second-order initial concentration sensitivities

AF(At) . Py
dc le=cC?® an dcac le=c?

are calculated for each €° initial concentration set and are stored ("parametrization of
the mechanism"). Then the solution of the kinetic equations after a time interval At for
any arbitrary ¢° initial concentrations within the domain of interest can be approxi-
mated by
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aF(AD)
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where C? is chosen to be close to ¢,

Dunker [60] applied this procedure to a photochemical mechanism for oxidant
formation in urban areas. He showed that the computational effort required for the
solution of the kinetic equations by this method was reduced by more than two orders
of magnitude, while the approximated concentrations agreed fairly well with the exactly
calculated ones even after fifieen hours simulation time,

Marsden et al. [155] also presented a similar approximation, where the whole
initial concentration domain is covered by one second-order empirical polynomial. This
procedure is closely related to the determination of sensitivities using approximate
empirical models. In the method of Dunker, the coefficients of the second-order poly-
nomial depend on initial concentrations, but this is not the case in the method of
Marsden et al, and therefore the second way is simpler but provides less accurate
solutions,

6.5. STABILITY ANALYSIS

If the solution of a mathematical model is perturbed at t, by b'c(rl), the deviation
between the perturbed and the nominal solutions at t, can be expressed by

Se(r,) = K(t,, 1) Se(s,), (81)

where K is the initial concentration sensitivity matrix (see eq. (10)). The growth or
shrinkage of dc¢ shows the stability of the model with respect to changes in the initial
concentrations. A useful method to assess the stability is to perform an eigenanalysis of
matrix K (82,84]. The eigenvalues of K indicate the stability, instability, or marginal
stability of certain combinations of deviations from the initial condition in the Lyapunov
sense. The eigenvectors indicate the direction of deviation from the solution in state
space.

The mixed second-order sensitivity coefficients can be interpreted as the sensi-
tivity of matrix K:

de() _ 0K(n,1)
Oki(1)cO(ny) — Oki(1y)

(82)
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The analysis of matrix aKIBk provides the sensitivity of stability eigenvectors and
eigenvalues to model parameters This gives information on how the stability changes,
both in magnitude and in direction, as a function of system parameters.

The concentration sensitivity mairix S can also be interpreted as a measure of the
stability of the solution with respect to the change of the parameters. (The second-order
sensitivities can be considered to be the sensitivity of these stability measures.) If small
perturbations in the model parameters cause exorbitant changes in the model
predictions, the usefulness of the model may be questioned [143). Larter demonstrated
[80] the structural instability of an oscillating reaction model by the calculation of
secular term free sensitivities.

6.6. INVESTIGATION OF REACTION MECHANISMS

The study of the effect of parameter perturbance on the solutiont, which is the
essence of dynamic sensitivity analysis, can provide significant information on the
structure of reaction mechanisms. The change of a parameter belonging to reaction j
causes a direct concentration change only in the case of those species which are
reactants or products in this reaction. The direct concentration changes cause further
changes in the concentration of other species [120). The latter indirect (nonlmear)
effects cannot be predicted by screening analysis or by studying matrix F, and the
nonlinear effects revealed by dynamic sensitivity analysis can be used to settle
particular mechanistic questions [1,26,43,44,72,97,106,132]. The sensitivity informa-
tion belongs to a time interval and this interval can be changed by changing the time
of perturbation ¢, and the time of observation ¢,. This was called "the variable-initial-
time procedure” by Hwang [1].

Often, one is interested in the structure of reaction systems and the importance
of reactions at a definite reaction time which corresponds to a given concentration set.
Such questions can be answered by the analysis of matrix F {120]. This technique can
have advantages also in the study of distributed parameter systems, since in some cases
the time-consuming functional sensitivity analysis may be avoided [164].

Rate-limiting steps are exposed by very large sensitivity coefficients {104,131,156).
Recently, Ray [119] proposed the following definition of rate-limiting steps: a reaction
step is rate-limiting if the increase of the rate coefficient causes a significant increase
of the overall reaction rate. Therefore, the rate-limiting step can be identified by
inspecting the ith row of the dynamic rate sensitivity matrix, where the rate of produc-
tion of the ith species is considered to be identical to the overall rate of the reaction. A
possible extension of the original definition is to assign a rate-limiting step to the
formation or consumption of each species of a complex reaction. The rate-limiting
step of the ith species can be identified (if it exists) by searching for a very large element
in the ith row of the dynamic rate sensitivity matrix. This extension of the definition
may be useful, since in the case of some complex reaction systems (¢.g. Smog mechan-
isms), the concept of an overall reaction rate is meaningless and therefore the original
definition of a rate-limiting step cannot be applied.
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The existence of fast equilibrium conditions or quasi-stationary species causes
interactions between the parameters. They can be identified by one of the methods
described in section 4.1. As an example, such parameter connections can be revealed
by principal component analysis of the local concentration sensitivity [53,54] or the rate
sensitivity matrices [120,168].

A list of sensitivity studies on complex reaction mechanisms is given in table 1.
This table can be used as a source of citations to find which difficulties have been
encountered using the sensitivity method of interest. Furthermore, in examining a
reaction system, experience obtained by the investigation of similar reactions can be
utilized.

6.7. REDUCTION OF REACTION MECHANISMS

The WASP method [111] is the only sensitivity method which gives direct
information about the effect of the climination of parameters from a mechanism.
Unfortunately, the application of WASP for mechanism reduction requires an unreason-
able amount of computer time.

There are a number of methods for the estimation of the reduction importances.
Grigoryeva et al. proposed a mechanism reduction procedure based on repetitive calcu-
lations of FAST sensitivity coefficients [101]. The method of Pierce et al. [104] is also
based on FAST sensitivity coefficients. Frenklach proposed a synoptic study of appro-
priate feature sensitivities and of reaction rates [2].

Mechanism reduction can be based on the direct investigation of local
concentration sensitivity coefficients [1,77), or on vector norm analysis or principal
component analysis of the local concentration sensitivity [53,54,164], rate sensitivity
[120,164,166,168], or quasi-stationary sensitivity [91] matrices. Species taken into
account in the analyses can be selected by one of the methods described in section 4.2.
Combinations of the above procedures give an enommous number of variations. The
method [122] described below seems to be effective regarding both the computer time
requirements and the size of the obtained reduced mechanism.

First, the modeler has to decide which species concentrations or features of the
full mechanism are required to be reproduced by the reduced mechanism. The first
method described in section 4.2 provides the list of species necessary in the reduced
mechanism. Then, a principal component analysis of matrix F is fulfilled with important
and necessary species in the objective function of the method. This analysis has to be
carried out for several reaction times allocated in the entire time interval of interest. A
reaction must not be eliminated if it proves to be important at any time. The next step
is t0 eliminate the redundant reactions from the mechanism. Finally, the success of
mechanism reduction is tested by comparing the solutions of full and reduced
mechanisms,

The reduced mechanism obtained can be shrunk further by reaction lumping,
taking into account the rate-limiting steps, fast equilibrium conditions, quasi-stationary
species, and parallel reactions. Another possibility for the reduction of the size of
reaction mechanisms is species lumping. Recently, new methods were published for the
analysis of lumping [157,158,170,174,175].
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Table 1

241

Colamn numbers refer to: (1) short name of complex reaction mechanism studied; (2) number of
species; (3) number of reactions; (4) references; (5) sensitivity method applied (see abbreviations);
(6) aim or short description of the investigation

(1) @ 3 @ 5) (6)
Pyrolysis
High temperature propane pyrol. 14 44 [31] BF feature sensitivity
[159] BF feature sensitivity
11 22 [33] AEM test of the method
14 66 [S1] QSA, PCA mechanism reduction
[120] RA,PCA mechan, invest. & reduct.
Low temperature propane pyrol. 38 98  [75] GFM mechanism investigation
[70] GFM numerical test
[122] RA,PCA mechanism reduction
Hexane pytolysis 11 38 [27} BF numerical example
Ethane pyrolysis 7 5 [45] AIM, (GFM, DM)  numerical test
[22] DM, (AIM, BF) numerical test
[76] AIM parametric scaling
[47] DM numerical test
15 25 [36] DM numerical example
9 9 [101] FAST mechanism redaction
Decomposition of niromethane 26 128 [88] AIM mechanism investigation
Decomposition of methane 17 36 [160] BF mechanism investigation
Pyrolysis of butylbenzene 29 60 [63] DM mechanism investigation
Combustion
Oxidation of CH, 14 12 [37] DM mechanism investigation
H,—-0O, combustion 6 18 [971 FAST test of the method
8 32 [30] BF feature sensitivity
g 62 [4] GFM mechanism investigation
H,/O,/N, flame 8 34 [41] DM mechanism investigation
High temperature air reactions S 10 [97] FAST test of the method
CH,—O,/Ar system 13 46 [106}] FAST mechanism investigation
[43] GFM numerical test
[15] AIM numerical test
C§,~0, explosion 10 1t [130] BF feature sensitivity
Methane—air flame 13 36 [161] BF feature sensitivity
Formaldehyde oxidation 15 25 [43] GFM, (DM) numerical test
[22] DM, (BF, AIM) numerical test
[51] DM numerical test
[53] DM, PCA mech. invest. & reduct.
{120 RA,PCA mech. invest. & reduct.
Oxidation of cyanogen 11 15 [28] BF feature sensitivity
Oxidation of methane 20 56 [105] FAST example of the methed
Cs flare reaction 6 10 [38] PAM, (DM) numerical test
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Table 1 {continued)

(1 @ 3 @ (5) 6)
Combustion
Wet oxidation of CO 12 52 [172] AIM, (GFM,DM,BF) numerical test
[72] AIM feature sensitivity
[47] DM numerical rest
{15] AIM numerical test
8 10 [74) AIM derived sensitivities
12 54 [162] uncertainty analysis
Oxidation of N, 5 i0 [101] FAST mechanism reduction
Oxidation of n-butane [15} AIM mechanism investigation
Oxidation of acetaldehyde 302 [15] AIM mechanism investigation
Cl, inhibited CO/H, flame 19 128 [132) BF feature sensitivity
Steady state CH, /O, flame 25 174 [26) BF feature sensitivity
Premixed H_-air flame I 8 38 [93] NM mech. nvest. & reduct.
Premixed Hz-air flame 11 8 38 [61] DM, PCA mech. invest. & reduct.
B/O/H/C combustion 19 118 [85] AIM mechanism investigation
[86] AIM mechanism investigation
Thermolysis of methanol 13 16 [163] BF mechanism investigation
Oxidation of methane 19 61 [171] DM mechanism investigation
[172] DM mechanism investigation
21 6% [173}] BF feature sensitivity
Atmospheric chemistry and photochemical smog
Smog mechanism (Dodge et al.) 20 31 {25) BF uncertainty analysis
Chapman mechanism 3 4 [42) DM, FS numerical example
[43] GFM numerical test
[64] SGFM/TI numerical test
[77] SGFM/IL mechanism reduction
[38] PAM, (DM) numerical test
[51] DM nwymerical test
Stratospheric model 55 [115) MC unceriainty analysis
[116] MC unceriainty analysis
Smog mechanism (McRae et al.} 31 56 [107] FAST mech. invest., uncert. anal.
[22] DM, (AIM, BF) numerical test
Photolysis of CO-NO ~H,0
mixture in air 13 10 {t12] SSA test of the method
Smog mechanism
(Stockwell and Calvert) 62 130 [48) SOF mechanism investigation
Sulfate production in clouds 30 34 (78] AIM mechanism investigation
Smog mechanism (CBM-IV) [110] BF, FAST mechanism investigation
Reactions of unpelluted air 22 60 [91] QSA, PCA mechanism reduction
[164] DM, RA, PCA mechanism reduction
Reactions in clouds 69 182 [24] BF, DM mech. invest. & reduct.

Sulfate production in clouds

[165]
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Table 1 {continued)

I 2 3 & &3 (8
Oscillating reactions
Brusselator 2 4 [9 FAST numerical example
[82] FS, GFM sensitivity of limit cycles
[143] FS without numerical solution
[83] GFM network sensitivity analysis
[84] GFM stability analysis
[126] F feature sensitivity
Oregonator 3 5 [81) GFM feature sensitivity
[51] DM numerical test
[89] PAM numerical test
Lotka model 2 4 [128] GFA feature sensitivity
{80] GFM separation of the secular term
BR reaction 12 36 [19] GFM feature sensitivity
8 15 [166] RA mechanism reduction
BZ reaction (EFN model) 13 3z [A] GFM feature sensitivity
[54] DM, PCA mech. invest. &reduct.
[121} RA, PCA mech. invest. & reduct.
BZ reaction 11 17 [57] DM feature sensitivity
(both high and low sets}) [58] DM Al interpretation
BZ reaction 25 80 [168) RA, PCA mech. invest. & reduct,
Other systems
H,-F, chemical laser 15 136 [10] FAST mechanism investigation
Michaelis—Menten model 4 3 [104] FAST mechanism investigation
ASN enzyme model 8 16 [104] FAST mech. invest. & reduct.
Frieden enzyme model 6 12 [104] FAST mechanism investigation
N,O decemposition 7 g [66] SGFMAIL numerical test
H,-Br, reaciion 5 5 [53] DM, PCA numerical example
CH3,02 system 5 8 [73] AIM error analysis
H,CO + GH reaction 15 17 [87] AIM error analysis
lignin yellowing 58 91 [167] BF mech. invest. & reduct.

List of abbreviations: AEM: approximate empirical model method; Al anificial intelligence; AIM:
analytically integrated Magnus modification of the GFM; ASN: Ainslie, Shill and
Neet; BF: brute force method; BR: Briggs—Rauscher; BZ: Belousov—Zhabotinsky;
DM: direct method; EFN: Edelson—Field—Noyes; F: Floguet theorem; FAST: Fourier
amplitnde sensitivity test; FS: functional sensitivity investigation (including sensi-
tivity density); GFA: global feature sensitivity analysis; GFM: Green function
method; MC: Monte Carlo method; NM: Newton method for the solution of
sensitivity equations for a two-point boundary valve problem; PCA: principal
component analysis; QSA; quasi-stationary sensitivity analysis; RA: rate analysis
(analysis of matrix F); SGFM: scaled Green function method; SOF: direct calculation
of the sensitivity of objective functions; §3: stationary sensitivities; SSA: stochastic

sensitivity analysis.



244 T. Turdnyi, Sensitivity analysis of complex kinetic systems

7. Concluding remarks

At present the theory of sensitivity analysis has achieved an advanced level, and
efficient numerical realizations are also available. However, sensitivity analysis has not
been applied as extensively as would be desirable and possible. Although in the last few
years several papers were published in which sensitivity methods were applied, in most
of the papers that have so far appeared in this field, the sensitivity methods and not the
reaction systems were the subjects of investigation. In this review, not only are
the theoretical and numerical tools of sensitivity analysis enumerated, but also their
practical applications are dealt with in detail. Hence, it is hoped that this paper may help
to bridge the gap between theory and application of sensitivity analysis in chemical
kinetics.
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