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Re-evaluation of the temperature-dependent uncertainty parameter f(T) of elementary reactions is pro-
posed by considering all available direct measurements and theoretical calculations. A procedure is pre-
sented for making f(T) consistent with the form of the recommended Arrhenius expression. The
corresponding uncertainty domain of the transformed Arrhenius parameters (ln A, n, E/R) is convex
and centrally symmetric around the mean parameter set. The f(T) function can be stored efficiently using
the covariance matrix of the transformed Arrhenius parameters. The calculation of the uncertainty of a
backward rate coefficient from the uncertainty of the forward rate coefficient and thermodynamic data
is discussed. For many rate coefficients, a large number of experimental and theoretical determinations
are available, and a normal distribution can be assumed for the uncertainty of ln k. If little information is
available for the rate coefficient, equal probability of the transformed Arrhenius parameters within their
domain of uncertainty (i.e. uniform distribution) can be assumed. Algorithms are provided for sampling
the transformed Arrhenius parameters with either normal or uniform distributions. A suite of computer
codes is presented that allows the straightforward application of these methods. For 22 important ele-
mentary reactions of the H2 and syngas (wet CO) combustion systems, the Arrhenius parameters and
3rd body collision efficiencies were collected from experimental, theoretical and review publications.
For each elementary reaction, kmin and kmax limits were determined at several temperatures within a
defined range of temperature. These rate coefficient limits were used to obtain a consistent uncertainty
function f(T) and to calculate the covariance matrix of the transformed Arrhenius parameters.

� 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
1. Introduction

Chemical kinetics databases for many elementary gas-phase
reactions provide the recommended values of the Arrhenius
parameters, the temperature range of their validity and the uncer-
tainty of rate coefficient k defined by uncertainty parameter f. In
combustion chemistry, kinetic data are available from the NIST
Chemical Kinetics Database [1], the evaluations of Warnatz [2],
Tsang et al. (see e.g. [3–5]), Baulch et al. (see e.g. [6–8]) and the
review of Konnov [9]. The uncertainty parameter f, which is
generally a temperature-dependent value, is defined in the follow-
ing way:

f ¼ log10 k0
=kmin

� �
¼ log10 kmax=k0

� �
ð1Þ
where k0 is the recommended value of the rate coefficient, kmin and
kmax are the extreme, but still not excludable, physically realistic
values. This definition of the uncertainty is related to the limits
and does not necessarily have a probabilistic inference. According
to this approach, the upper and lower extreme values differ from
the recommended value by a multiplication factor, which means
that, on a logarithmic scale, the extreme values are located symmet-
rically around the recommended value. In the combustion data col-
lections and evaluations, the uncertainty parameter f is either
considered to be temperature independent, or it is defined at a
few temperatures or in a few temperature intervals.

A detailed probabilistic analysis of the representation of the
uncertainty of the rate coefficients in the various databases was
recently published in Refs. [10,11]. A method was provided for
determining the covariance matrix of the transformed Arrhenius
parameters (lnA,n,E/R) and a continuous uncertainty function
f(T) from the uncertainty information given in the databases. This
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covariance matrix allowed the definition of a multivariate normal
distribution and the determination of the uncertainty domain for
the transformed Arrhenius parameters [10]. This question is inves-
tigated in a wider scope here, considering also the re-evaluation of
the uncertainty parameter f, and the case when little information is
available for the rate coefficient.

Evaluation of the uncertainty domain of the Arrhenius para-
meters is very important for the following reasons.

(i) Several chemical kinetics modelling studies use adjusted
Arrhenius parameters for a better description of the mea-
sured data, and frequently it is not obvious if these modified
Arrhenius parameters are physically realistic. Currently it is
not easy to check if a newly recommended set of Arrhenius
parameters is within its physically realistic domain.

(ii) Frenklach et al. (see e.g. [12–14]) and Wang et al. (see e.g.
[15–18]) have used systematic optimization of reaction
mechanisms to improve the agreement with experimental
data. In these studies, selected Arrhenius A-factors, 3rd body
collision efficiencies and enthalpies of formation were opti-
mized. Fitting may include the optimization of all Arrhenius
parameters [19–23]. Application of global optimization
methods requires that a physically meaningful uncertainty
domain of the parameters (prior uncertainty) is determined
first. Then, the optimal parameter set is looked for within
this domain. Optimizing all rate parameters of the important
reactions may result in a physically more meaningful para-
meter set than changing the A-factors and 3rd body collision
efficiencies only. Mechanism optimization results in the pos-
terior stochastic uncertainty of the rate parameters, calculat-
ed by methods of mathematical statistics. The posterior
uncertainty of the parameters depends on the uncertainty
of the experimental data (or theoretical results) used, and
the deviation between the data points and the correspond-
ing modelling results based on the optimized reaction
mechanism [19].

(iii) Several articles have dealt with the uncertainty analysis of
combustion chemistry models [24]. In most of these studies
(see e.g. [25–33]) only the uncertainty of the Arrhenius para-
meter A was considered, and it was assumed to be equal to
the temperature-independent uncertainty of the rate coeffi-
cient, characterized by the uncertainty parameter f. Maybe
the only exception is the recent article of Hébrard et al.
[34], where the uncertainty of the rate coefficient k at
300 K and the uncertainty of the temperature dependence
of k were considered separately in the uncertainty analysis
of an n-butane oxidation mechanism. However, Hébrard
et al. did not take into account the joint uncertainty of the
Arrhenius parameters. In general, considering the joint
uncertainty of the Arrhenius parameters allows a much
more realistic uncertainty analysis of a kinetic model.

The aim of this article is twofold. Firstly, Sections 2–6 detail the
theory of how to obtain the prior uncertainty of the Arrhenius
parameters of an elementary reaction based on the information
collected from the chemical kinetics literature. Section 2 discusses
the determination of the uncertainty domain of the Arrhenius
parameters. An uncertainty band of the rate coefficient and the
corresponding uncertainty parameter values are obtained in regu-
lar temperature intervals (e.g. at every 100 K) independently each
other from the literature kinetic information. These uncertainty
parameter values are denoted as foriginal(Ti). In the next step, the
uncertainty parameters are made consistent with the form of the
Arrhenius expression, yielding uncertainty parameter values
fextreme(Ti). It is shown that the parameters of the extreme Arrhe-
nius curves define a joint uncertainty domain for the transformed
Arrhenius parameters, which is centrally symmetric and convex.
Section 3 shows that the uncertainty parameter function fextreme(T)
can be efficiently stored in the form of the covariance matrix of the
transformed Arrhenius parameters. The uncertainty parameter
function restored from the covariance matrix is denoted fprior(T).
Section 4 presents how the uncertainty of the reverse rate coeffi-
cient can be calculated from the uncertainty of the forward rate
coefficient and the uncertainty of the thermodynamic data. These
methods do not require any assumption for the shape of the prob-
ability density function of the Arrhenius parameters. We discuss in
Section 5 how to sample efficiently the transformed Arrhenius
parameters for parameter optimization or uncertainty analysis
applications with either normal or uniform distributions, knowing
the covariance matrix. Section 6 describes a suite of computer
codes related to the procedures above. The appendix contains the
mathematical proofs for the statements of Sections 2–6.

The second intention of this article is to review the rate para-
meters and characterize the uncertainty of 22 elementary reac-
tions important in hydrogen and syngas combustion, to be
detailed in Section 7. The rate parameters for these reaction
steps, as given in recent reviews, are listed. A comparison of
the parameters of these critical reactions in several recently
developed hydrogen and syngas combustion mechanisms is pro-
vided. Values of the uncertainty parameter f that are in accor-
dance with the results of all available direct measurements and
theoretical calculations for the corresponding reactions are
tabulated at several temperatures. The covariance matrix of the
transformed Arrhenius parameters was determined from the T–f
tables. For the low-pressure limit rate coefficients, 3rd body col-
lision efficiencies measured in the experiments and used in the
various modelling studies are reviewed. An uncertainty range is
suggested for each 3rd body collision efficiency parameter. All
collected chemical kinetics information for the investigated ele-
mentary reactions are given as Supplementary Material.
2. Uncertainty domain of the Arrhenius parameters

The rate coefficient of an elementary reaction can be deter-
mined by experimental methods. If several measurements are car-
ried out in different laboratories (maybe using different methods)
at similar temperatures, then the uncertainty of the rate coefficient
can be well assessed at a given temperature or in a narrow tem-
perature interval. If the uncertainty of a rate coefficient is deter-
mined from literature data independently at different
temperatures, then these uncertainties can be very different from
each other even at nearby temperatures. However, if the measured
rate coefficients are interrelated by a common Arrhenius expres-
sion, then the uncertainties determined at different temperatures
are also interconnected. Taking into account the temperature
dependence of the rate coefficient, the uncertainty at a given tem-
perature cannot be high if it is low at nearby temperatures. This
section discusses the determination of an Arrhenius-equation-con-
sistent uncertainty function from the uncertainties of a rate coeffi-
cient valid at given temperatures (or in given temperature
intervals) and the features of the corresponding uncertainty
domain of the Arrhenius parameters.
2.1. The uncertainty band of Arrhenius curves

The temperature dependence of rate coefficient k is described
by the modified Arrhenius equation k = A{T}n exp(�E/RT). In accor-
dance with the recommendations [35], curly brackets are used to
denote the numerical value of the enclosed physical quantity at
the predefined units, which are cm, K, s, mol in this paper.
Introducing transformed parameters j(T) :¼ ln{k(T)}, a :¼ ln{A}
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and e :¼ E/R, the linearized form of the modified Arrhenius equa-
tion is

jðTÞ ¼ aþ n lnfTg � eT�1 ð2Þ

In the chemical kinetics literature both the original parameters
(A,n,E) and the transformed parameters (ln{A},n,E/R) are referred
to as Arrhenius parameters. In this article, the term Arrhenius para-
meters is always used for the transformed ones.

The procedure described here determines the uncertainty
domain of Arrhenius parameters (p = (a,n,e)T) from the uncertainty
information for the rate coefficients. In several cases the tem-
perature dependence of the rate coefficient can be described by
two Arrhenius parameters (a,e) or (a,n). In this case the third
Arrhenius parameter is set to zero.

Assume that a central set of Arrhenius parameters p0 is avail-
able and the symmetric uncertainty of the rate coefficient is esti-
mated at several temperatures by uncertainty parameters f ðTiÞ,
i = 1, . . . ,nT. It is possible to generate all Arrhenius curves j(T,p)
that lie between the uncertainty limits, fulfilling the following
2nT non-strict inequalities.

�f ðTiÞ 6
jðTi; pÞ � jðTi; p0Þ

ln 10
6 þf ðTiÞ i ¼ 1; . . . ; nT ð3Þ

These curves are located symmetrically around the mean rate coef-
ficient curve jðT; p0Þ, since Arrhenius Eq. (2) is a linear function of
parameters a, n, e and Eq. (3) defines symmetric linear constraints.
A systematic procedure is proposed here for determining the
extreme Arrhenius curves, which touch either the lower or the
upper uncertainty limit at least at 2 or 3 temperatures for the 2-
and the 3-parameter cases, respectively, and also go within the
upper and lower uncertainty limits at all other temperatures. For-
mally, these criteria correspond to Arrhenius functions that fulfil
at least 2 or 3 equality relations in Eq. (3) and for the remaining
2nT � 2 or 2nT � 3 cases, respectively, either the equality or the
strict inequality is fulfilled. The minimum and maximum values
of these curves at a given temperature define the edges of the band
of all possible Arrhenius curves.

In the case of the 3-parameter Arrhenius expression, term
n�ln{T} usually has a smaller contribution to the temperature
dependence of the rate coefficient than �e/T, since ln{T} changes
more slowly than 1/T at combustion temperatures. The effect of a
change in the temperature exponent n on the rate coefficient at
high temperatures can be well compensated by adjusting the
pre-exponential factor a, leading to a very strong anti-correlation
between a and n in most determinations. This implies that values
of n, which significantly deviate (i.e. by ±10) from the central n0,
can also fulfil all the inequality requirements in Eq. (3) if the initial
uncertainty limits are not too tight. Both theoretical considerations
[36] and the typical range of values of n in kinetic databases [1]
show that the temperature exponent n of elementary chemical
reactions should take values of small negative or positive numbers.
Therefore, we recommend confining the range of n values to a nar-
row (i.e. Dn = 2) symmetric interval around the central value n0

when the band of possible Arrhenius curves is determined through
finding extreme Arrhenius curves.

�Dn � n� n0 � þDn ð4Þ

The extreme Arrhenius curves are those which fulfil at least 2 or 3
equality relations in Eqs. (3) and (4) for the two-parameter and the
three-parameter cases, respectively. To determine the extreme
Arrhenius curves, uncertainty values need to be known at least at
2 temperatures, since in the three-parameter case a constraint is
given for parameter n.

The procedure is demonstrated on the reaction H2O2 + H ?
H2O + OH of the (a,e)-type and the reaction H + CH3 ? H2 + 1CH2
of the (a,n,e)-type; the recommended Arrhenius parameters and
uncertainty f values are shown in Table 1. The first reaction is
evaluated in this work as reaction R14 (see Section 7.3), while
the data for the second reaction were taken from Baulch et al.
[8]. Figure 1 shows the values of the original uncertainty limits
and the continuous curve of the new uncertainty limits. The origi-
nal uncertainty limits are shown at every 100 K within the tem-
perature range of validity [Tmin, Tmax], leading to 2nT uncertainty
limits (see Eq. (3)), where nT = [(Tmax � Tmin)/100 K] + 1. Due to this
discretization a finite number of extreme Arrhenius curves can be
determined depending on the number of points considered. How-
ever, some of these curves may coincide.

For the (a,e)-type example reaction H2O2 + H ? H2O + OH with
constant uncertainty, only four distinct extreme Arrhenius curves
(straight lines in an Arrhenius plot) can be found and the corre-
sponding new uncertainty limits coincide with the original uncer-
tainty limits (see Fig. 1a). For the (a,n,e)-type example reaction
H + CH3 ? H2 + 1CH2 with piece-wise constant uncertainty, several
different extreme Arrhenius curves can be defined using the dis-
cretized uncertainty curve (see Fig. 1b). Although we assumed
Dn = 2 for the maximal allowed deviation of temperature exponent
n, the |n � n0| value of the extreme Arrhenius curves was always
less than 2 in this case.
2.2. Uncertainty parameter function f(T) consistent with the Arrhenius
equation

The minimum and maximum values of the extreme Arrhenius
curves (jmin(T) and jmax(T)) define new uncertainty limits, which
are symmetrically located around the mean jðT; p0Þ curve. These
new limits, obtained from a set of uncertainty values f and a
user-defined Dn, uniquely define a new, continuous uncertainty
function fextreme(T):

f extremeðTÞ ¼
jðT; p0Þ � jminðTÞ

ln 10
� jmaxðTÞ � jðT; p0Þ

ln 10
ð5Þ

By definition, this Arrhenius-equation-consistent uncertainty
fextreme(Ti) is always less than or equal to the original uncertainty
f(Ti) at every temperature Ti (i = 1, . . . ,nT). Figure 2 shows the values
of original uncertainty parameters and the curves of the new uncer-
tainty functions for reactions H2O2 + H ? H2O + OH (Fig. 2a) and
H + CH3 ? H2 + 1CH2 (Fig. 2b), i.e. for the same reactions that were
used in Fig. 1.

Since j is a linear function of the Arrhenius parameters (see Eq.
(2)), the new uncertainty function fextreme depends only on the ori-
ginal f values and on the value of Dn, but it is independent from the
mean values of the Arrhenius parameters. For the two-parameter
example (Fig. 2a) the original, constant uncertainty parameter
was consistent with the Arrhenius form (foriginal = fextreme). For reac-
tion H + CH3 ? H2 + 1CH2 (Fig. 2b), at intermediate temperatures
there are few reliable measurements, therefore higher uncertainty
was assigned in the middle temperature region. This is correct, if
the experimental uncertainties are handled independently in the
various temperature regions. Taking into account that the prior
uncertainty should be consistent with the Arrhenius expression in
the whole temperature region, a significantly lower fextreme uncer-
tainty was obtained at intermediate temperatures (1000–1700 K).
In this case, uncertainty information foriginal can be considered as
redundant at temperatures where foriginal > fextreme, therefore
f(300–1000 K) = 0.15 and f(2500 K) = 0.2 represent the same infor-
mation as the original evaluated uncertainty. In the general case,
of course, the uncertainties at the middle temperatures are not nec-
essarily inconsistent with the other ones. The presented procedure
is able to correct all high uncertainties that are not consistent with
lower uncertainties, determined at other temperatures.



Table 1
Data for the reactions used as examples. Parameter a0 is calculated with parameter A given in units mol, cm and s.

# Reaction a0 n0 e0 (K) T range: uncertainty Reference Assumed Dn

1 H2O2 + H ? H2O + OH 30.813 � 1998 300–2500 K: 0.4 R14 in Section 7 –
2 H + CH3 ? H2 + 1CH2 37.076 �0.56 1350 300–1000 K: 0.15 [8] 2

1000–1700 K: 0.30
1700–2500 K: 0.20

Fig. 1. The uncertainty band of Arrhenius curves is determined by drawing all extreme Arrhenius curves (black thin solid lines) going between the original uncertainty limits
(red dots), which are symmetrically located around the mean curve (red thick solid line), and determining the extrema of this series of curves (blue dashed lines). Figures a
and b correspond to reactions H2O2 + H ? H2O + OH and H + CH3 ? H2 + 1CH2. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 2. Temperature dependence of uncertainty parameter f for reactions H2O2 + H ? H2O + OH (a) and H + CH3 ? H2 + 1CH2 (b). The original uncertainty parameters (foriginal,
red dots) are taken from evaluations of kinetic data (this work and Baulch et al. [8], respectively). The Arrhenius-equation-consistent uncertainty parameters (fextreme, blue
dashed line) are determined from the band of all allowed Arrhenius curves going between the original limits (see Fig. 1). Uncertainty parameters fprior (green solid line) are
calculated from the fitted covariance matrix of the Arrhenius parameters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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2.3. Properties of the uncertainty domain of the Arrhenius parameters

Parameters (a,n,e) of the possible Arrhenius curves, which fulfil
inequalities in Eqs. (3) and (4), form the uncertainty domain of
Arrhenius parameters. According to the mathematical proof pre-
sented in Appendix A, any convex linear combination of the para-
meter sets of extreme Arrhenius curves provides a possible
Arrhenius set. This implies that the domain of possible Arrhenius
parameters is convex and the vertices of the convex shell are given
by the parameters of the extreme Arrhenius curves. This means
that if two or more sets of Arrhenius parameters are within this
domain, then any convex linear combination of them is also within
the domain. It is also proved in Appendix A that the uncertainty
domain of the Arrhenius parameters is centrally symmetric for
mirroring through the point of central Arrhenius parameters p0.
Furthermore, the symmetric domain around p0 will define a
symmetric uncertainty range in j at every temperature, allowing
the unique definition of the uncertainty function fextreme(T).

As discussed in Section 2.1, for the (a,e)-type example reaction
with constant uncertainty (reaction H2O2 + H ? H2O + OH), there
are only four possible extreme curves, which are drawn as thin
black lines in Fig. 1a. Parameters of these extreme Arrhenius curves
correspond to four corners of a parallelogram on the (a,e) plane
(see Fig. 3a) and all possible Arrhenius parameters are within this
parallelogram, which is a convex shape.

A three-parameter (a,n,e) Arrhenius expression with constant
uncertainty parameter f defines a convex 3D uncertainty domain
of curved irregular shape, which has an infinite number of vertices,
corresponding to the infinite number of extreme Arrhenius curves.
For the second example (reaction H + CH3 ? H2 + 1CH2), the uncer-
tainty function fextreme is constant below 1000 K and temperature
dependent above 1000 K (see Fig. 2b), thereby the corresponding



Fig. 3. Convexity and symmetry of the uncertainty domain of Arrhenius parameters is shown for the two examples that have been used in Figs. 1 and 2. In both figures (a) and
(b), the large red dot represents the mean set p0 of the Arrhenius parameters. The small black dots correspond to the Arrhenius parameters of the extreme Arrhenius curves
(see Fig. 1) and span the vertices (dark blue lines) of the convex hull. In the 3-parameter case, the sides of the convex hull are defined by the triangles between these vertices.
In Fig. 3b, the projections of the mean value and the convex hull to the a�n, a�e, and n�e planes are indicated with white dots and light blue lines. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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uncertainty domain of Arrhenius parameters has a non-regular
shape (see Fig. 3b). Here its surfaces are not curved and appears
as a convex polyhedron, because the uncertainty function fextreme

was approximated by a finite number of points.
3. Efficient storage of the uncertainty domain

In the previous section the determination of a consistent uncer-
tainty band of the rate coefficient is described and the features of
the corresponding joint uncertainty domain of the Arrhenius para-
meters are discussed. This uncertainty domain may have a very dif-
ferent shape depending on the temperature dependence of the
original uncertainty parameters. In this section we show that the
shape of uncertainty band of the rate coefficients, and therefore
also the uncertainty domain of the Arrhenius parameters can be
represented with a few numbers only. These are the 6 parameters
(3 standard deviations and 3 correlation coefficients) of the covari-
ance matrix of the Arrhenius parameters. If the temperature
dependence is described by a 2-parameter Arrhenius expression
((a,e) or (a,n) types), the uncertainty can be defined by the 3 para-
meters of the covariance matrix. The determination of the covari-
ance matrix of the Arrhenius parameters has been discussed in
our previous publications [10,11], in the context of the probabilis-
tic interpretation of the uncertainty information in the databases.

The temperature-dependent rate coefficient k(T) (and its natural
logarithm j(T)) can be considered as a random variable deduced
from measurements and calculations. Assuming a probabilistic
meaning to fextreme, that is if fextreme corresponds to 3 standard
deviations (3r) [25–30])) or 2 standard deviations (2r) [16–18] of
the untruncated distribution of rate coefficient on a decimal
logarithmic scale, the uncertainty parameter f can be converted
[26] to the standard deviation of the natural logarithm of the rate
coefficient (rj) at a given temperature T:

rjðTÞ ¼
ln 10
l

f ðTÞ ð6Þ

where parameter l is usually assumed to be 3 or 2, respectively.
Arrhenius parameters a, n, and e are also random values, since

these can be calculated from the random values of j(T) at three
given temperatures using the linearized Arrhenius equation (see
Eq. (2)). The joint probability density function of the Arrhenius
parameters is independent of temperature. This means that all cen-
tral moments are also independent of temperature, including their
expected values (�a; �n; �e), variances (r2

a;r2
n;r2

e ) and correlations
(ran; rae; ren).
The following relation was deduced in our previous work [10]
between the variance of jðTÞ and the elements of the covariance
matrix of the Arrhenius parameters:

r2
jðTÞ ¼ HTRpH

¼ r2
a þ r2

nln2T þ r2
e T�2 þ 2ranrarn ln T � 2raerareT

�1

� 2rnernreT
�1 ln T ð7Þ

A method was proposed [10] for the determination of the
covariance matrix of the Arrhenius parameters using Eqs. (6) and
(7) from uncertainty parameter f of the rate coefficient at various
temperatures. To determine the elements of the covariance matrix
for the three-parameter Arrhenius expression, the uncertainty of
the rate coefficient has to be known at least at six different tem-
peratures. In the (a,e) and (a,n) two-parameter cases, the uncer-
tainty of the corresponding Arrhenius parameters can be handled
in a similar way and the uncertainty of the rate coefficient has to
be known at least at three temperatures [10].

Disregarding the possible stochastic meaning of uncertainty f,
the Eqs. (6) and (7) provide a means for storing the fextreme(T) func-
tion in the form of the covariance matrix of Arrhenius parameters.
The uncertainty function reconstructed from the covariance matrix
is called here the prior uncertainty and denoted as fprior(T). Despite
there being no formal mathematical relationship between fextreme

and fprior, function fextreme(T) is well approximated by fprior(T) in
all of our investigated cases of more than 30 elementary reactions.
Figure 2 shows the determined fprior(T) functions for the two exam-
ple reactions. For the constant uncertainty case, it coincides with
the fextreme(T) curve, whereas for the three-parameter example it
approximates well the corresponding fextreme(T) function.

In Eq. (6), the parameter l defines the proportionality between
the uncertainty parameter f and the standard deviation rj. When
the uncertainty fprior is calculated via rj from the covariance
matrix Rp, the same parameter l has to be used. This means that
the value of l is arbitrary in the storage of the f values in the
covariance matrix, and the only important assumption here is that
the uncertainty parameter f is proportional to the standard devia-
tion of j.

4. Uncertainty of the Arrhenius parameters of the reverse
reaction

In the case of many elementary reactions, the rate coefficients
can be measured for both the forward and reverse directions. Fre-
quently, for technical reasons, the rate coefficient is determined in
one direction at low temperatures and in the opposite direction at
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high temperatures. The thermodynamic equilibrium constant
relates the rate coefficients for the two opposing directions, and
the uncertainties of the rate coefficients for the two directions
can also be related by considering the uncertainty of the equilibri-
um constant. This latter relationship is significant because the
assessed uncertainty of the rate coefficient is better established if
data for both directions are taken into account.

If the Arrhenius parameters of the forward reaction are known,
rate coefficient kf can be calculated at any temperature T, knowing
the standard reaction enthalpy DrH

> and standard reaction
entropy DrS

>. The calculation is discussed in several textbooks
(see e.g. [37]) and uses the following sequence of equations:

DrG
> ¼ DrH

> � TDrS
>;DrG

> ¼ �RT ln K;Kc ¼ Kðp>=RTÞ
P

i
mi , and

kb ¼ kf =Kc where K and Kc are the equilibrium constants expressed
in normalized pressures and molar concentrations, respectively,
and coefficients mi are the stoichiometric coefficients.

Combining all these equations and taking the natural logarithm
of both sides gives the following equation:

lnfkbg ¼ lnfkf g þ
DrH

>

RT
� DrS

>

R
�
X

mi � ln
p>

RT

� �
ð8Þ

Note that common physical base units have to be used within the
curly brackets.

At a given temperature T, the last term on the right hand side of
Eq. (8) is constant, thus this term has no uncertainty. The standard
reaction entropy for small species can be calculated with high
accuracy [28]; therefore, the uncertainty of the corresponding term
is also negligible. This is not true for larger non-rigid molecules and
radicals, where the calculated conformational entropy may have
significant uncertainty at higher temperatures. Both the forward
rate coefficient kf and the standard reaction enthalpy DrH

> have
relatively high uncertainty and these can be considered to be
uncorrelated. If the uncertainty of the entropy term can be neglect-
ed, then the variance of rate coefficient kb can be calculated in the
following way:

r2ðlnfkbgÞ ¼ r2ðlnfkf gÞ þ
r2ðDrH

>Þ
ðRTÞ2

ð9Þ

This equation implies that if the uncertainty of the standard reac-
tion enthalpy is small compared to the uncertainty of kf, then the
uncertainty f belonging to the rate coefficients of the forward and
backward reactions can be considered to be equal.

The reaction enthalpy can be calculated as the linear combina-
tion of the standard enthalpies of formation of the participating
species:

DrH
> ¼ mTDH>

f ¼ DH>T

f m ð10Þ

Here, m and DH>

f are the column vectors of stoichiometric coeffi-
cients and the standard enthalpies of formation, respectively. The
variance of the reaction enthalpy can be calculated from the covari-
ance matrix of the standard enthalpies of formation of the par-
ticipating species.

r2ðDrH
>Þ ¼ ðDrH

> � DrH>ÞðDrH
> � DrH>ÞT

¼ mTðDH>

f � DH>

f ÞðDH>

f � DH>

f Þ
T
m ¼ mTRDH>

f
m ð11Þ

where RDH>

f
is the covariance matrix of the standard enthalpies of

formation.
The traditional thermodynamic databases contain the enthal-

pies of formation of the species and their standard deviation at
298 K. The Active Thermochemical Tables (ATcT) approach
[38,39] and the NEAT method [40] also provide information about
the correlation of the enthalpies of formation. Using Kirchoff’s law,
the uncertainty of the standard reaction enthalpy at higher tem-
peratures are related to the uncertainties in heat capacities of spe-
cies, which can also be considered to be small. Consequently, the
uncertainty in the reaction enthalpy at 298 K may also be used
as an approximation at higher temperatures.
5. Assuming a given distribution of the Arrhenius parameters

Until this point, no particular form of the distribution of the
Arrhenius parameters within the uncertainty domain was
assumed. At the beginning of Section 3, it was assumed that uncer-
tainty parameter f is proportional to the standard deviation of j
with proportionality constant (ln10)/l. However, the chemical
kinetics databases define parameter f as extreme deviations from
log10{k0}, therefore the distribution has to be truncated at these
limits. If the original (not truncated) probability density function
of j has the feature that the points outside of the truncation limits
have small probability, then the covariance matrix statistically well
characterizes also the truncated distribution of Arrhenius para-
meters. This is the case for a normal distribution with l = 3 or 2,
when the probabilities of j values outside the 3r (or 2r) limits
are only 0.0027 and 0.0455, respectively. In the case of a normal
distribution it can be consistently assumed that j at every tem-
perature and the Arrhenius parameters (a,n,e) have single and
multivariate normal distributions, respectively [10]. Furthermore,
the standard deviations of j and the covariance matrices of Arrhe-
nius parameters for the truncated and untruncated normal distri-
butions are approximately the same. On the contrary, in the case
of a uniform distribution of Arrhenius parameters the covariance
matrix Rp, used for storing the uncertainty function, does not char-
acterize statistically the distribution of the Arrhenius parameters.
In addition, the distribution of j values at various temperatures
will neither be uniform nor will have the same shape at all tem-
peratures, therefore the ratio of the truncation limits and the stan-
dard deviation of j will be temperature dependent.

Here we discuss in detail the cases of normal and uniform prob-
ability distributions. It will be shown that in both cases the prob-
ability distribution of the Arrhenius parameters can be
reconstructed from the covariance matrix Rp, which is used for
storing fprior(T). We note that the probability distribution of the
parameters is required by several global uncertainty analysis
methods [24]. Taking into account not only the domain of uncer-
tainty, but also the probabilistic information on the Arrhenius
parameters makes the uncertainty calculations more realistic. Also,
several mechanism optimization and parameter estimation meth-
ods require a realistic prior distribution of the varied parameters. It
makes the procedure more effective, since the search for the opti-
mal parameters can be started from the region of Arrhenius para-
meters that has higher probability according to the literature
information.
5.1. Normal distribution

For the rate coefficients of several hundred elementary gas-
phase reactions, dozens of measurements and theoretical calcula-
tions are available. Their results are usually centered on the
evaluated rate coefficients, while fewer determinations support
values close to the uncertainty limits. Consequently, the Arrhenius
parameters recommended in the data evaluations have high prob-
ability, while the values at the edge of the uncertainty domain of
the Arrhenius parameters have low probability. According to the
central limit theorem, if a variable is obtained as a sum of several
independent random variables, then the distribution of this vari-
able is of nearly normal distribution.
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It has been proven in our previous article that if the Arrhenius
parameters have a multivariate normal distribution, then the cal-
culated j will have a normal distribution at any temperature
[10]. Also, if j follows a normal distribution at many temperatures,
then the most natural, consistent assumption is that (a,n,e) follow
a multivariate normal distribution [10]. The knowledge of the
mean values and the covariance matrix of the Arrhenius para-
meters allows the definition of a multivariate normal distribution,
which can be sampled according the procedure discussed in the
appendix of our previous work [10]. In this work, l = 3 and hence
the normal distribution of j truncated at 3r deviations is assumed
in Eq. (6).

The assumption of a normal distribution is also applicable for
the case of backward reactions. It is frequently assumed that the
enthalpies of formation and the ln{kf} values have normal distribu-
tions. Any linear function of normally distributed independent ran-
dom variables also follows a normal distribution; therefore ln{kb}
will also be normally distributed in Eq. (8).

5.2. Uniform distribution

Frequently only a few measurements exist for an investigated
reaction, and therefore a temperature-independent uncertainty
parameter f is recommended or uncertainty parameter values are
suggested at few temperatures only. In this case, considering equal
probability (i.e. uniform distribution) for any possible set of Arrhe-
nius parameters (a,n,e) is the appropriate a priori assumption dur-
ing the optimization or uncertainty analysis of a kinetic model.
Assuming a uniform distribution as a prior distribution in para-
meter optimization has the advantage that none of the parameter
sets is privileged. The disadvantage of a uniform distribution is that
the assumed probability at the uncertainty limits is equal to that of
the mean value, and it drops to zero just outside the limits. This
section presents an algorithm for the generation of sets of Arrhe-
nius parameters with uniform distributions within their domain
of uncertainty. The algorithm describes the (a,n,e) three-pa-
rameters case, and a similar algorithm is applicable for the (a,e)
and (a,n) two-parameters cases.

The covariance matrix is able to store efficiently the fextreme(T)
function, but it does not characterize statistically the uniform dis-
tribution of p. However, the domain of the uniform distribution of
the Arrhenius parameters can be reconstructed from the fprior(T)
function parameterized by the covariance matrix. When a uniform
distribution is assumed, the selection of l is arbitrary; we used
l = 3 in Eq. (6) in our studies.

The first step is sampling j(Ti) values at three different selected
temperatures Ti from a uniform distribution within their range of
uncertainty determined by fprior(Ti). It is shown in Appendix B that
if the j(Ti) values have uniform distributions, then the Arrhenius
parameters obtained by solving Eq. (2) at three temperatures also
have uniform distributions. The p parameters obtained are checked
and those values are discarded that have the parameter value n
outside the predefined limits or correspond to Arrhenius curves
going outside the uncertainty limits of j at any other temperature
(see Eqs. (3) and (4)). It is shown in Appendix A that the distribu-
tion of Arrhenius parameters obtained after discarding these sets
will also be uniform, and its domain remains convex and symmet-
ric. By this means, the uncertainty domain of the Arrhenius para-
meters can be evenly sampled in an efficient way.

The domain and distribution obtained do not depend on the ini-
tial selection of the three temperatures where the j(Ti) values are
sampled, but a good selection may improve the effectiveness of the
sampling procedure. The recommended selection of sampling
points are the two edges of the temperature interval and/or the
temperatures with the lowest uncertainty, since this choice usually
leads to low number of rejected Arrhenius curves, which go outside
the allowed ranges of j at least at one of the other temperatures or
that of n.

We emphasize that this section discussed the case of the uni-
form distribution of the Arrhenius parameters, which does not
imply that the distribution of j is uniform at all temperatures. As
Eq. (2) shows, j is a weighted sum of three random variables with
joint uniform distribution over a convex and symmetric domain,
which results in a higher probability near the mean j0 value.
6. Software tools

For the determination of the uncertainty limits of the rate coef-
ficients, the joint uncertainty domain and the probability distribu-
tion of rate parameters, and for their efficient sampling, four
computer codes called u-Limits, UBAC, JPDAP and SAMAP were
developed and used in this work. These computer codes, together
with their user manual, can be freely downloaded from our Web
site [41]. JPDAP has already been made available with our previous
publication [10].
6.1. Matlab code u-Limits

The Matlab code u-Limits speeds up the processing of the col-
lected reaction kinetics information. Once all kinetic information
has been collected, the T–f tables and the covariance matrix of
the Arrhenius parameters can be generated in a few minutes using
this Matlab code, which subsequently also calls codes UBAC and
JPDAP. The code provides a visualization of the process and assists
selection from several possible choices.

A separate text input file is needed for each investigated reac-
tion. The first lines of this text input file follow the format of the
summary page of the NIST database [1]. This means that each line
contains a literature identifier (which is the NIST squib if it exists),
the temperature range ([Tmin,Tmax] in K units), Arrhenius para-
meters (ln{A}, n, E/R; units: cm, mol, s, K). These lines can be copied
from the NIST summary Web pages. Information obtained from
other sources has to be encoded in a similar way. Arrhenius plots
referring to different bath gases (e.g. data belonging to reactions
H + O2 + N2 = HO2 + N2 and H + O2 + Ar = HO2 + Ar) can be joined
and processed together by assuming a temperature-independent
3rd body collision efficiency of the molecules of the bath gas rela-
tive to nitrogen. The input contains the Arrhenius parameters of
the selected mean rate coefficient expression and the range of tem-
perature of the analysis.

The program at equidistant points of temperatures determines
the empirical uncertainty f(Ti) as the larger of the two distances
(on a decimal logarithmic scale) between the mean rate coefficient
k0 and the upper and lower extreme rate coefficient values (see Eq.
(1)). This temperature interval is by default 100 K, but any other
value can be defined by the user. The automatically calculated
f(Ti) values can be manually revised by the user. Such corrections
are needed when the automatically determined f values are unre-
alistically small in a temperature range, which may happen, if in
this temperature range all available (typically few) data points
are close to the mean curve. Another way of manual intervention
is omitting those rate coefficients that unrealistically widen the
band of uncertainty. For many elementary reactions, the oldest
measurements provided rate coefficient values that are very far
from the recently accepted values. Usually, the initially applied
experimental method was later superseded by newer techniques,
which are known to have smaller systematic error. In such cases
the values obtained by obsolete methods are not considered in
the determination of the uncertainty ranges. These data are not
deleted from the input text file, but are flagged as unused ones.
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The automatically generated f values together with these manual
corrections provide the foriginal(Ti) uncertainty parameter values.

The Matlab code u-Limits prepares the input text files for For-
tran codes UBAC and JPDAP, runs these codes, and visualizes their
results. One of the generated plots shows the foriginal(Ti) points, and
the fextreme(T) and fprior(T) functions determined by codes UBAC and
JPDAP. Another generated figure is an Arrhenius plot that shows all
considered j vs. 1/T functions, together with the mean line, and the
upper and lower uncertainty limits calculated from fprior(T). This
allows the user to check if the determined uncertainty range of
Arrhenius parameters is consistent with all data considered.

6.2. Program UBAC

Fortran code UBAC (the acronym for Uncertainty Band of Arrhe-
nius Curves) first determines a band of possible Arrhenius curves
going between the symmetric limits around the mean Arrhenius
curve, defined by the foriginal(Ti) values at nT temperatures and the
limits in n. Based on the symmetrically located boundaries of the
Arrhenius curves, a continuous fextreme(T) function can be defined
by their distance from the mean curve for all temperatures in the
interval. The Arrhenius curves of extreme parameter sets, which
define the boundaries of all possible Arrhenius curves and the con-
vex hull of their parameters, will go through at least 3 (or 2) points
of the lower and upper uncertainty boundaries of j defined in Eq.
(3). Therefore, taking all the 3- (or 2-) combinations of nT

temperatures, and selecting either the high or the low boundary
(j0(Ti) ± f(Ti)�ln10), several Arrhenius curves can be determined
and plotted. We discard all the curves, which go outside the
allowed ranges at any of the nT � 3 (or nT � 2) temperatures. For
Arrhenius expressions containing parameter n, those curves are
also discarded which have value n outside the user defined range
of [nlow, nhigh]. Therefore, further limiting Arrhenius curves might
be obtained by investigating curves which are hitting one of the
boundaries in n and going through boundaries in j only at two
temperatures. Symmetric limiting values nlow = n0 � Dn and
nhigh = n0 + Dn are recommended (see Eq. (4)) to preserve the sym-
metry of uncertainty domain of Arrhenius parameters and thereby
leave mean values equal to the central values (see Appendix A).

6.3. Program JPDAP

Fortran code JPDAP (the initialism for Joint Probability Density
of Arrhenius Parameters) has been announced earlier [10] without
a description of the numerical method applied. The code allows the
determination of the covariance matrix of the Arrhenius para-
meters by fitting Eq. (7) to the uncertainty parameter values
fextreme(Ti). Consideration of the constraints makes the direct fitting
a formidable task and even advanced codes for constrained least-
squares fitting like EASY-FIT Express [42] usually fail to converge.
In code JPDAP the constraints are taken into account in an indirect
way by reformulating Eq. (7) using new, unconstrained parameters
(see Appendix C) and a simplex algorithm is used for the fitting
[43].

Code JPDAP determines the covariance matrix of the three
Arrhenius parameters a, n, e, or those of two Arrhenius parameters
(a, e or a, n). The codes requires that the f parameter values be
known at least at 6 or 3 temperatures for the 3 or 2 Arrhenius para-
meter cases, respectively.

6.4. Program SAMAP

Code SAMAP (the acronym for Sampling of Arrhenius Para-
meters) is able to generate random and quasi-random values of
Arrhenius parameter sets according to multidimensional uniform
and normal distributions. Quasi-random numbers can be generat-
ed with Latin Hypercube sampling and Sobol’ sequences. For the
discussion of the features of these quasi-random numbers we refer
to the recent book of Turányi and Tomlin [37]. The required inputs
are the mean values and the covariance matrix of the Arrhenius
parameters, the type of distribution, the temperature interval of
validity, the n limits, and the required number of samples. The out-
puts are sets of Arrhenius parameters that follow either a normal
or a uniform distribution and provide j values strictly within the
uncertainty limits defined by fprior(T) for the given temperature
interval.
7. Uncertainty evaluations of the elementary reactions of H2

and syngas combustion
7.1. Selection of the elementary reactions to be investigated

As a part of a project to investigate the performance of several
recently published mechanisms for the combustion of hydrogen
[44] and syngas (also called wet CO) [45], our aim was to collect
all experimental data that have ever been used for testing these
mechanisms. The experimental papers usually contain one or sev-
eral datasets. In these datasets usually one experimental para-
meter is changed systematically, while the other experimental
circumstances are kept fixed. A large set of experimental data
was accumulated [44] for hydrogen combustion: ignition measure-
ments in shock tubes (770 data points in 53 datasets) and rapid
compression machines (229/20), concentration–time profiles in
flow reactors (389/17), outlet concentrations in jet-stirred reactors
(152/9) and flame velocity measurements (631/73), covering wide
ranges of temperature T (890–2550 K), pressure p (0.23–87 atm)
and equivalence ratio u (0.1–5.6). Also, a large amount of
experimental data was collected [45] for syngas combustion: igni-
tion studies in shock tubes (732 data points in 62 datasets) and
rapid compression machines (492/47), flame velocity determina-
tions (2116/217) and species concentration measurements from
flow reactors (1104/58), shock tubes (436/21) and jet-stirred reac-
tors (90/3). These experimental datasets also cover wide ranges of
temperature T (700–2870 K), pressure p (0.5–450 atm), equiva-
lence ratio u (0.1–6.8) and CO/H2 ratio (0.05–243).

All data were encoded in PrIMe format [46]. A custom made
Matlab code called Optima [19] was used for carrying out simula-
tions at each experimental condition. Code Optima read the PrIMe
datafile, created the input file of the corresponding CHEMKIN-II
simulation code (SENKIN, PREMIX or PSR), ran the simulations
using the recent mechanism of Kéromnès et al. [47], carried out
local sensitivity analysis, and processed the results. This way the
top ten most influential reactions at each experimental condition
were identified. The 22 reaction steps discussed in this paper
(see Table 2) are the union of the top ten most influential reactions
at all conditions. Those reaction steps that appeared in the top ten
only in a few experimental data points were not included in the 22
selected reactions. This procedure ensured that the most influen-
tial reaction steps under the majority of experimental conditions
published in the literature were identified.

7.2. Protocol for data collection and evaluation

For the investigation of the uncertainty of the rate parameters
of each elementary reaction, the data were collected by strictly fol-
lowing the protocol below:

1. Using the NIST Chemical Kinetics Database [1], data for the
experimental and theoretical determinations of the rate coef-
ficients were collected for both directions of the elementary



Table 2
The mean Arrhenius parameters, the assumed probability distribution qp(p) (Normal or Uniform), the parameters of the covariance matrix, the temperature range of validity d the range of uncertainty parameter fprior for each
investigated elementary reaction.

# Reaction a0 n0 e0 (K) qp(p) ra rn re (K) ran rae rne T range (K) f range

R1 H + O2 ? O + OH 32.964 �0.097 7560 N 5.272943 0.656768 800.271137 �0.999825 0.99401 �0.995883 800–2700 0.208–0.321
R2LPL H + O2 + M ? HO2 + M 44.724 �1.3 0 N 1.438236 0.223583 – �0.995378 – – 300–2000 0.180–0.393
R3 O + H2 ? H + OH 10.832 2.67 3165 N 2.163163 0.270921 195.359196 �0.998598 0.99692 �0.999675 300–2500 0.152–0.210
R4 OH + H2 ? H2O + H 19.195 1.52 1740 N 2.143215 0.286297 170.362012 �0.996541 0.99181 �0.977786 300–2500 0.103–0.308
R5 H2O2 + H ? H2 + HO2 23.791 1.00 3019 U 0.460517 – – – – – 300–2500 0.6
R6 H + HO2 ? OH + OH 31.891 0 148 N 0.405607 – 97.899418 – 0.99667 – 500–2000 0.275–0.465
R7 H + HO2 ? H2 + O2 15.113 2.09 �730 N 5.872579 0.706624 612.533182 �0.999948 0.99387 �0.994472 500–2000 0.277�0.529
R8 HO2 + OH ? H2O + O2 30.834 0 �250 N 2.663322 0.320701 230.310542 �0.989621 0.96562 �0.918243 500–2500 0.387–0.468
R9HPL OH + OH ? H2O2 (HPL) 32.236 �0.37 0 N 9.709683 1.263507 868.633251 �0.997625 0.89944 �0.867206 500–2000 0.408–0.703
R9LPL OH + OH + M ? H2O2 + M (LPL) 40.243 �0.84 �1792 N 5.844051 0.793676 537.397524 �0.996826 0.88467 �0.853167 500–2000 0.346–0.736
R10LPL H + OH + M ? H2O + M 58.938 �2.97 399 N 2.318687 0.341781 97.736146 �0.985119 0.48377 �0.326152 300–2500 0.299–0.706
R11 OH + OH ? H2O + O 10.419 2.42 �970 N 2.588877 0.347312 197.878874 �0.997980 0.99999 �0.998115 300–2500 0.177–0.347
R12LPL H + H + M ? H2 + M 43.133 �1.30 0 N 1.154390 0.219719 136.508852 �0.981868 �0.9952 0.958677 300–2500 0.376–0.759
R13 HO2 + HO2 ? H2O2 + O2 25.606 0 �820 300–800

33.676 0 6030 U 0.307011 – – – – – 800–2500 0.4
R14 H2O2 + H ? H2O + OH 30.813 0 1998 U 0.307011 – – – – – 300–2500 0.4
R15 CO + OH ? CO2 + H 12.315 1.90 �584 N 1.423152 0.207394 49.379834 �0.996044 �0.9563 0.926649 700–2500 0.189–0.299
R16 HCO + M ? H + CO + M 26.887 0.66 7483 N 4.517351 0.618292 292.154742 �0.999163 0.97223 �0.980992 300–2500 0.320–0.632
R17 CO + O2 ? CO2 + O 28.559 0 24005 U 0.537270 – – – – – 300–2500 0.7
R18LPL H + O + M ? OH + M 42.996 �1.00 0 U 0.383764 – – – – – 300–2500 0.5
R19 H2O2 + OH ? HO2 + H2O 28.185 0 160 300–800

31.960 0 3658 U 0.230259 – – – – – 800–2500 0.3
R20 HCO + O2 ? HO2 + CO 29.657 0 206 U 0.230259 – – – – – 300–2500 0.3
R21 HCO + H ? H2 + CO 32.134 0 0 N 0.383764 – – – – – 300–2500 0.5
R22 CO + HO2 ? CO2 + OH 11.964 2.18 9028 U 0.537270 – – – – – 500–2500 0.7
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reaction. The direction associated with more rate informa-
tion was considered as the forward one. High-pressure and
low-pressure limits were handled separately. The uncertain-
ty of the parameters of pressure dependence (e.g. Troe para-
meters) was not investigated.

2. Evaluated kinetics data were collected from several reviews.
These reviews also suggested original articles on experimen-
tal measurements and theoretical calculations that were not
referenced in the NIST database. Direct experimental deter-
minations and theoretical results, discussed in the reviews
and not present in the NIST web site were added to our data
collection. The starting point was the latest evaluation of
Baulch et al. [8]. The following recent review articles about
hydrogen combustion were also considered: Conaire et al.
[48], Konnov [9], Hong et al. [49], Burke et al. [50], and
Kéromnès et al. [47]. Several of these reviews (Konnov [9],
Hong et al. [49] and Burke et al. [50]) also contain a detailed
discussion about the experimental and theoretical determi-
nations of the rate coefficient values. For the reactions of
the carbon-containing species, the following review and
modelling articles were considered: Mueller et al. [51],
Davies et al. [15], Li et al. [52], Sun et al. [53] and Kéromnès
et al. [47].

3. The Arrhenius parameters of the backward reactions were
converted to those of the forward reactions using Eqs.
(13)–(16) with the help of program MECHMOD [54]. The
required thermodynamic data (enthalpies and entropies of
formation) for the calculations were taken from Kéromnès
et al. [47]. The original forward parameters and those
obtained from the reverse direction measurements were
used together for data evaluation.

4. Using all the information above, separate tables of Arrhenius
parameters were created for each elementary reaction based
on the reviews, measurements and theoretical papers. If the
rate coefficient depended on 3rd body efficiencies, then the
corresponding series of tables were set up also for each bath
gas. In these tables, the rate parameters were always given
for the forward reaction and a note indicated if the para-
meters had been calculated from the data of the backward
reaction. In this latter case, we also estimated the increase
of the uncertainty using Eq. (9). In all cases we found that
for the species of the hydrogen and syngas combustion sys-
tems the uncertainty of the thermodynamic data is low,
therefore the uncertainty of the backward reaction can be
considered to be equal to the uncertainty of the forward
reaction. This may not be the case for other combustion sys-
tems, when the fuel is a larger molecule. Separate tables
contained the original Arrhenius parameters determined
for the backward reaction, allowing the checking of the cor-
responding information in the main tables.

5. Third body collision efficiency parameters were collected for
all bath-gas-dependent rate coefficients. In all cases, the col-
lision efficiency of nitrogen was considered to be unity and
all other collision efficiencies were related to this. Some
reviews and other literature sources define separate Arrhe-
nius parameters for different bath gases. Plotting the ratio
of these rate coefficients as a function of temperature (e.g.
plotting m(T) = k(Ar,T)/k(N2,T)) usually indicates that colli-
sion efficiency m changed little in the whole temperature
range. In this work we always assumed temperature inde-
pendent third body collision efficiencies. The relative colli-
sion efficiencies are summarized in a table that contains
information for bath gases H2O, H2, Ar, He, O2, CO, and
CO2. This table indicates the mean value of the relative col-
lision efficiency, a reasonable conservative range of collision
efficiencies and the collision efficiencies as used in the var-
ious articles. Due to the scarcity of the 3rd body collision
efficiency information, the mean value and the range of
uncertainty were determined in an arbitrary, but conserva-
tive way and these values were not results of data eval-
uation. The rate information obtained for different bath
gases were combined using the indicated mean relative col-
lision efficiency values.

6. A mean rate coefficient–temperature function j0(T) was
selected. For most of the reactions, this mean value was
identical to the Baulch et al. [8] recommendation. In other
cases, another literature j(T) was selected that runs
approximately halfway between the upper and lower
extremes of the literature values. It has to be emphasized
that j0(T) is the mean curve of the uncertainty band and
not a new evaluated rate coefficient. This work does not
aim to recommend new evaluated rate coefficient–tem-
perature functions and the selected set of Arrhenius para-
meters should not be interpreted in this way.

7. For some of the reactions, the temperature dependence of
the rate coefficient is defined by a double Arrhenius expres-
sion. If this temperature dependence could be equally well
described by a single Arrhenius expression, then the latter
was selected as the mean value. If a double Arrhenius
expression was needed, the combustion temperature range
(700–2500 K) was usually controlled by one of the two sets
of Arrhenius parameters. In this case the k0(T) function was
the sum of the two Arrhenius expressions, but the calculated
uncertainty domain was attributed to the Arrhenius expres-
sion that are dominant in the combustion temperature
range. In our investigations two reactions (R13 and R19)
belonged to this category.

8. The temperature interval [Tmin, Tmax] was usually defined as
300–2500 K. In this temperature range, foriginal values were
determined equidistantly at every DT using the program u-
Limits in such a way that all considered experimentally
determined or theoretically calculated j(T) functions
remained between jmin(T) and jmax(T) curves. Usually
DT = 100 K was used. Program UBAC was used to process
foriginal values in order to determine uncertainty parameter
values fextreme at every 100 K, which are consistent with
the Arrhenius expression in the whole temperature interval.

9. The fextreme–T data pairs were used for the determination of
the parameters (standard deviations and correlations) of the
covariance matrix of the Arrhenius parameters by program
JPDAP. The fprior(T) curve was then calculated from the
covariance matrix obtained.

10. For several important elementary combustion reactions
many experimental and theoretical determinations are
available. For these elementary reactions, multivariate nor-
mal distributions of the Arrhenius parameters are assumed.
In our studies, 13 reactions (R1�R4, R6�R12, R15�R16)
belonged to this category.

11. For many elementary reactions very little chemical kinetics
information is available. The data evaluations used usually
recommended a temperature-independent uncertainty
parameter f. In this case all the three uncertainty functions
were the same (foriginal(T) = fextreme(T) = fprior(T)), and ra =
f � (ln10)/3, while all other parameters of the covariance
matrix were zero. Uniform distributions of the Arrhenius
parameters among their limits can be assumed in this case.
In our investigations, 8 elementary reactions (R5, R13, R14,
R17�R20, R22) belonged to this group.

12. If the rate coefficient of an elementary reaction does not
change with temperature and the rate coefficient has been
determined in many investigations, then a normal distribu-
tion for j can be assumed, which implies the same normal



Fig. 4. (a) Arrhenius plot of the rate coefficient of reaction R4: OH + H2 ? H2O + H. All measured and theoretically suggested rate coefficients found in the literature are
shown. The mean curve is indicated with thick red line. (b) The previous figure was transformed in such a way that at each temperature the mean log10{k0} was subtracted
from the measured or theoretically calculated log10{k} values. As a result of the transformation, log10{k/k0} was plotted as a function of 1000 K/T. Some of the rate coefficient
functions were far from the band determined by the others. These are indicated by gray dash-dotted lines and gray dots, and not considered at the determination of the
uncertainty band. The uncertainty boundaries corresponding to foriginal are represented by red points at every 100 K and interconnected with red lines. (c) Taking the absolute
values of the not rejected rate coefficient functions plotted in (b), the relation of the uncertainty parameters and the experimental (or theoretical) rate coefficient expressions
is depicted. The black dots indicate foriginal points, the dashed line the fextreme function, while the solid red line the fprior function. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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distribution for a. In this case foriginal = fextreme = fprior and all
parameters of the covariance matrix are zero, except for
ra = f � (ln10)/3. This is the case of reaction R21 in our
studies.

Transformation of the Arrhenius plot of all literature rate coef-
ficient expressions to the uncertainty band is illustrated in Fig. 4 on
the example of reaction R4: OH + H2 ? H2O + H. All collected mea-
sured and theoretically suggested rate coefficient expressions are
given in the Supplementary and these are depicted in an Arrhenius
plot in Fig. 4a. The selected mean rate expression was originally
suggested by Baulch et al. [8]. Figure 4b shows log10{k/k0} as a
function of 1000 K/T, where k0 is the mean rate coefficient value
and the k values are calculated by the rate expressions suggested
in the literature. This is equivalent to the calculation of the differ-
ence of log10{k} and the mean log10{k0}. This figure also contains
the foriginal points at every 100 K. In the low (300–450 K) and high
(900–2500 K) temperature regions the foriginal points closely follow
the extreme log10{k/k0} values. In the middle temperature range
(450–900 K) the foriginal points interpolate the high uncertainty of
the neighboring temperatures to avoid the suggestion of unrealis-
tically low uncertainty in this region. This figure also shows that
taking into account all rate coefficient expressions suggested in
the literature would lead to unrealistically large uncertainty limits
(about f = 0.7). The rate coefficient expressions not considered are
indicated by gray dash-dotted lines in Fig. 4b and are denoted by
non-bold characters in the corresponding table of the Supplemen-
tary. Finally, Fig. 4c shows the absolute values of the log10{k/k0}
functions and their relation to the foriginal, fextreme and fprior uncer-
tainty parameter functions.

All the tables and figures obtained using the protocol above are
provided in the Supplementary Material. A series of tables was pro-
duced for each elementary reaction containing information on the
rate coefficients (see step 4) and possibly the 3rd body collision effi-
ciency parameters (see step 5). To support the applicability of the
content of the tables, reference is made to the original reaction
numbering of the review and modelling papers, and page numbers
in the Baulch et al. [8] review. At the end of each section for a given
reaction, the uncertainty parameter foriginal(Ti) obtained from the
overview of the literature, is tabulated in every 100 K within the
temperature range of evaluation. The information of the tables is
visualized in a series of figures. The first figure is an Arrhenius plot
that shows all reviewed, measured, and calculated rate coefficients
that were used in the determination of the uncertainty limits. The
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corresponding rows of the tables are printed in bold. This figure also
shows the mean curve log10{k0(T)}, and the upper and lower uncer-
tainty limits log10{k0(T)} ± fprior(T), calculated from the covariance
matrix of the Arrhenius parameters. The next figure presents the
tabulated foriginal(Ti) points together with fextreme(T) and the fprior(T)
function. Finally, a table provides the parameters of the calculated
covariance matrix (e.g. ra, rn, re, ran, rae, rne for a three-parameter
Arrhenius expression), the temperature range of validity and, for
a quick assessment, also the minimum and maximum values of
the uncertainty parameter fprior in this temperature range. Compar-
ing these values with the uncertainty parameters published in the
literature, the fprior(T) values recommended here are usually equal
to or slightly higher, since we always provide a safe upper estimate
for the uncertainty of the rate coefficients at the investigated
temperatures.

7.3. Discussion of the uncertainty information for each reaction step

7.3.1. Reaction R1: H + O2 = O + OH
This is the main chain branching reaction in hydrogen and syn-

gas combustion systems, and also in the high-temperature oxida-
tion of hydrocarbons. A large amount of experimental data is
available for both the forward and backward directions. The rate
coefficient is known with low uncertainty: Baulch et al. [8] and
Konnov [9] indicated f = 0.10–0.18 uncertainty. Hong et al. recently
measured [55] the rate coefficient in the temperature range 1100–
3370 K and they reported a 10% (2r) experimental uncertainty
(about f = 0.04). Burke et al. [50] also recently reviewed this rate
coefficient and basically accepted the Hong et al. parameters. How-
ever, the calculated ignition delay times and flame velocities are so
sensitive to this rate coefficient, that this relatively small uncer-
tainty causes high scatter in the simulation results. Our mean rate
expression is the Baulch et al. recommendation, the estimated
uncertainty is f = 0.21 at 1300 K and increases to both lower tem-
peratures (f = 0.29 at 800 K) and higher temperatures (f = 0.33 at
2700 K).

7.3.2. Reaction R2: H + O2 + M = HO2 + M (low-pressure limit)
This reaction converts the highly reactive H atom to the low

reactivity HO2 radical. Selection of the rate coefficients of reactions
R1 and R2 have high influence on the calculated flame velocities
and ignition delay times of hydrogen, syngas and hydrocarbon
oxidation systems. In atmospheric combustion systems and up to
moderate pressures, the rate coefficient is determined by the
low-pressure limit, therefore only that uncertainty is investigated
here. In accordance with its high importance, several direct mea-
surements are available, mainly with argon and nitrogen bath gas-
es, but some measurements with water and helium bath gases are
also available. Baulch et al. [8] and Konnov [9] suggest uncertainty
parameter f = 0.08–0.3 for the various bath gases, while our esti-
mation changes between f = 0.19 (600 K) and f = 0.39 (2000 K).
Our mean rate expression is the Baulch et al. recommendation
for bath gas N2. Third body collision efficiencies 10.0, 0.5, and 0.6
were used for bath gases H2O, Ar, and He, respectively, relative
to the unit collision efficiency of N2. Several reviewers recommend
(a,n)-type two-parameter Arrhenius expressions and our uncer-
tainty domain also refers to these two parameters.

7.3.3. Reaction R3: O + H2 = H + OH
Reaction R3 is the second most important chain branching step

(after R1) in several combustion systems and, accordingly, many
experimental results have been published on the determination
of the rate coefficient. Baulch et al. [8], Hong et al. [49] and Burke
et al. [50] recommended double Arrhenius expressions, while Kon-
nov [9] and Kéromnès et al. [47] used a single 3-parameter Arrhe-
nius expression. We adopted the suggestion of Konnov [9] as the
mean rate coefficient expression and therefore the uncertainty
domain of the corresponding three Arrhenius parameters were
defined. The estimated uncertainties were f = 0.20 (Baulch et al.
[8]) and f = 0.11 (Konnov [9]). The uncertainty parameter derived
here changes between f = 0.15 and 0.20.

7.3.4. Reaction R4: OH + H2 = H2O + H
The reverse reaction converts H atoms to OH radicals and there-

fore the calculated flame velocity is highly sensitive to its rate coef-
ficient at fuel-lean conditions. There are many experimental data
available for the rate coefficient of the forward reaction and also
some data for the backward direction. Konnov [9] suggested
f = 0.3, while Baulch et al. [8] assumed f = 0.1 at 250 K, increasing
to f = 0.3 at 2500 K. We used the mean rate coefficient expression
of Baulch et al. and our uncertainty limits are very close to the
Baulch et al. [8] recommendation, that is f = 0.10 at 300 K increas-
ing almost linearly to 0.31 at 2500 K.

7.3.5. Reaction R5: H2O2 + H = H2 + HO2

A single room temperature measurement and few theoretical
calculations are available. Baulch et al. [8] and Konnov [9] suggest-
ed significantly different rate expression compared to those of
Hong et al. [49], Burke et al. [50] and Kéromnès et al. [47]. A tem-
perature-independent uncertainty parameter, f = 0.5, was suggest-
ed by both Baulch et al. [8] and Konnov [9]. We used the rate
coefficient expression of Kéromnès et al. [47] as the mean and,
by assuming a temperature-independent uncertainty of f = 0.6,
the uncertainty limits obtained include all review recommenda-
tions above 400 K.

7.3.6. Reaction R6: H + HO2 = OH + OH
The rate coefficient of the overall reaction (H + HO2 ? products)

was measured at room temperature, but the branching ratio is
uncertain, especially at higher temperatures. Baulch et al. [8] and
Konnov [9] suggested uncertainty parameters f = 0.15 and f = 0.3,
respectively. The recommendation of Baulch et al. [8] is very differ-
ent from the later reviews, and Konnov [9] is also slightly different
from the others. Burke et al. [50] provided a detailed discussion of
the reaction and they also revisited the theoretical determination
of its rate coefficient. Our mean line corresponds to the Kéromnès
et al. [47] two-parameter (a,e)-type recommendation, which is
almost identical to the Hong et al. [49] and Burke et al. [50] recom-
mendation. The suggested uncertainty limits are determined by
the deviations between the rate coefficient expression of Konnov
[9] and those of the others. The obtained uncertainty–temperature
function was further increased by f = 0.1, which resulted in the rec-
ommendation of Konnov [9] not lying at the edge of the uncertain-
ty range. The uncertainty parameter function obtained varies from
0.28 to 0.47.

7.3.7. Reaction R7: H + HO2 = H2 + O2

The reverse reaction of R7 is the main initiation reaction in the
homogeneous explosion of hydrogen–oxygen mixtures. Baulch
et al. [8] and Konnov [9] suggest an uncertainty parameter
f = 0.3. The measurements, theoretical calculations and reviews
span a band with the expression of Hong et al. [49] in the middle.
Therefore, the expression of Hong et al. [49] was selected as the
mean, and the width of the uncertainty band was increased by
f = 0.1 to include all recommendations. The uncertainty parameter
obtained varies between 0.28 and 0.54.

7.3.8. Reaction R8: HO2 + OH = H2O + O2

Reaction R8 is an important chain termination reaction in
flames. The reaction was recently reviewed and discussed in detail
by Burke et al. [56]. Several authors (Konnov [9], Burke et al. [56],
Hong et al. [57]) recommended the application of the sum of two
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Arrhenius expressions, while other reviewers recommended a sin-
gle 2-parameter Arrhenius expression. We investigated the uncer-
tainty of the 2-parameter Arrhenius expression as suggested by
Kéromnès et al. [47]. In the determination of the uncertainty range,
the very low measured values of Hippler et al. [58] and Kappel
et al. [59] were not considered, in accordance with the analysis
of Burke et al. [56]. The recommendations of Baulch et al. [8] and
Konnov [9] relied on the Hippler et al. and Kappel et al. measure-
ments, therefore their suggestions were not considered here. The
remaining measurements and reviews suggest an uncertainty
band, which was further increased by f = 0.1 to include all consid-
ered data, giving an uncertainty parameter near f = 0.45. This
uncertainty margin satisfactorily includes the results of all recent
measurements. The mean rate expression is an (a,e)-type two-pa-
rameter Arrhenius expression, but considering only the uncertain-
ty of the Arrhenius parameters a and e did not provide a good
description of the fextreme(T) uncertainty parameter curve. There-
fore, while the mean value of n was kept at zero, we assumed that
it has a nonzero uncertainty. Assuming that all the three Arrhenius
parameters are uncertain allowed a good description of the shape
of the uncertainty band while rn has a value as low as 0.32.

7.3.9. Reaction R9: OH + OH ? H2O2 (high-pressure limit)
The high-pressure limit rate coefficient of reaction R9 is impor-

tant only at pressures much higher than atmospheric, whereas at
atmospheric pressure the reaction is close to its low-pressure lim-
iting behavior. The forward reaction is a sink of the OH radicals,
while the reverse reaction is a key reaction for the simulation of
fuel–air mixtures in engines (see the discussion by Hong et al.
[49], who refers to Westbrook [60]) There are no experimental data
at combustion temperatures, only below 800 K. Baulch et al. [8]
recommended a high-pressure limit rate coefficient only in the
temperature range of 200–400 K with an uncertainty f = 0.2. Kon-
nov [9] provided a recommendation up to 1500 K, with an uncer-
tainty f = 0.4. Hong et al. [49] recommended a rate coefficient for
the reverse reaction in the temperature range 1000–1200 K with
an uncertainty of 21 (f = 0.08). Troe [61] reviewed this reaction in
detail in both directions, and recommended parameters for the
temperature and pressure dependence of the rate coefficient based
on experimental results and theoretical calculations. In our calcu-
lations the rate coefficient expression of Konnov [9] was used as
the mean curve. The uncertainty limits were defined to include
all rate coefficients recommended in the reviews. This uncertainty
parameter is 0.4 at 1000 K, increasing to 0.5 at 1500 K and 0.7 at
2000 K. The rate expression of Konnov was (a,n)-type, but the T–
f points could not be reproduced by assuming that these Arrhenius
parameters are uncertain only. Therefore, the activation energy E
was also considered to be uncertain, and in this way the fitted
f(T) function is satisfactorily described the uncertainty points.

7.3.10. Reaction R9: OH + OH + M = H2O2 + M (low-pressure limit)
For the bath gas N2, Baulch et al. [8] recommended a rate coef-

ficient only for the temperature range 200–400 K (f = 0.2), while
Konnov [9] provided a rate coefficient with uncertainty f = 0.4 in
temperature range 250–1400 K. Hong et al. [49] recently investi-
gated this reaction and determined a more accurate rate coefficient
expression with an uncertainty of 21 (f = 0.08) in range 1000–
1460 K. Kéromnès et al. [47] used a slightly different expression
than Hong et al. to describe better the indirect experimental data
at high pressures. The recommendations of Konnov [9] and Baulch
et al. [8] are very different from the recent Hong et al. [49] mea-
surements, therefore these recommendations are not considered
here. All remaining measurements and reviews resulted in an
uncertainty value, which was increased by 0.1 to include all the
data. The obtained uncertainty parameter values fprior(T) are 0.35
at 800 K, increasing to 0.50 at 1000 K and 0.70 at 1900 K. The
experimental data refer to bath gases N2, Ar and H2O. We used
mean 3rd body efficiencies m(Ar) = 0.67 and m(H2O) = 8.33 relative
to that of nitrogen.

7.3.11. Reaction R10: H + OH + M = H2O + M (low-pressure limit)
Calculated flame velocity values are very sensitive to the rate

coefficient of this recombination reaction, which is close to the
low-pressure limit at all experimental conditions. There is limited
number of experimental data for N2, Ar and H2O bath gases. Srini-
vasan and Michael [62] recently measured the rate coefficient at
high temperatures (2196–3190 K) with low (18%) reported uncer-
tainty, although these values are not in good accordance with the
previous measurements. Konnov [9] suggested uncertainty f = 0.3,
while Baulch et al. [8] suggested f = 0.3 for Ar and f = 0.5 for N2

and H2O. We accepted the rate expression of Konnov [9] for N2

bath gas as the mean. Experimental and theoretical values for bath
gases Ar and H2O were merged with the N2 data using relative 3rd
body efficiency values m(Ar) = 0.38 and m(H2O) = 6.45. The
reviews, and the experimental and theoretical data provide an
uncertainty band with typical radius f = 0.3 at 400 K increasing to
f = 0.63 at 2000 K.

7.3.12. Reaction R11: OH + OH = H2O + O
Many experimental data in good accordance are available.

Baulch et al. [8], Konnov [9], and Hong et al. [49] suggested rate
coefficient expressions with low uncertainty. The f values are
0.15, 0.18 and 0.06–0.10, respectively. We accepted the expression
of Baulch et al. [8] as our mean. The uncertainty band determined
includes all the data and fprior(T) increases from 0.20 at 900 K to
0.32 at 2000 K.

7.3.13. Reaction R12: H + H + M = H2 + M (low-pressure limit)
There are measured data with bath gases N2, Ar, H2, and H2O.

Most of the reviews provide different rate expressions for the dif-
ferent bath gases, but Kéromnès et al. [47] recommended a single
Arrhenius expression for nitrogen and various 3rd body efficiencies
for the other bath gases. Baulch et al. [8] recommended f = 0.5 in
the case of all bath gases, while Konnov [9] considered different f
values for the bath gases of Ar (0.3), N2 (0.5), H2 (0.4), and H2O
(0.7). We adopted the [9] recommendation of Konnov et al. for
nitrogen as the mean value. Experimental and theoretical values
for the other bath gases were merged with the N2 data using 3rd
body efficiency values m(Ar) = 0.87, m(H2) = 2.5 and m(H2O) = 12.
These values outline an uncertainty band, which was widened by
f = 0.1, giving values increasing from f = 0.35 (600 K) to f = 0.70
(2100 K).

7.3.14. Reaction R13: HO2 + HO2 = H2O2 + O2

At low temperatures, this reaction proceeds via two mechan-
isms, one of which is pressure dependent and the other is pressure
independent. There are many experimental data, but almost all
these data are below 400 K. Many low-temperature measurements
were carried out in nitrogen bath gas at 1 bar, in accordance with
the atmospheric significance of this reaction. At combustion tem-
peratures (above about 500 K) the pressure-independent mechan-
ism is dominant, and therefore the rate coefficient can be
considered pressure independent. All reviewers suggest a double
Arrhenius expression. Konnov [9] proposed a slightly different
expression, while the recommendation of all other reviewers are
identical. Plotting the Baulch et al. [8] recommendation (see the
figure in the Supplementary Material) shows that both terms of
the double Arrhenius expression are important in the temperature
range of 650–1000 K. Above 1000 K the expression is dominated by
the positive activation energy term and below 650 K it is dominat-
ed by the negative E term. Baulch et al. suggested f = 0.15 in tem-
perature range 550–800 K rising to 0.4 at 1250 K. Konnov
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provided separate uncertainties (f = 0.15 and f = 0.4) for the nega-
tive and positive activation energy expressions, respectively. Since
we are interested in the uncertainty of the rate coefficient above
700 K, a temperature-independent uncertainty parameter fpri-

or = 0.4 was accepted, and the uncertainty of the Arrhenius para-
meters of the positive activation energy term was calculated.

7.3.15. Reaction R14: H2O2 + H = H2O + OH
The few measurements available were made before 1974 and

below 770 K. Both Baulch et al. [8] and Konnov [9] suggested
uncertainty parameter f = 0.3 for the temperature region 300–
1000 K. We accepted the suggestion of Kéromnès et al. [47] as
the mean rate expression and assumed a temperature-indepen-
dent f = 0.4. The corresponding uncertainty band includes all rate
coefficient curves suggested in the various reviews in temperature
range 300–2500 K.

7.3.16. Reaction R15: CO + OH = CO2 + H
This is the most important elementary CO reaction in combus-

tion systems, since it converts OH radicals to H atoms. Kéromnès
et al. [47] and Davies et al. [15] suggested a double Arrhenius
expression, while Sun et al. [53] recommended a triple Arrhenius
expression. The reaction is pressure dependent at low temperature,
whereas at combustion temperatures it is pressure independent.
The Arrhenius A values of Davies et al. [15] are optimized ones
and they assumed uncertainty f = 0.08. Many measurements for
this rate coefficient are available. We accepted the single three-pa-
rameter Arrhenius equation suggested by Li et al. [63] as the mean
rate expression. Assuming uncertainty parameter fprior(T) changing
from 0.18 (1200 K) to 0.3 (2500 K), the uncertainty band includes
all recent rate determinations and reviews.

7.3.17. Reaction R16: HCO + M = H + CO + M
This is another very important CO elementary reaction. The rate

coefficient is close to the low-pressure limit even at 100 bar. There
are several measurements, mainly from the 1970s for bath gases
N2, Ar, H2, He and CO. Baulch et al. [8] suggested an uncertainty
parameter f = 0.3 for Ar bath gas in the temperature range 500–
2500 K. Davis et al. [15] also assumed f = 0.3 for N2 bath gas. We
accepted the rate expression suggested by Kéromnès et al. [47]
for N2 bath gas. The relative third body efficiencies with respect
to N2 are given in the Supplementary Material. The uncertainty
parameters fprior(T) suggested here change from 0.32 (1000 K) to
0.56 (2200 K).

7.3.18. Reaction R17: CO +O2 = CO2 + O
Few experimental data are available in either direction, since

measurement of both the forward and the reverse rate coefficients
is technically difficult. Davis et al. [15] reported uncertainty para-
meter f = 0.5. All reviewers except for Kéromnès et al. [47] used
the same set of Arrhenius parameters. We accepted the Arrhenius
equation that was first suggested by Mueller et al. [64] as the mean
rate expression. A constant uncertainty parameter fprior = 0.7
defines a band that includes all review and experimental data.

7.3.19. Reaction R18: H + O + M = OH + M (low-pressure limit)
A single experimental expression is available for this rate coeffi-

cient based on the measurements of Javoy et al. [65]. Konnov [9]
suggested f = 0.5 for temperature range 2950–3700 K, using the
estimated uncertainty of the Javoy et al. measurement. The 3rd
body collision efficiency coefficients given in the various reviews
were assigned without any experimental or theoretical back-
ground. Our mean rate coefficient expression is identical to those
of Kéromnès et al. [47] and we assumed constant f = 0.5 uncertainty
parameter.
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7.3.20. Reaction R19: H2O2 + OH = HO2 + H2O
This reaction is important in the intermediate-temperature

ignition of hydrocarbons and alcohols. Hong et al. [66] recently
measured the rate coefficient in the temperature range of 1020–
1460 K. Hong et al. [67] also combined the obtained rate coeffi-
cients with room-temperature measurement data and described
the temperature dependence of the rate coefficient in a wide range
of temperatures by a double Arrhenius expression. They assigned
uncertainty of 26% (f = 0.10). Previously Baulch et al. [8] and Kon-
nov [9] suggested uncertainty parameter f = 0.5 and f = 0.3, respec-
tively, for the temperature range 800–1700 K. The double
Arrhenius expression of Hong et al. [67] was also accepted by
Burke et al. [50] and Kéromnès et al. [47], and we also use this rate
expression as the mean one. We assigned a more cautious f = 0.3
constant in temperature range 800–2500 K.

7.3.21. Reaction R20: HCO + O2 = HO2 + CO
There are many measurements available, but mainly at room

temperature and below 700 K. No reviewers have suggested an
uncertainty parameter for this reaction. Most reviews and mod-
elling studies use the experimental rate expression of Timonen
et al. [68]. The mean rate coefficient expression used here is also
based on their values and it is identical to that of Kéromnès et al.
[47]. We assumed constant f = 0.3 uncertainty parameter, which
includes most measured rate coefficients.

7.3.22. Reaction R21: HCO + H ? H2 + CO
This is a radical–radical reaction and therefore nearly zero tem-

perature dependence is expected. All reviewers suggested a single
Fig. 5. Uncertainty fprior(T) curves
A-factor as an Arrhenius expression. The experimental data, avail-
able from 295 K to 2700 K, also indicate no temperature depen-
dence for the rate coefficient. Baulch et al. [8] suggested
uncertainty parameter f = 0.3. We use the rate expression of Baulch
et al. as the mean and an assumed temperature-independent
f = 0.5. The uncertainty band obtained includes all rate coefficient
values.

7.3.23. Reaction R22: CO + HO2 ? CO2 + OH
This reaction is important at high pressure (above 15 bar) and

low temperature (below about 1100 K), that is at the conditions
of several RCM experiments [69]. Davis et al. [15] applied uncer-
tainty parameter f = 0.3. We use the rate expression of Kéromnès
et al. [47] as the mean, which is based on the theoretical determi-
nation of You et al. [70]. Apart from the You et al. article, very few
and not recent experimental and theoretical rate determinations
are available, and therefore we assumed temperature independent
uncertainty f = 0.7.

7.4. Summary of the uncertainty information for the investigated
elementary reactions

The last paragraph of Section 7.2 described the tables and fig-
ures given in the Supplementary Material. This contains all raw
information, and also the derived covariance matrices and fprior

functions for each reaction. To facilitate the application of these
results in combustion modelling, the prior uncertainty information
determined for the 22 reactions are summarized also in Tables 2
and 3. The rows of Table 2 contain the chemical reactions and
for the investigated reactions.



Fig. 6. Scheme for the determination of the prior uncertainty of the Arrhenius parameters.
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the mean Arrhenius parameters a, n, e. For reactions R5, R13, R14,
R17, R18, R19, R20, R21 and R22, the uncertainty is characterized
by ra = f � (ln10)/3. In the case of these reactions (except for
R21) a uniform probability density function is assumed. For the
other reactions much more information is available, detailed in
the Supplementary Material. For these reactions, uncertainty para-
meter values foriginal(Ti) and fextreme(Ti) were determined at every
100 K by programs u-Limits and UBAC, respectively. Using the pro-
gram JPDAP, the fextreme(Ti) values were fitted and the parameters
of the covariance matrix of the Arrhenius parameters are given in
columns 7–12 of Table 2. Figure 5 shows for each investigated
reaction the fprior(T) calculated from the covariance matrix of the
Arrhenius parameters.

Reactions R2, R9, R10, R12, R16, and R18 are at their low-pres-
sure limits. The rate parameters of these reactions correspond to
the 3rd body collision efficiency of N2. For these reactions, the
3rd body collision efficiencies for other bath gases (H2O, H2, Ar,
He, O2, CO, and CO2), relative to N2, are given in Table 3. The table
indicates mean relative collision efficiencies only for those elemen-
tary reactions where the rate information for different bath gases is
available.

8. Conclusions

A methodology was developed for the determination and effi-
cient storage of the domain of uncertainty of the Arrhenius
parameters of gas-phase elementary reactions. First, temperature-
dependent kmin and kmax values were selected at intervals of
100 K in such a way that these values provide a lower and an upper
limit, respectively, of all recent measurements and theoretical
determinations. Selecting a mean rate coefficient–temperature
function, the limits were converted to uncertainty parameters
foriginal at every investigated temperature. This procedure was
assisted by program u-Limits, which makes the determination of
the uncertainty band a semiautomatic process. The obtained T–
foriginal data pairs may not be consistent with the temperature
dependence of the rate coefficient. A calculation procedure and
the corresponding computer code UBAC (the acronym of Uncer-
tainty Band of Arrhenius Curves) was developed to find the
fextreme(T) curve that is consistent with the Arrhenius equation in
the whole temperature interval. This curve can be used to define
the domain of allowed Arrhenius parameters. The fextreme(T) curve
can be well represented and thereby efficiently stored with the
uncertainty curve fprior(T), which is parameterized with the covari-
ance matrix Rp of the Arrhenius parameters, that has merely at
most 6 non-zero parameters. The parameters of the covariance
matrix can be calculated by program JPDAP (the acronym of Joint
Probability Density of Arrhenius Parameters). Using program
SAMAP, random sets of Arrhenius parameters having either a nor-
mal or a uniform distribution, can be generated. The rate coeffi-
cients calculated by these Arrhenius parameters are always
within uncertainty limits fprior(T) in the whole temperature interval
of evaluation. The logical structure of the procedure above is
depicted in Fig. 6.

This procedure was used for the analysis of 22 important ele-
mentary reactions of the H2 and syngas system. The collected data
and the details of the calculations can be reproduced from the Sup-
plementary Material. The summary of the numerical results and
the qualitative assessment of the uncertainty of the rate coeffi-
cients of these reactions are given in the main text of the article.
These data can be used for mechanism optimization and uncertain-
ty quantification studies of hydrogen and syngas combustion
models.
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Appendix A. Convexity and symmetry of the uncertainty
domain of Arrhenius parameters

This appendix shows that the uncertainty domain of the Arrhe-
nius parameters is always convex for both the 2-parameter and the
3-parameter Arrhenius expression cases. Also, it is proved that if
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the minimal and maximal j(T) curves are symmetric around j0(T),
then the uncertainty domain will also be symmetric around the
mean set of Arrhenius parameters.

The uncertainty domains defined for the rate coefficients at the
three sampling temperatures are intervals, which are convex in 1D.
The direct product of these intervals defines a rectangular box,
which is a 3D domain and also convex:

½jlowðT1Þ;jhighðT1Þ� � ½jlowðT2Þ;jhighðT2Þ�
� ½jlowðT3Þ;jhighðT3Þ� ðA1Þ

Convexity of a domain means that all line segments connecting any
two points A and B in the domain go within the domain:

jx ¼ ð1� xÞjA þ xjB ð0 � x � 1Þ ðA2Þ

A point of a line segment jx between points jA ¼ ðjA;1;jA;2;jA;3Þ
and jB ¼ ðjB;1;jB;2;jB;3Þ in the j = (j(T1), j(T2), j(T3)) space auto-
matically fulfils the uncertainty constraints in j, since each of its
components for i = 1, 2, 3 fulfils it. This uncertainty constraint is
�f i 6 ðjxi � j0

i Þ= ln 10 6 þf i for i = 1, 2, 3.
The transformation between the j and p spaces is linear, since it

requires the solution of the following system of linear equations:

jðT1Þ
jðT2Þ
jðT3Þ

2
64

3
75 ¼

1 ln T1 �T�1
1

1 ln T2 �T�1
2

1 ln T3 �T�1
3

2
64

3
75

a
n

e

2
64

3
75 ðA3Þ

A shorter notation for the equation above is j ¼ Tp. Accordingly,
the Arrhenius parameter vector can be calculated from the j(Ti) val-
ues given at three different temperatures as p ¼ T�1j. Multiplying
the terms of Eq. (A2) with matrix T�1 gives:

T�1jx ¼ ð1� xÞT�1jA þ xT�1jB ðA4Þ

It can be written as:

px ¼ ð1� xÞpA þ xpB ðA5Þ

Due to the convexity of the 3D interval in j, the calculated Arrhe-
nius parameter set px will also be within the uncertainty domain
of p, which implies that this domain is also convex.

Uncertainty limits at other temperatures will impose linear
inequality constraints on the j(Ti;p) values (see Eq. (3)), which
correspond to linear inequality constraints for parameters p due
to the linear relationship between j and p (see Eq. (2)). These lin-
ear inequality constraints define half-spaces in p, which corre-
spond to truncation of the uncertainty domain by planes. The
predefined limits for n are also linear inequality constraints (see
Eq. (4)). Linear inequality constraints truncate the domain of a uni-
form distribution by planes, but do not affect convexity and even-
ness (see Appendix B). The consequence is that while the extreme
Arrhenius curves define the boundaries of the uncertainty domain
of the Arrhenius curves, their parameters correspond to the ver-
tices of the complex hull of the uncertainty domain of the Arrhe-
nius parameters.

The uncertainty boundaries in j are located symmetrically
around the mean value at any three temperatures, therefore the
constraints imposed by them in the space of parameters p will
be also be symmetric with respect to mirroring through p0 due
to the linear relationship between the spaces. Furthermore, apply-
ing symmetric constraints for n around n0 also will not affect the
mirror symmetry of the uncertainty domain (see Appendix B)
around the central values, therefore mirror-symmetric multivari-
ate distributions will lead to mean values �p which are equal to
the central values p0.
Appendix B. Multivariate uniform distribution of the j values at
three temperatures implies uniform distribution of the
Arrhenius parameters

Multivariate uniform distribution of the j values at three tem-
peratures means that the probability density qj(j) = qj(j(T1),
j(T2), j(T3)) is constant within the joint uncertainty domain. It is
shown here that the Arrhenius parameters p obtained by solving
Eq. (2) also have an uniform distribution within their uncertainty
domain in the space of p, that is qp(p) = qp(a,n,e) probability den-
sity is constant.

The transformation between variables p and j is j ¼ Tp (see Eq.
(A3) in Appendix A), which is linear, since matrices T and T�1 are
constant. The transformation of probability densities between the
two spaces is carried out by multiplying with determinant detT.

qjðjÞ
zfflffl}|fflffl{constant

d3j¼qj �det
@j
@p

� �
d3p¼qj � detT

zffl}|ffl{constant

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
qpðpÞ

d3p¼ qpðpÞ
zfflffl}|fflffl{)constant

d3p¼qpd3p

ðA6Þ

Since qj(j) is constant, therefore qp(p) is also constant. In other
words, transformation (A6) changes the volume element evenly
and leaves the probability density constant, thus it will transform
uniform distribution in j into uniform distribution in p.
Appendix C. Transformation of a constrained parameter
estimation problem to an equivalent unconstrained parameter
estimation task

Code JPDAP allows fitting of Eqs. (6) and (7) and its simplified
versions for 2 Arrhenius parameters to the uncertainty values f.
However, due to the positive semi-definiteness of the covariance
matrix [10] the following constraints also have to be considered:
0 6 ra, rn, re, �1 6 ran, rae, rne 6 1 and
0 6 1� r2

an � r2
ae � r2

ne þ 2ran rae rne. These constraints are taken into
account in an indirect way by reformulating the original problem
to an equivalent, numerically more stable unconstrained para-
meter estimation task. The method is presented for the 3-pa-
rameter case only; the two-parameter cases are similar.

The original parameters were the standard deviations and cor-
relations of the Arrhenius parameters, subjected to constraints
originated from the positive semi-definiteness and symmetric
properties of the covariance matrix (Rp). This matrix has the fol-
lowing eigenvalue–eigenvector decomposition:

Rp ¼ OKOT ðA7Þ

Here K is the diagonal matrix of non-negative eigenvalues (ki P 0),
and O is an orthogonal matrix (OT = O�1) of the orthonormal eigen-
vectors oi (column vectors). Thus the overall effect of the covariance
matrix on a vector H = (1, ln{T}, �{T}�1)T, can be considered as
decomposition of the vector into components parallel with oi,
multiplying each component with ki, and finally adding them up.
This transformation can also be seen as rotating vector H from
the eigenvector frame (defined by ±oi’s) to the frame of
ei’s (OT = e1o1

T + e2o2
T + e3o3

T), multiplying the new coordinates with
non-negative ki (K = k1e1e1

T + k2e2e2
T + k3e3e3

T), and finally rotating
the vector back to eigenvector frame (O = o1e1

T + o2e2
T + o3e3

T). Here
we assume that e1(e2 � e3) = o1(o2 � o3), that is the two set of basis
vectors are of the same handed.

The rotation angles (ui, where i = 1, . . . ,N�(N � 1)/2 for N Arrhe-
nius parameters), and the square root of the non-negative eigen-
values (ki = xi

2, where i = 1, . . . ,N) are an unconstrained set of
parameters. This re-parameterization of Eq. (7) provides an expres-
sion for the standard deviation of the rate coefficient, which makes



2076 T. Nagy et al. / Combustion and Flame 162 (2015) 2059–2076
the determination of the covariance matrix straightforward as the
new parameters can be varied freely, i.e. without constraints.

rjðT;ui;xiÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HT �Oðu1;u2;u3Þ �diagðx2

1;x2
2;x2

3Þ �O
Tðu1;u2;u3Þ �H

q
ðA8Þ
Appendix D. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.combustflame.
2015.01.005.
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