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Abstract  

Local sensitivity coefficients and parameter uncertainties are the usual measures used for selecting parameters for the 

optimization of combustion kinetic models. We identified two further factors and construct four novel measures for 

parameter ranking and benchmarked them against two known measures in a 10-parameter hierarchical optimization 

of a methanol/NOx mechanism on a large experimental data set. It was found that measures that did not incorporate 

uncertainty information could reduce the error function initially the most steeply, but in the long run the other methods 

performed better, though similarly. Regarding posterior uncertainties, one of the novel strategies based on error 

function derivative and uncertainty information performed the most reliably and can be recommended for future use. 

 

Introduction 

Detailed chemical kinetic mechanisms are widely 

used to simulate combustion experiments for both 

industrial and scientific purposes. Once assembled their 

performance can be improved by updating their 

parameters using not yet considered or newly published 

experimental data and theoretical results. First kinetic 

parameter optimization studies on combustion kinetic 

mechanisms were done by Frenklach et al. [1,2] and 

Sheen and Wang [3,4]. A similar method was applied by 

Pitsch and his coworkers [5]. A method that allowed 

efficient global optimization of all three Arrhenius 

parameters in their joint uncertainty domain [6,7] and 

considered both direct experimental and theoretical 

determinations and indirect measurements was 

developed by Turányi et al. [8]. This methodology has 

been used for the development of several detailed 

reaction mechanisms  (see e.g. refs. [9–12]). 

Detailed combustion mechanisms usually contain 

large number of uncertain parameters and for the most 

important fuels, large amount of experimental data are 

available, which renders their optimization a 

computationally challenging problem. To overcome this, 

a systematic hierarchical optimization strategy was 

introduced and applied successfully by Turányi and his 

coworkers (see e.g. refs. [9–12]). In their method, groups 

of influential parameters and groups of corresponding 

sensitive experimental datasets are introduced in the 

optimization procedure in a stepwise manner, allowing 

larger parameter changes to be accomplished with lower 

number of simulations. The method made ranking of 

parameters and experimental datasets based exclusively 

on the local sensitivity coefficients. It was recognized by 

Frenklach et al. that parameters can be tuned only within 

their prior uncertainty range in a physically meaningful 

way, thus the absolute value of the product of the 

sensitivity coefficient and parameter uncertainty is a 

better measure for parameter selection [13]. 
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The ultimate aim of parameter optimization is to 

reduce the value of an appropriately defined objective 

function. Thus, one can also consider the error of 

experimental data and the deviation between the 

experimental data and its simulation result to define 

novel measures for parameter ranking. In this study, 

beside sensitivity and sensitivityparameter uncertainty, 

four new impact measures are proposed and tested in an 

optimization study of a detailed methanol/NOx 

combustion mechanism. 

 

The investigated combustion system 

The methanol/NOx combustion mechanism was 

chosen to test the novel parameter ranking strategies. 

Methanol is a promising alternative to fossil 

transportation fuels, and its interactions with nitrogen 

oxides (NOx) in combustion systems are also important 

due to environmental regulations. In a recent publication 

[14], we collected all available experimental data 

corresponding to methanol/NOx combustion, and tested 

17 mechanisms against them. 

 

Table 1 The number and the condition ranges of 

concentration data collected from methanol/NOx 

combustion experiments (see text for abbreviations) 
Expe–

riment 

Data 

sets 

Data 

points 
T / K p / atm φ 

JSR 72 765 640–1870 0.92–10 0.3–1.34 

TFR 160 1648 298–1420 0.99–1.4 0.01–13.5 

ST 11 139 1142–1502 0.46–0.66 0.46–2 

All 243 2552 298–1870 0.46–10 0.01–13.5 

Used 225 2373 298–1502 0.46–10 0.01–13.5 

 

Table 1 summarizes the numbers of collected datasets 

and points and the ranges of experimental conditions. All 

the related experiments were concentration 

measurements carried out in jet stirred reactors (JSR), 

tubular flow reactors (TFR) and shock tubes (ST). We 

showed that even the best performing models have 
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significant inaccuracies and high uncertainties [14]. 

Some datasets were excluded from the study as none of 

the mechanisms could reproduce them within 10σ 

experimental uncertainty. The overall numbers for all 

data and only for the used data are also shown in the table. 

For more details on the data collection see ref. [14]. In 

this study, only the kept 2373 data points in 225 datasets 

were used, which are sufficiently many for a meaningful 

optimization study. Based on our comparison of recent 

methanol/NOx mechanisms [14], we selected the 

ELTE+Glarborg mechanism for optimization due to its 

relatively good performance and low uncertainty. This 

mechanism was obtained from mechanism Glarborg-

2018 [15] by updating it with optimized rate parameters 

from our previous works [9–12]. 

 

Optimization method 

The collected 243 datasets were stored in 74 

ReSpecTh Kinetics Data (RKD) v2.3 data files [16], 

which is the data format of the ReSpecTh database [17] 

and which had been developed from the PrIMe Kinetics 

Data Format [18]. For the parameter optimizations, we 

applied code Optima++ [19], which implements the 

optimization method developed by Turányi et al. [8], and 

calls code OpenSMOKE++ [20,21] for the simulations. 

The method minimizes the following objective function: 

𝐸(𝐏) =
1

𝑁
∑

1

𝑁𝑖

∑ (
𝑌𝑖𝑗

sim(𝐏) − 𝑌𝑖𝑗
exp

𝜎𝑖𝑗
exp )

2𝑁𝑖

𝑗=1

𝑁

𝑖=1

 (1) 

Here 𝑁 is the number of datasets, 𝑁𝑖 is the number of data 

points in the 𝑖-th dataset, vector P contains the used forms 

of rate parameters (e.g. lnA, n, E/R), values 𝑌𝑖𝑗
exp

 and 

𝜎𝑖𝑗
exp

 are the optionally transformed j-th data point in the 

i-th dataset and its standard deviation, respectively and 

𝑌𝑖𝑗
sim  is its simulated value. Thus, 𝐸(𝐏)  measures the 

average of the squared deviation of the simulation results 

from the experimental data relative to the standard 

deviation of the experimental data. 𝐸(𝐏) is around one 

for a perfect model. 

In this study, only the pre-exponential factors of 

selected reactions were optimized in such a way that the 

Arrhenius curves (𝑘(𝑇)) always stayed within their prior 

uncertainty band (i. e.  [𝑘min(𝑇); 𝑘max(𝑇)]) . The 

uncertainty parameter is defined as the radius of a 

symmetric uncertainty range around the nominal 𝑘0(𝑇) 

value on log10 scale: 

𝑓prior(𝑇) = log10

𝑘max(𝑇)

𝑘0(𝑇)
= log10

𝑘0(𝑇)

𝑘min(𝑇)
 (2) 

 

It was determined for each reaction based on directly 

measured experimental data and theoretical 

determinations taken from the NIST Chemical Kinetics 

Database [22]. More details can be found in ref. [14]. 

 

Standard and novel measures of parameter impact 

The identification of parameters that can be tuned to 

improve the model performance the most efficiently is a 

crucial step prior to the actual optimization task. A 

common practice is to apply local sensitivity analysis to 

quantify the impact of parameters on the simulation 

results. Local sensitivity coefficients are defined as: 

𝑆𝑖𝑗,𝑙 =
𝜕𝑌𝑖𝑗

sim

𝜕𝑃𝑙

 (3) 

𝑃𝑙  is the l-th parameter to be optimized. Assuming that 

all experimental data are of equal importance, for each 

(ij)-th data point the 𝑆𝑖𝑗,𝑙  values are normalized by the 

largest absolute 𝑆𝑖𝑗,𝑙 value. 

�̃�𝑖𝑗,𝑙 =
𝑆𝑖𝑗,𝑙

max
𝑚

|𝑆𝑖𝑗,𝑚|
 (4) 

This value can be used to define an overall sensitivity (𝐼𝑙
S) 

of all considered simulation results to the 𝑙-th parameter: 

𝐼𝑙
S = √

1

𝑁
∑

1

𝑁𝑖

∑ �̃�𝑖𝑗,𝑙
2

𝑁𝑖

𝑗=1

𝑁

𝑖=1

 (5) 

However, parameters are allowed to be tuned only 

within their prior uncertainty range, thus Frenklach et al. 

introduced the parameter impact as the product of the 

sensitivity coefficient and parameter uncertainty [13]. 

Based on this measure an overall impact ( 𝐼𝑙
SU , U  for 

uncertainty) can be defined:  

𝐼𝑙
SU = 𝜎𝑙𝐼𝑙

S (6) 

Here, we introduced 𝜎𝑙  as the standard deviation of 

parameter 𝑃𝑙 = ln 𝐴𝑙, and assumed it to be one third of 

the uncertainty radius of the l-th rate coefficient: 

𝜎𝑙 =
ln 10

3
∙ 𝑓prior,𝑙  (7) 

As the ultimate aim of model optimization is to 

minimize the objective function (Eq. (1)), the impact on 

𝑌𝑖𝑗
sim needs to be scaled down by the corresponding 𝜎𝑖𝑗

exp
 

experimental error (“E”), which leads to definition of the 

following new overall measure for parameter impact: 

𝐼𝑙
SUE = 𝜎𝑙√

1

𝑁
∑

1

𝑁𝑖

∑ (
𝑆𝑖𝑗,𝑙

𝜎𝑖𝑗
exp)

2𝑁𝑖

𝑗=1

𝑁

𝑖=1

 (8) 

One can also consider the largest effect that can be 

induced on the summed terms in objective function by 

𝜎𝑙 parameter variation using Taylor approximation: 

𝐼𝑙
SUED = √

1

𝑁
∑

1

𝑁𝑖

∑
𝑆𝑖𝑗,𝑙

2 𝜎𝑙
2 + 2|𝑆𝑖𝑗,𝑙𝐷𝑖𝑗|𝜎𝑙

(𝜎𝑖𝑗
exp

)
2

𝑁𝑖

𝑗=1

𝑁

𝑖=1

 (9) 

Here we introduced 𝐷𝑖𝑗  as a short notation for 

𝑌𝑖𝑗
mod(𝐏𝟎) − 𝑌𝑖𝑗

exp
and assumed model 𝐘(𝐏) to be linear. 

The most obvious local measure for parameter 

ranking seems to be the absolute value of the partial 

derivative of the objective function (G for gradient): 

𝐼𝑙
G = |

1

𝑁
∑

1

𝑁𝑖

∑
2𝑆𝑖𝑗,𝑙𝐷𝑖𝑗

(𝜎𝑖𝑗
exp

)
2

𝑁𝑖

𝑗=1

𝑁

𝑖=1

| (10) 

By averaging the signed terms, this measure can take into 

account the correlated change in various model outputs. 

However, again, this should be multiplied with the 

parameter uncertainty to obtain a more reliable measure: 

𝐼𝑙
GU = 𝜎𝑙𝐼𝑙

G (11) 
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Results of reaction ranking 

Brute force local sensitivity analysis on the 

simulation results of all considered 2373 data points was 

carried out by symmetrically perturbing all the 562 rate 

coefficients (25 of them are low-pressure limit (LP) rate 

coefficients) of the ELTE+Glarborg mechanism with 5% 

of their nominal values. All the six parameter impacts 

were calculated and the 10 highest ranked reactions were 

identified in each cases (see Table 2). Note that the 

optimal order of inclusion of datasets into the 

optimization could also be determined based on these 

measures, however, we wanted to focus on the parameter 

ranking performance of the impact measures thus the 

whole data collection was used in every optimization 

steps. 

In the case of the 10 most important reactions 

identified by measure S (local sensitivity analysis), the 

perturbation of A parameters affects a large number of the 

simulation results significantly. These reactions without 

exception are also important in the combustion of simpler 

fuels, such as hydrogen (R1, R13, R9 LP), syngas (R24, 

R27, R26), methanol (R82, R83, R40) and H2/O2/NOx 

(R197), whereas none of the reactions specific to the 

methanol/NOx system showed up. These simpler 

systems have been investigated by our group; thus, the 

already optimized values of the A parameters and their 

posterior uncertainties were used as initial parameter and 

uncertainty values, respectively, in this study. Typically, 

these uncertainties are significantly lower than the prior 

uncertainties of the other, not yet optimized parameters 

taken from the literature. Thus, even though these 

reactions are influential, their low uncertainties limit their  

potential to reduce the objective function. Furthermore, 

we do not intend to optimize these already well-known 

parameters as their uncertainties probably cannot be 

reduced further. The G strategy also selected almost 

exclusively non-system specific reactions (except for the 

9th and 10th) which is due to the fact that this measure 

does not incorporate parameter uncertainty information. 

On the contrary, the other four measures (SU, SUE, 

SUED and GU), that took parameter uncertainty into 

account, properly ranked high several reactions playing 

role in the interaction between carbon containing species 

and nitrogen oxides: R389, R362 and R363 are specific 

to the methanol/NOx system, whereas R368 is also 

important in the syngas/NOx system. The optimization of 

these reactions is expected to not only decrease the error 

function value efficiently, but the uncertainty of the 

parameters and model predictions as well. These four 

strategies also identified some of the previously 

discussed reactions of low uncertainty, but only at lower 

ranks. The GU strategy which also incorporates all the 

four factors similarly to SUED, gave the same group of 

reactions in the first 8 ranks as SUED. 

 

Results of parameter optimization 

For each determined ranking, a 10-step sequential 

optimization of the ELTE+Glarborg mechanism was 

carried out by including the parameters one by one into 

the procedure and optimizing more and more parameters 

together. 

 Table 2 The 10 most important reactions of the ELTE+Glarborg mechanism identified and ranked by the six 

parameter impact measures. LP: Low pressure limit, DUP1: 1st parameter set of a duplicate reaction 
 Rank     R# Reaction                                                        Impact  Rank   R# Reaction                                                          Impact 

S 

1 R82 CH3OH + OH = CH3O + H2O 0.55 

S 

U 

1 R389 CH3OH + NO2 = HONO + CH2OH 0.67 

2 R83 CH3OH + OH = CH2OH + H2O 0.55 2 R83 CH3OH + OH = CH2OH + H2O 0.54 

3 R1 H + O2 = O + OH 0.46 3 R82 CH3OH + OH = CH3O + H2O 0.40 
4 R24 CO + OH = CO2 + H 0.45 4 R27 HCO + O2 = CO + HO2 0.36 

5 R13 HO2 + OH = H2O + O2 0.43 5 R368 HCO + NO2 = NO + CO2 + H 0.32 

6 R27 HCO + O2 = CO + HO2 0.41 6 R362 CH2O + NO2 = HONO + HCO 0.32 

7 R197 NO + HO2 = NO2 + OH 0.40 7 R84 CH3OH + O2 = CH2OH + HO2 0.26 

8 R26 HCO + M = H + CO + M (LP) 0.39 8 R202 NO2 + HO2 = HNO2 + O2 0.25 

9 R40 CH2O + OH = HCO + H2O 0.34 9 R40 CH2O + OH = HCO + H2O 0.24 
10 R9 H + O2 + M = HO2 + M (LP) 0.33 10 R26 HCO + M = H + CO + M (LP) 0.24 

S 

U 

E 

1 R14 HO2 + HO2 = H2O2 + O2 (DUP1) 1.65 

S 

U 
E 

D 

1 R389 CH3OH + NO2 = HONO + CH2OH 2.82 

2 R389 CH3OH + NO2 = HONO + CH2OH 1.25 2 R362 CH2O + NO2 = HONO + HCO 2.25 
3 R27 HCO + O2 = CO + HO2 1.23 3 R27 HCO + O2 = CO + HO2 2.14 

4 R362 CH2O + NO2 = HONO + HCO 1.22 4 R83 CH3OH + OH = CH2OH + H2O 2.06 

5 R368 HCO + NO2 = NO + CO2 + H 0.81 5 R14 HO2 + HO2 = H2O2 + O2 (DUP1) 1.95 
6 R83 CH3OH + OH = CH2OH + H2O 0.66 6 R82 CH3OH + OH = CH3O + H2O 1.85 

7 R82 CH3OH + OH = CH3O + H2O 0.59 7 R368 HCO + NO2 = NO + CO2 + H 1.77 

8 R26 HCO + M = H + CO + M (LP) 0.43 8 R26 HCO + M = H + CO + M (LP) 1.44 
9 R363 CH2O + NO2 = HNO2 + HCO 0.26 9 R40 CH2O + OH = HCO + H2O 1.01 

10 R40 CH2O + OH = HCO + H2O 0.21 10 R202 NO2 + HO2 = HNO2 + O2 0.90 

G 

1 R27 HCO + O2 = CO + HO2 37.02 

G 
U 

1 R389 CH3OH + NO2 = HONO + CH2OH 17.25 

2 R82 CH3OH + OH = CH3O + H2O 31.94 2 R362 CH2O + NO2 = HONO + HCO 11.91 
3 R14 HO2 + HO2 = H2O2 + O2 (DUP1) 28.71 3 R14 HO2 + HO2 = H2O2 + O2 (DUP1) 10.70 

4 R24 CO + OH = CO2 + H 27.07 4 R27 HCO + O2 = CO + HO2 8.53 

5 R83 CH3OH + OH = CH2OH + H2O 24.27 5 R83 CH3OH + OH = CH2OH + H2O 6.54 
6 R1 H + O2 = O + OH 21.92 6 R368 HCO + NO2 = NO + CO2 + H 5.90 

7 R13 HO2 + OH = H2O + O2 20.12 7 R82 CH3OH + OH = CH3O + H2O 5.57 

8 R26 HCO + M = H + CO + M (LP) 19.29 8 R26 HCO + M = H + CO + M (LP) 3.29 
9 R199 NO2 + H = NO + OH 17.02 9 R396 CH2OH + NO = HNCO + H2O 3.01 

10 R197 NO + HO2 = NO2 + OH 16.41 10 R196 HNO + NO2 = HONO + NO 2.72 
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In Figure 1, the performance of the strategies is 

compared by the change of the error function values with 

the optimization steps. In each strategy, there were one 

or two major steps in which the fitting error E of the 

model decreased the most significantly and only minor 

improvements were attained in the other steps. This large 

improvement corresponded to the optimization of the rate 

parameter of reactions R82 for strategy S (1st step), 

reaction R83 for strategies S (2nd) and SU (2nd), reaction 

R27 for strategies G (1st), SUE (3rd), SUED (3rd) and GU 

(4th). Reaction R27 was selected at ranks 6 and 4 for 

strategies S and SU, respectively, but had a little effect 

on the error. The best first choice was made by measure 

G, however by step 4 it became the worst performing 

strategy. Similarly, strategy S selected two very 

influential reactions in the beginning, but from then it 

could hardly improve the error and its performance 

became the second worst from step 5. The other four 

strategies, SU, SUE, SUED and GU allowed a steady 

decrease of the error function value and behaved very 

similarly in steps 7-10. These strategies produced 

basically the same final error function values with 

negligible differences. The common characteristic in 

these measures (SU, SUE, SUED and GU) is that they all 

incorporate the uncertainty of the parameters, whereas 

strategies S and G do not, which clearly demonstrate that 

uncertainty information needs to be taken into account 

during parameter selection.  

Figure 2 shows the evolution of the optimized 

parameter values with respect to their prior uncertainty  
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Figure 1 Evolution of the error function values during 

the optimization processes according to the different 

strategies. 

range (i.e. ln(𝐴optimized/𝐴0)/ (3𝜎)). A common feature 

of all graphs is that the optimized values of most 

parameters were keep changing whenever additional 

parameters were included into the optimization, which 

implies that their values are correlated. For example, one 

can observe that there is a large (anti)correlation between 

the rate coefficients of competing methanol consuming 

reactions R82, R83 and R389 (see Figs. 2b-f). 
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Figure 2 Evolution of the optimized A parameter values with respect to their prior uncertainty range during the 

hierarchical optimization defined by the six different parameter impact measures. The points are connected with 

straight lines just to ease the eye to follow their tendencies. In the right little subpanels, the final values of the 

parameters with their posterior uncertainty ranges are shown, which may look distorted as there is a scale change at 

the uncertainty limits (at 1). The line colors and types correspond to the same reaction across all panels, whereas 

symbol types denote the ranking of the parameters.  
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Table 3 Initial and optimized ln 𝐴 and 3𝜎(ln 𝐴) values of the investigated reactions in the different strategies. The 

reduced posterior uncertainties are indicated with bold, the hugely increased ones with italic characters. 
Reaction Initial S SU SUE SUED G GU 

R82 CH3OH + OH = CH3O + H2O –4.57 ±0.52 –4.22 ±0.46 –4.32 ±0.31 –4.11 ±0.27 –4.30 ±0.26 –4.28 ±0.45 –4.19 ±0.26 

R83 CH3OH + OH = CH2OH + H2O 22.71 ±0.81 21.91 ±0.49 21.91 ±0.32 21.91 ±0.26 21.93 ±0.28 21.91 ±0.54 21.91 ±0.26 

R1 H + O2 = O + OH 36.16 ±0.07 36.09 ±0.61 –  –  –  36.09 ±0.58 –  
R24 CO + OH = CO2 + H 9.72 ±0.07 9.78 ±0.34 –  –  –  9.78 ±0.37 –  

R13 HO2 + OH = H2O + O2 27.59 ±0.21 27.38 ±0.60 –  –  –  27.38 ±0.81 –  

R27 HCO + O2 = CO + HO2 29.66 ±0.69 29.56 ±0.30 29.50 ±0.65 29.48 ±0.62 29.35 ±0.63 29.66 ±0.34 29.28 ±0.67 
R197 NO + HO2 = NO2 + OH 31.45 ±0.19 31.35 ±0.53 –  –  –  31.45 ±0.75 –  

R26 HCO + M = H + CO + M (LP) 24.62 ±0.51 24.29 ±0.34 24.11 ±0.70 24.11 ±0.65 24.11 ±0.67 24.39 ±0.31 24.11 ±0.70 

R40 CH2O + OH = HCO + H2O 24.52 ±0.60 24.99 ±0.59 23.91 ±0.57 23.91 ±0.60 23.91 ±0.55 –  –  
R9 H + O2 + M = HO2 + M (LP) 45.41 ±0.12 45.29 ±0.66 –  –  –  –  –  

R389 CH3OH + NO2 = HONO + CH2OH 5.01 ±4.61 –  0.42 ±24.52 2.75 ±0.91 0.41 ±23.62 –  2.93 ±4.65 

R368 HCO + NO2 = NO + CO2 + H 30.77 ±2.30 –  30.25 ±0.62 30.54 ±0.55 30.36 ±0.58 –  30.47 ±0.55 
R362 CH2O + NO2 = HONO + HCO –15.78 ±4.61 –  –14.67 ±0.52 –17.98 ±18.14 –14.65 ±0.51 –  –14.76 ±0.44 

R84 CH3OH + O2 = CH2OH + HO2 32.12 ±2.16 –  34.28 ±3.00 –  –  –  –  

R202 NO2 + HO2 = HNO2 + O2 2.94 ±2.30 –  4.91 ±0.71 –  4.55 ±0.99 –  –  
R14 HO2 + HO2 = H2O2 + O2 (DUP1) 23.22 ±1.12 –  –  24.33 ±1.46 24.33 ±1.75 24.33 ±2.14 24.33 ±1.60 

R363 CH2O + NO2 = HNO2 + HCO –2.21 ±2.30 –  –  0.05 ±0.75 –  –  –  

R199 NO2 + H = NO + OH 32.69 ±0.09 –  –  –  –  32.77 ±0.66 –  
R396 CH2OH + NO = HNCO + H2O 25.33 ±2.30 –  –  –  –  –  23.03 ±44.71 

R196 HNO + NO2 = HONO + NO 10.69 ±1.61 –  –  –  –  –  9.08 ±1.93 

 

For some non-methanol/NOx system specific reactions 

that have been optimized in previous studies and thereby 

have small prior uncertainties, the A parameters hit their 

uncertainty limits and stayed there for subsequent steps. 

This behavior could be observed for reaction R83 in the 

case of all strategies, and for reaction R14 in the case of 

strategies SUE, SUED, G and GU, which all incorporate 

experimental error information. Strategy S prioritized 

rate coefficients that were highly constrained by previous 

studies, thus most of the parameters immediately hit their 

uncertainty boundary and stayed there for most 

subsequent steps. A similar picture was starting to 

develop for strategy G, however, it could not be fully 

observed due to the missing data points. We can conclude 

that the error stagnation for strategies S and G is due to 

their preferred selection of highly influential parameters 

that usually have small uncertainties, thus, their early 

hitting of boundaries renders them practically untunable. 

Figure 2 also shows the final optimized parameters 

and their posterior uncertainty with respect to their prior 

uncertainty range, whereas the actual values are tabulated 

in Table 3. Table 3 indicates reduced posterior 

uncertainties with bold, and hugely increased ones with 

italic characters. At first glance, it is obvious that 

strategies S and G gave not only wider posterior 

uncertainties relative to the prior ones compared to other 

strategies, but they actually predicted hugely larger 

posterior uncertainties than the prior ones for half of their 

selected reactions (e.g. 8 times larger for R1). This is also 

the consequence of their preferred choice of reactions 

with low prior uncertainties. For the other four strategies, 

such huge uncertainty increases could be observed only 

in some single cases: R389 for SU and SUED, R362 for 

SUE and R396 for GU. The common in these reactions 

is that they have a high prior uncertainty (fprior = 1 for 

R396, 2 for R389 and R362), and accordingly R389 and 

R362 were selected very early in all four strategies that 

incorporate uncertainty information. The optimized ln 𝐴 

value of R389 changed significantly after the inclusion of 

each new parameter, and only strategy SUE could reduce 

its uncertainty, whereas strategies SU and SUED gave 

huge posterior uncertainties for it. Reaction R396 was 

selected only by strategy GU and at a low rank of 9, 

which is probably due to its large uncertainty and 

moderate sensitivity. Parameter 𝐴 of reaction R362 was 

consistently optimized by strategies SU, SUED and GU, 

which suggests that its mistuned value with high 

uncertainty obtained by strategy SUE should be ignored. 

The origin of this failure can be clearly identified as the 

inclusion of the competitive reaction R363, which was 

selected only by strategy SUE, in the 9th step. In Figure 2, 

the dashed blue line corresponding to reaction R362 

evolves for strategy SUE in the same manner as for 

strategies SU, SUED and GU (see panels c vs. b, d and e) 

as long as reaction R363 (dashed cyan line) is not 

included into the optimization, which mistunes the ln 𝐴 

value of reaction R362. In summary, one should be 

careful optimizing parameters with very high 

uncertainties, as they can have low sensitivity in their 

whole prior uncertainty range or they can be easily tuned 

into regions where the simulation results may become 

locally insensitive to them or when they are tuned 

together with a competing, correlated reaction, as these 

eventually can result in huge posterior uncertainties.  

All methods selected and gave final optimized ln 𝐴 

values and reduced uncertainties in good agreement for 

reactions R82 and R83, and the match is almost perfect 

for the latter reaction, however, this is probably because 

its value hit the lower prior uncertainty limit. Multiple 

strategies gave final values with significantly reduced 

uncertainties in good agreement for reactions R368, 

R362 and R202, thus their results can also serve as new 

recommendations after suitable averaging.  

 

Conclusions 

Based on the results of a 10-parameter optimization 

procedure, one can recommend those measures for 

parameter selection that incorporate parameter 

uncertainties (SU, SUED, SUE and GU) as they had a 

significantly better performance in the long run than 
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those that did not (S and G). However, as the largest 

initial improvement was achieved by these latter two 

strategies, the efficiency of them might be significantly 

improved if parameter impacts are recalculated either 

regularly or after all major improvements for not all, but 

for an initially identified larger group of parameters. The 

SU, SUE, SUED and GU strategies performed very 

similarly regarding the minimization of the objective 

function, thus further studies are needed to differentiate 

their performance. Regarding posterior parameter and 

uncertainty estimates, strategy GU can be picked as the 

most reliable one, as it failed only for one reaction that it 

ranked only at the 9th position, it kept the uncertainties of 

already well-constrained reactions at low values, and 

finally it provided the lowest uncertainties for all 

important rate parameters that were also identified by 

other strategies incorporating uncertainty information. 

 

Acknowledgements 

This work was supported by the Hungarian National 

Research, Development and Innovation Office [NKFIH 

grants K132109 and FK134332] and the New National 

Excellence Program of the Ministry for Innovation and 

Technology [ÚNKP-20-3] from the source of the 

National Research, Development and Innovation Fund. 

 

References 

[1] D. Miller, M. Frenklach, Sensitivity analysis and 

parameter estimation in dynamic modeling of 

chemical kinetics, Int. J. Chem. Kinet. 15 (1983) 

677–696. 

[2] M. Frenklach, Transforming data into knowledge—

Process Informatics for combustion chemistry, 

Proc. Combust. Inst. 31 (2007) 125–140. 

[3] H. Wang, D.A. Sheen, Combustion kinetic model 

uncertainty quantification, propagation and 

minimization, Prog. Energy Combust. Sci. 47 

(2015) 1–31. 

[4] D.A. Sheen, H. Wang, The method of uncertainty 

quantification and minimization using polynomial 

chaos expansions, Combust. Flame. 158 (2011) 

2358–2374. 

[5] L. Cai, H. Pitsch, Mechanism optimization based on 

reaction rate rules, Combust. Flame. 161 (2014) 

405–415. 

[6] T. Nagy, T. Turányi, Uncertainty of Arrhenius 

Parameters, Int. J. Chem. Kinet. 43 (2011) 359–378. 

[7] T. Nagy, É. Valkó, I. Sedyó, I.G. Zsély, M.J. 

Pilling, T. Turányi, Uncertainty of the rate 

parameters of several important elementary 

reactions of the H2 and syngas combustion systems, 

Combust. Flame. 162 (2015) 2059–2076. 

[8] T. Turányi, T. Nagy, I.G. Zsély, M. Cserháti, T. 

Varga, B.T. Szabó, I. Sedyó, P.T. Kiss, A. 

Zempléni, H.J. Curran, Determination of rate 

parameters based on both direct and indirect 

measurements, Int. J. Chem. Kinet. 44 (2012) 284–

302. 

[9] T. Varga, T. Nagy, C. Olm, I.G. Zsély, R. Pálvölgyi, 

Valkó, G. Vincze, M. Cserháti, H.J. Curran, T. 

Turányi, Optimization of a hydrogen combustion 

mechanism using both direct and indirect 

measurements, Proc. Combust. Inst. 35 (2015) 589–

596. 

[10] T. Varga, C. Olm, T. Nagy, É. Valkó, R. Pálvölgyi, 

H.J. Curran, T. Turányi, I.G. Zsély, É. Valkó, R. 

Pálvölgyi, H.J. Curran, T. Turányi, Development of 

a joint dydrogen and syngas combustion 

mechanism based on an optimization approach, Int. 

J. Chem. Kinet. 48 (2016) 407–422. 

[11] C. Olm, T. Varga, É. Valkó, H.J. Curran, T. 

Turányi, Uncertainty quantification of a newly 

optimized methanol and formaldehyde combustion 

mechanism, Combust. Flame. 186 (2017) 45–64. 

[12] M. Kovács, M. Papp, I.G. Zsély, T. Turányi, 

Determination of rate parameters of key N/H/O 

elementary reactions based on H2/O2/NOx 

combustion experiments, Fuel. 264 (2020) 116720. 

[13] M. Frenklach, H. Wang, M.J. Rabinowitz, 

Optimization and analysis of large chemical kinetic 

mechanisms using the solution mapping method - 

combustion of methane, Prog. Energy Combust. 

Sci. 18 (1992) 47–73. 

[14] M. Kovács, M. Papp, I.G. Zsély, T. Turányi, Main 

sources of uncertainty in recent methanol/NOx 

combustion models, Int. J. Chem. Kinet. in press 

(2021) https://doi.org/10.1002/kin.21490. 

[15] P. Glarborg, J.A. Miller, B. Ruscic, S.J. 

Klippenstein, Modeling nitrogen chemistry in 

combustion, Prog. Energy Combust. Sci. 67 (2018) 

31–68. 

[16] T. Varga, C. Olm, M. Papp, Á. Busai, I.G. Zsély, 

ReSpecTh Kinetics Data Format Specification v2.3, 

(2020). 

[17] ELTE Chemical Kinetics Laboratory and MTA-

ELTE Complex Chemical Systems Research 

Group, ELTE Institute of Chemistry, ReSpecTh 

webpage. http://www.respecth.hu. 

[18] M. Frenklach, PrIMe Webpage. 

http://www.primekinetics.org/. 

[19] T. Varga, M. Papp, Á. Busai, I.G. Zsély, Optima++ 

package v2.0.0: A general C++ framework for 

performing combustion simulations and mechanism 

optimization, (2021). http://respecth.hu. 

[20] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, 

OpenSMOKE++: An object-oriented framework 

for the numerical modeling of reactive systems with 

detailed kinetic mechanisms, Comput. Phys. 

Commun. 192 (2015) 237–264. 

[21] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, 

OpenSMOKE++ 0.12.0. 

https://www.opensmokepp.polimi.it/. 

[22] NIST Chemical Kinetics Database, Version 7.0, 

Release 1.6.8, Data version 2015.09. 

http://kinetics.nist.gov/. 

 


