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Abstract  
Robust and accurate chemical kinetics models of low uncertainty are required to aid the development of novel 

combustion devices using simulations. Parameter optimization against experimental data is a possible way to develop 

such models. A proper objective function that can handle reference data of different types and magnitudes is obtained 

by normalizing the deviations by the corresponding experimental error. We propose a novel model-free method and a 

corresponding code, called Minimal Spline Fit, to estimate the statistical noise of experimental data series and to 

predict its noise-free profile.  

 

Introduction 

Over the past decades, the efforts of the gas kinetics 

community, helped by the advancement of experimental 

and theoretical methods and computers, led to an 

immense increase in mechanistic and kinetic knowledge, 

which allowed the assembly of detailed kinetic reaction 

mechanisms in combustion chemistry [1]. Kinetic 

reaction mechanisms are models of the reacting system 

that contain not only the reactions of species but also their 

corresponding kinetic, thermodynamic and transport 

parameters. A possible error of the mechanisms is that 

certain mechanistic details are missing. Also, the 

parameters are usually uncertain, which leads to 

uncertainties in model predictions. The reliability of 

models can be increased by reducing their uncertainty via 

tuning and constraining their parameters using not yet 

considered or newly published experimental data and 

theoretical results. In direct experiments, the measured 

properties are exclusively determined by a single reaction 

step, thus they provide direct information on its rate 

parameters. Indirect measurements focus on global 

properties, like ignition delay time, laminar burning 

velocity and concentration data etc., which can be 

reproduced by simulations using complex reaction 

mechanisms only.  

The first kinetic parameter optimization studies on 

combustion kinetic mechanisms were carried out by 

Frenklach et al. [2,3] and Sheen and Wang [4,5]. A 

similar method was recently applied by Pitsch and his 

coworkers [6]. The most comprehensive determination 

and uncertainty minimization of kinetic parameters in a 

detailed reaction mechanism can be achieved by fitting 

the model results to all available direct and indirect 

experimental data and theoretical results on the system 

[7]. This approach allowed the efficient global 

optimization of all Arrhenius parameters in their joint 

uncertainty domain of all important reactions [8–10]. 

This methodology has been used for the development of 

several detailed reaction mechanisms (see e.g. refs. 

[11,12]). 
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Mechanism optimization is always based on the 

minimization of an objective function that measures the 

deviation of model results from the experimental data. A 

proper objective function that can handle reference data 

of different types, dimensions and magnitudes is obtained 

by normalizing the deviations by the corresponding 

experimental error [7]. The following objective function, 

has been applied in several studies:  
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Here, 𝑁 is the number of data series, 𝑁𝑖 is the number of 

data within the series, 𝑌𝑖𝑗
sim  and 𝑌𝑖𝑗

exp
 are the properly 

transformed simulated and experimental data, 

respectively. The uncertainty of the experimental dataset 

( 𝑌𝑖𝑗
exp

, 𝑗 = 1, … , 𝑁𝑖 ) is characterized by 𝜎𝑖  standard 

deviation. A safe upper estimate can be given to 

experimental errors based on systematic variations (𝜎sys) 

and statistical errors (𝜎stat) using the following formula 

[13], which assumes that they are uncorrelated: 

𝜎 = √𝜎sys
2 + 𝜎stat

2  (2) 

Systematic errors are usually reported by the 

experimentalist or at least approximately known for most 

standard experimental devices and methods. The 

statistical noise can be assessed from measurements 

repeated at identical conditions. However, the 

measurements are typically not repeated at identical 

conditions and the data are usually measured as part of a 

series, where one of the experimental conditions (e.g. 

temperature ( 𝑇 ), equivalence ratio (), time (t)) is 

systematically changed or changing. In the following, 

with the term data series, we mean a data set with such a 

dependence on a provided independent variable. 

Points of such data series contain statistical noise, 

which could be extracted if we knew their noise-free 

dependence on the varied condition variable. Here, we 

propose a novel method and a code to find such function 
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based exclusively on the data. Using this function, we can 

estimate the statistical noise of the data series. Note, that 

this function will not only capture systematic changes, 

but systematic errors, too, which could be determined 

only by using more accurate measurement techniques, 

thus cannot be decomposed by data processing.  

 

Experimental data and its transformation 

Let us assume, that we have a noisy data series, 

composed of 𝑁 data pairs: 

(𝑥𝑗 , 𝑦𝑗) 𝑗 = 1, … , 𝑁. (3) 

Here, 𝑥𝑗 denotes the jth value of the independent variable, 

which is changing or is systematically changed in the 

experiment (e.g. time, temperature, equivalence ratio, 

etc.), and 𝑦𝑗  denotes the corresponding measured data. 

We assume that the 𝑥𝑗 values are known without error, 

whereas values 𝑦𝑗 have random noise of similar origin.  

Often there is an underlying knowledge on the 

expected form of the true 𝑦 (𝑥) function. For example, in 

the case of the rate coefficient of an elementary reaction, 

the extended Arrhenius expression ( 𝑘(𝑇) =
𝐴𝑇𝑛 exp(−𝐸/𝑅𝑇) ) is often used as a good 

approximation for its temperature dependence. In this 

case either a variable or an equivalent axis transformation 

(e.g. 𝑌𝑗 = 𝑓𝑦(𝑦𝑗) and 𝑋𝑗 = 𝑓𝑥(𝑥𝑗)) is applied to resolve 

data variations of different orders of magnitude (e.g. 𝑌𝑗 =

ln 𝑦𝑗 , where 𝑦𝑗 = 𝑘(𝑇𝑗) ) or uneven distribution (e.g. 

𝑋𝑗 = 1/𝑥𝑗 , where 𝑥𝑗 = 𝑇𝑗 ), but most importantly to 

obtain the same noise distributions implying equal 

standard deviations for each 𝑓𝑦(𝑦𝑗)  transformed data 

point: 

𝑌𝑗 = {

𝑦𝑗 if 𝜎(𝑦𝑗)– s         are the same

ln 𝑦𝑗 if 𝜎(ln 𝑦𝑗)– s    are the same

𝑓𝑦(𝑦𝑗) if 𝜎(𝑓𝑦(𝑦𝑗))– s are the same.

 (4) 

In the following, the common standard deviation of the 

transformed dataset, {𝑌𝑗 , 𝑗 = 1, … , 𝑁} will be denoted by 

𝜎 . The transformed experimental values with their 

standard deviations and corresponding simulated values 

are used in the objective function (see Eq. (1)). 

Regarding the indirect combustion measurements: 

ignition delays are controlled by the rate of one or few 

elementary reactions in not too wide temperature 

intervals, thus an Arrhenius-type transformation can also 

be applied to them. In the case of concentrations 

measured in shock tubes, flow reactors, perfectly stirred 

reactors, depending on the measurement technique, 

logarithmic or no transformation should be applied. If the 

signal is proportional to the concentration then errors are 

constant and no transformation is needed. If the signal is 

linear function of the logarithm of the concentration (e.g. 

in absorbance measurements), then logarithmic 

transformation of the concentrations is needed to have 

same error characteristics.  

An often used error type is the relative error, which is 

defined mainly for positive quantities, thus its scale is 

bounded from below by –1 (i.e. –100%), and apart from 

small changes it behaves asymmetrically. Instead, we 

recommend the use of error expressed on natural 

logarithmic scale, as it mimics relative error at small 

values (e.g. 0.2) due to the following property: 

ln𝑦𝑗 ≈
𝑦𝑗

𝑦𝑗

         if  |ln𝑦𝑗| ≪ 1, (5) 

Furthermore, it can describe even large changes 

symmetrically and unlimitedly in both positive and 

negative directions. 

 

Determination of the random noise of a dataset 

If the noise-free 𝑌(𝑋) dependence between variables 

𝑋 and 𝑌 were known (i.e. the expected value of 𝑌𝑗: 𝜇𝑗 =

𝑌(𝑋𝑗)), then the population variance of the statistical 

noise (i.e. 𝜎2) superposed on the data could be estimated 

by the mean squared deviations between data 𝑌𝑗 and its 

expected value at the corresponding 𝑋𝑗:  

𝜎2
1

𝑁
∑ (𝑌𝑗 − 𝑌(𝑋𝑗))

2
𝑁

𝑗=1

. (6) 

However, the exact 𝑌(𝑋) function is not known, thus 

usually an appropriate flexible model function 𝑌fit(𝑋; 𝐏), 

which contains p number of unknown parameters (𝐏 =
(𝑃1, … , 𝑃𝑝)), is fitted to the data by minimizing the sum 

of squared deviations. Let 𝐏opt denote the vector of 

parameter values that minimize the deviation. If this 

minimum value is divided by the number of degrees of 

freedom, 𝜈 = 𝑁 − 𝑝, it serves as an unbiased estimator 

of the variance of the noise population, assuming that 

𝑌(𝑋; 𝐏opt) is a good approximation to 𝑌(𝑋): 

varfit = 𝜎fit
2   

1

𝜈
∑ (𝑌𝑗 − 𝑌(𝑋𝑗; 𝐏opt))

2

.

𝑁

𝑖=1

 (7) 

The obtained variance can be used in the error function 

to normalize the squared deviation of the simulated and 

experimentally determined 𝑌𝑗 values. The square root of 

the variance estimator is only a biased estimator for the 

standard deviation (𝜎 ) of the noise population, as no 

generally applicable unbiased estimator exists for 𝜎 . 

Nevertheless, this 𝜎  value can be used to estimate the 

statistical error 𝜎stat of the data points. The estimate of 

the variance depends on the goodness of the fitting 

function. If it doesn’t capture the systematic evolution of 

the data, then it will overestimate the noise variance. If it 

captures its systematic evolution and also some of the 

noise, then it will underestimate the noise variance. To 

minimize such errors, a class of functions of increasing 

flexibility should be used for fitting and the fitting should 

be stopped where all systematic behaviour is described, 

but no noise is picked up. 

 

Fitting functions - Polynomials 

Polynomials are standard functions used for 

approximating non-periodic analytic functions: 

𝑌poly−𝑛(𝑋; 𝐏) = 𝑎0 + 𝑎1𝑋+. . . +𝑎𝑛𝑋𝑛 (8) 
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Here, 𝑛 is the order of the polynomial, which is the power 

of X in the highest-order term with non-zero coefficient 

(𝑎𝑛 ≠ 0) . The parameters of the polynomial are the 

coefficients of the monomial terms, that is 𝐏 =
(𝑎0, … , 𝑎𝑛), thus 𝑝 = 𝑛 + 1. All analytic functions can 

be approximated with its Taylor series, thus with 

increasing the order, a more and more flexible functional 

form is obtained, and in theory most data evolutions can 

be captured with a polynomial of sufficient high order. A 

n-th order polynomial can go through any 𝑛 + 1  data 

points with different 𝑋𝑗  values, thus can be used for 

interpolation, too. Furthermore, coefficients of the best 

fitting polynomial of a given order can be calculated by 

solving a system of linear equations, and thus can be 

directly calculated for any order. However, for very high 

orders, such as 𝑛 = 10, the coefficients and the evaluated 

values can have high numerical errors even at double 

precision accuracy, which limits their applicability. 

Furthermore, polynomial coefficients and thus 

polynomial values depend on all data points considered 

during fitting, which can result in unexpected oscillations 

of high-order polynomials between data points of 

similarly magnitude if at other values steep changes are 

captured. This is called the Runge’s phenomenon  in 

polynomial interpolation [14]. 

 

Splines with optimized control points 

We propose a novel type of fitting function based on 

an unusual application of splines. Splines are piecewise 

polynomials, which are used for interpolation and 

smoothing of data points. Interpolating splines go 

through all of their defining points, called knots or 

control points. The spline curves between adjacent knots 

are determined by at most only a few neighbouring data 

points, thus are insensitive to steep changes more than a 

few points away. Consequently, they are much more 

flexible functions than polynomials and can adapt to 

large variations in steepness.  

However, splines cannot be used directly for fitting as 

noisy data points cannot serve as control points. Instead, 

independently from the data points, let us assume a spline 

function defined by 𝑛  control points, which lie in the 

same space as the investigated series of data pairs: 

(𝑋𝑐𝑗 , 𝑌𝑐𝑗) 𝑗 = 1, … , 𝑛. (9) 

We assume that the 𝑋𝑐𝑗  values are different and are in 

ascending order, and the first and the last of them are 

fixed to the minimum and the maximum values of the 

data series, respectively. 

min
𝑗=1,..,𝑁

𝑋𝑗 =: 𝑋𝑐1
 

<. . . < 𝑋𝑐𝑛: = max
𝑗=1,..,𝑁

𝑋𝑗  (10) 

Thus, the remaining free,  𝑝 = 2𝑛 − 2 coordinates of the 

control points serve as the parameters of the 𝑌(𝑋 ; 𝐏 ) 

spline function:  

𝐏 = (𝑋𝑐2, … , 𝑋𝑐,𝑛−1, 𝑌𝑐1, … , 𝑌𝑐𝑛). (11) 

Depending on the order of polynomials between the 

adjacent knots and their connection properties at the 

control points (e.g. continuous differentiability), one can 

  
Figure 1 Comparison of interpolating functions.  

define various splines. Linear splines connect control 

points with straight lines. Fitting a continuous, piecewise 

linear function (i.e. linear splines) to dense noise data is 

useful if a smoothed data set is needed as an input in 

another program, which reconstructs the original profile 

from it by linear interpolation. A natural cubic spline 

employs cubic polynomials between control points and is 

twice continuously differentiable at the knots. A special 

type of cubic spline is the Akima spline [15], which is 

especially cheap to evaluate and do not lead to unphysical 

wiggles in the resulting curve opposed to natural splines 

and higher-order polynomials.  Akima splines, however, 

only once continuously differentiable at the knots, which 

may limit their use for certain purposes.  

Figure 1 demonstrates the advantageous properties of 

Akima splines on an interpolation example between 9 

points that follow each other with largely varying 

steepness. The 8th-order polynomial and the natural cubic 

spline show unexpected, large-amplitude oscillations 

between points (i.e. Runge phenomenon), whereas 

Akima splines follow the evolutions of control points 

naturally, without wiggles. In the next chapter, we 

discuss measures for the prediction error of the fit that 

penalize both under- and overfitting and thereby help us 

to find polynomials of optimal order, and splines with 

optimal number of control points. 

 

Measures for the prediction error of the fit 

A standard measure for quantifying the scatter of data 

points around a fitting curve is the root-mean-square 

deviation (RMSDfit), which is proportional to the square 

of the variance of the fit: 

RMSDfit√
1

𝑁
∑ (𝑌𝑖 − 𝑌(𝑋𝑖; 𝐏opt))

2
𝑁

𝑖=1

 (12) 

This quantity takes into account underfitting only and 

decreases monotonically as the flexibility of the fitting 

curve is systematically increased.  

A better measure, which is also used to estimate the 

standard deviation of the noise sample in the data series, 

is the square root of the variance, as it takes into account 

the decrease of degrees of freedom with increasing 

parameter number: 

σdata ≈ σfit ≈ √varfit = √𝑁/𝜈 RMSDfit
 . (13) 
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It becomes non-applicable when the degrees of freedom 

𝜈  becomes zero, which happens when the number of 

parameters reaches the number of data points. This 

corresponds to a maximum polynomial order of 𝑛 = 𝑁 −
1, and maximum number of spline control points of  𝑛 =
[𝑁/2] + 1, where square bracket denotes integer part.  

The Akaike information criterion (AIC) estimates the 

out-of-sample prediction error and it assesses the relative 

quality of statistical models for a given data set [16,17]. 

It is calculated as:  

AIC = 2𝑝 − 2 ln ℒmax, (14) 

where ℒmax  denotes the maximum value of the 

likelihood function. For 𝑁  normally distributed 

residuals, it simplifies to: 

AIC = 2𝑝 + 𝑁 + 𝑁 ln
2𝜋 ∙ RMSDfit

2

𝑁
. (15) 

It estimates the relative amount of information lost by a 

model, which is used to represent the process that 

generated the noisy data. Better models lose less 

information, thus they have lower AIC value. When we 

have relatively low number of data points, comparable to 

the square of the number of parameters, AIC will overfit, 

which can be avoided by using a corrected AIC quantity 

(AICc) for model comparison [18–20]: 

AICc = AIC + 2
𝑝2 + 𝑝

𝑁 − 𝑝 − 1
 (16) 

For large number of data, where 𝑁 ≫ 2𝑝2, it converges 

to AIC, thus it is safe to use AICc in all cases. AIC and 

AICc penalizes both underfitting and overfitting, and can 

be used to estimate the relative likelihood of two models 

(e.g. for model A and model B): 

𝑃A

𝑃B

= exp (−
AIC(c)A − AIC(c)B

2  
). (17) 

For example, if AIC(c)A = AIC(c)B − 6, then model A is 

roughly 20 times more probably than model 𝐵, or with 

other words: we can state with roughly 95% statistical 

confidence that model A is better than model B.  

 

Optimal fitting functions and the noise of the data set 

Optimal polynomials and Akima splines are 

determined here in a combined function selection and 

parameter optimization procedure, in which functions of 

increasing flexibility are fitted to the data series. In the 

case of polynomials, this is achieved by increasing the 

polynomial order gradually (i.e. 𝑛=0,1,2,…), whereas for 

splines it can be done by taking more and more control 

points and optimizing their positions together. In the case 

of Akima spline at least 3 control points are needed (i.e. 

n=3,4, ...). If the global minimum is found at each 

investigated number of control points then the RMSDfit 

decreases monotonically with the number of control 

points. 

Increasing the number of degrees of freedom of the 

fitting curve, the function captures more accurately the 

noise-free, systematic evolution of the data series and the 

variance of the fit decreases steeply initially. At some 

complexity of the fitting function, the fit variance (see 

Eq. (6)) starts to stagnate with the number of parameters. 

The corresponding fitted curve is the best and simplest 

noise-free empirical model (“minimal spline” or 

minimal-order polynomial) and the corresponding root-

mean-square error estimates the statistical noise of the 

data series.  Increasing the complexity of the fitting 

function (i.e. the number of parameters) further, 

overfitting occurs as the noise profile of the data series 

are being captured gradually. However, noise cannot be 

fitted efficiently due to its random nature, thus the fit 

variance reduces much less steeply and this is the reason 

for the stagnation.  

Akaike information criterion (AIC or AICc) can also 

be used to identify the optimal model: the first local 

minimum in the value of AICc as a function of the 

number of parameter identifies the optimal model. 

However, all models which have an AICc value less than 

the corresponding value of the optimal model plus 6, are 

not significantly (with less than approx. 95% statistical 

confidence) worse than the optimal model.  

The optimal 𝑌(𝑋; 𝑷opt)  model can provide good 

estimates for the expected values of 𝑌 when evaluated at 

𝑋𝑗 values: 

𝜇𝑗 = 𝑌(𝑋𝑗) ≈ 𝑌(𝑋𝑗; 𝑷opt), (18) 

Thus the variance of the noise on the data set can be 

estimated using Eq. (7). In summary, in the case of a 

noisy data series, the optimal polynomial or spline curve 

provides an approximation to the noise-free model and 

the empirical variance provides a reliable estimate of the 

variance of the noise on the 𝑌𝑗 points of the dataset. 

 

Computer code Minimal Spline Fit 

The discussed method has been implemented in a 

Fortran code called Minimal Spline Fit, which can be 

downloaded from the respecth.hu webpage [21]. Fitting 

Akima splines to data via tuning the position of their 

control points is a challenging global optimization 

problem, thus the particle swarm algorithm (zxmwd.f) is 

used. However, this cannot always find the global 

optimum in reasonable time, therefore additional 

heuristics is employed in the search. Optimized positions 

of control points for the best spline at given number of 

knots are stored. If improvement in the fit is observed 

after adding a new control point then the code always 

takes back a single control point (tries each except for the 

first and last one) and optimizes the positions of the rest. 

If a smaller fitting error is achieved for this simpler spline 

than the one which has been previously stored, then 

further control points are taken back until no 

improvement is observed at a given number of knots. If 

improvement was observed for a given reduced number 

of control points, but not for fewer, then adding of control 

points is restarted from this size. This iterative adding and 

removal of control points can achieve strictly decreasing 

and small RMSDfit values much more efficiently than 

direct global optimization. The increase in flexibility of 



5 

 

polynomials and splines is stopped when AICc increases 

in two subsequent steps. 

 In spite of the extensive search for the optimal fitting 

function, sometimes visually incorrect fits are generated, 

especially when the 𝑋𝑗 data values of the series are rather 

unevenly distributed. In such cases, the data set should be 

split and variances should be determined separately for 

its parts, which should be averaged with proper 

weighting to estimate the variance of the whole data set. 

Due to such and similar issues, it is strongly 

recommended to check the fits visually by plotting them. 

For this purpose, programs that allow direct plotting of 

data files from command line are recommended (e.g. 

Gnuplot).  

 

Examples 

A 6th-order polynomial was used to generate 101 

points equidistant in X and a stochastic noise following 

Gaussian distribution (=0, =3) was added to the points. 

𝑌 = 5𝑋(𝑋 + 1)2(𝑋 − 1)(𝑋2 − 4) (19) 

Figure 2 shows the data, the noise-free polynomial and 

fit by 6th-order polynomial and the fits by Akima splines 

with 7 and 8 control points. The splines simulate closely 

the original noise-free polynomial similarly to the fitted 

6th-order polynomial. Figure 3 shows the evolution of the 

𝜎fit, AICc values and relative model probabilities with 

the number of parameters for both the polynomials and 

the Akima splines. The standard deviation of the 

Gaussian distribution used for sampling the noise (3.00), 

and the standard deviation of the noise sample on the data 

(2.84) are plotted with green solid and dashed lines, 

respectively. Estimated standard deviations for both 

series of fitting functions start to stagnate close to the 

latter value, when their AICc values reach a minimum: 

for polynomials from 6th order, for splines between 7-9 

control points. The example demonstrates that Akima 

splines can mimic efficiently high-order polynomials. 

For several data series, especially for those with low 

number of points, polynomials often fail to model the 

trend of the noisy data smoothly.  

Figure 2.  Fitting of a 6th-order polynomial and Akima-

splines with 7 and 8 control points to data (𝑁 = 101) 

obtained from a noisy 6th-order polynomial. 

Figure 3. Evolution of 𝜎fit, AICc and relative probability 

of the fitted models functions. 

Fig. 4 demonstrates that Akima splines are much more 

flexible than polynomials as they can fit a 5000-point 

noisy non-reactive pressure trace and store it in a noise-

free form using merely 15 control points. 
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Figure 4. Generating a noise-free profile for non-reactive 

pressure traces in RCM experiments. 

 

Conclusions 

A method based on polynomials and wiggles-free 

Akima splines and the corrected Akaike information 

criterion was developed for the efficient estimation of the 

statistical noise of data series obtained in combustion or 

other experiments. A corresponding code was also 

developed and made available online [22]. The method 

has been used several times to assess statistical noise of 

data series in all published mechanism comparison and 

optimization studies by Turányi and coworkers (see e.g. 

refs. [7,11–13,23]). The ReSpecTh database [21] stores 

large amount of combustion experimental data collected 

from the literature in RKD format, the latest 2.3 version 
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of it allows storing experimental error information 

obtained a posteriori using code Minimal Spline Fit. The 

RKD files can be directly read by code Optima++ [24] to 

set up simulations for unbiased mechanism comparison 

and optimization studies which rely on the error function 

in Eq. (1), thus incorporate noise information on the 

experimental data. In this work, the method is validated 

on artificially generated noisy data sets with known noise 

profiles. A possible further use of the code is to fit or 

smooth and store complicated data series like non-

reactive pressure traces in rapid compression machine 

measurements using Akima spline. 
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