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The system of differential equations by Feistel and Ebeling has been generalized. 
Some new formal kinetic reactions with two internal components, which may exhibit 
limit cycle behavior have been studied. Based upon the numerical integration of the 
deterministic models of these reactions the oscillatory character of the systems has 
been conf'mned. 

Bl, ma o6o6meaa CHCTeMa ~qbqbepemma.umtLlX ypaBlteHrffi ~eHcTe/I~ H 36eJIHHra. 
Bbmrt paCCMOTpeHbI neKOTOpble HOBble cayaari qbopMa21bHOl'~ KHHeTHKH C D;ByMJ:I 
BHyTpel-U~MIt KOMnOHeHTaMH, KOTOpble apeaeraBnalOr coSoa rpaHHtmoe t~rlKnHqecKoe 
FIOBO~eHHe. Ha OCHOBe qHCJleHHOrO I, lI-rl'erpHpoBaHHa ~IeTepMHHI, ICrI, IqecI<I, IX Mo~ezle~ 
~'rVlx peaKl~I~ 6l, trI no~Tsepx~r~eH oettrmnHpylolU~li~ xapaKTep CrICTeM. 

INTRODUCTION 

Exotic phenomena of complex chemical systems are in the center of experimen- 
tal and theoretical investigations. The most important exotic kinetic behavior is 
the limit cycle behavior, because it is supposed that by them one can explain 
oscillatory phenomena in biological systems. 

Based on a literature survey, it seems to us that the small number of systems 
showing limit cycle behavior hinder the investigations. The authors use only two 
or three different models. These models certainly cannot describe all experimental 
data exactly. Our aim in the present paper is to give a method to construct many 
kinds of systems with two internal components leading to a limit cycle. 

MAIN TOOLS 

A general study of limit cycle behavior was made by Feistel and Ebeleing/2/. 
They studied the oscillatory behavior of complex chemical reactions in some cases. 
One of the main tools they used is the following (for details, see Ref./6/,  Sec- 
tion 6.5): 
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Theorem 1. A system of two differential equations (henceforth system of DE) 
leads to limit cycle only if 

tr A > 0  

t r 2 A - 4 d e t  A~<O 

where A is the coefficient matrix of the linearized form around the stationary 
point of the equations. 

Our other tools will be the following theorems: 
Theorem 2. The zero deficiency theorem/1/.  

Theorem 3. The Volpert-theorem/11/. 
Theorem 4. The Hanusse-Tyson-Light theorem /3, 10/. 

The following system of DE for modelling a class of chemical reactors has 
been postulated in Ref. /2/: 

= y ' g ( x ) - b ( x ) - x  (la) 

~, = 1 - y ' g ( x ) + b ( x )  (lb) 

This model has two advantages: 

(i) it is easy to calculate the coordinates of the stationary point; 
(ii) a special form of this model is the well known Brusselator model with di- 

mensionless concentration and time. 
This system is the starting point of our analysis. 

RESULTS 

When constructing a more complex model our aim was to save the easy com- 
putability of the coordinates of stationary point(s). 

Our system of DE is: 

~r = g(y)" f(x) - b(x) + k(x) [h(y) - x" c(y) - l(x)] + l(x) (2a) 

= - g ( y ) ' f f x )  + b(x) - h ( y )  + c(y)"k(x)  (2b) 

In the stationary point(s) x = ~, = 0. From this condition we get 

x o = l +  
[h (yo ) -  l(xo)] [k (xo) -  1] 

k(xo) 'c(yo)  
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Obviously, if we choose usual functions, the value x0 will not be easy to 
handle, and changing the functions h, 1, k, c we can obtain more than one station- 

ary points. 
If we want to have the simplest c a s e  of Xo = 1, we can take two choices: 

(a) h(y0)=l(x0)  

(b) k(xo) = 1 

Having chosen either (a) or (b) we can calculate the Yo value too, and knowing 
these two values, we can apply Theorem 1. 

If  we choose k(x) = 0, we obtain a system of DE fulfilling condition (a). This 

is the general form of two well-known systems of DE: Brusselator and Lotka-  
Volterra mechanism. It has been mentioned that the Lotka-Volterra model, which 
exhibits conservative oscillations - and does not lead to limit cycle - is a special 
case of system (2). 

The system with k(x) = 1 is a more simple generalization of the system by 
Feistel and Ebeling. 

In the case of k ( x ) =  x we can easily get more than one stationary points (in 
the simplest case we get two) by appropriately choosing the functions h, 1, c. 

Our system of DE can be applied not only for modelling chemical systems, but 
it may be useful in mathematics and physics as well. In chemical applications, the 
system of DE has to comply with the requirements of reaction kinetics. 

THE MODELS 

Let us see what systems we obtain if we have different functions in (2). 

The new complex chemical reactions are (X and Y are the internal components; 
A, B, C symbolize external components in the systems): 

Our systems fulfill the conditions of Theorem 1, are of positive deficiency, 

have a cyclic Volpert graph and are either non-conservative or their elementary 
reactions have a molecularity not more than three. (The numerical solution and 
trajectories of these DE are shown in Figs 1-6).  

Our results are complementary to those by Schnakenberg/7/ as far as he treats 
reversible reactions only, whereas all of  our models are irreversible (sometimes 
with reversible steps). However, all of  our models contain one of the complex 

chemical reactions obtained from his replacing some of his elementary reactions 
by irreversible steps. 

Acknowledgements. The authors express their gratitude to Drs. J. T6th, P. l~rdi 
and V. H~s for stimulation and many helpful discussions. 
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A1 A2 A3 

Models A -~ Y X ~ Y 

X ~ B  X +  Y ~ X + A  

Y ~ X  X + Y ~ Y + B  

2X--> Y + C 2 X +  Y ~  3X 

2 X +  Y--> 3X 2X--> Y + X 

C + Y-- ,2Y 

k(x) 0 1 x 

b(x) 0.1x 2 0.4x= + 0.15x 0.04x 3 +-0.07x 2 

f(x) 0.1x 2 + 0.05 0.6x 2 + 0.2x 0.11x ~ + 0.02x + 0.02 

l(x) - x  0 0 .07-0 . Ix  

c(y) 0 y 0.1 

g(Y) Y Y Y 
h(y) - 1  0.3y --0.93 

2X Y~-o 2 X ~ X  + Y - ~ X  o 

X+Y X 2Y~- Y Y~X 

2X+ Y-~3X 2X + Y-*3X X+ Y~-2X 

2 X +  Y ~ 3 X  

x o 1.00 

Yo 7.60 

Functions 

The FHJ graph 
of the system 

Stationary 1.00 1.00 

points 7.33 5.50 

Deficiency 2 3 

t r A  0.117 1.155 

tr 2 A-4detA -0.586 -0.358 

A ~ X  

B ~ Y  

X ~ Y  

2 X + Y ~ 3 X  

X + Y ~ 2 X  

0.314 

-0.501 

r  

0 

y(~) 

0.0 10 ~S 25 35 50 
T i m e  

Fig. 1. Concentration" vs. time diagram of system (A1) 
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Fig. 2. Trajectories of system (a l )  in the neighborhood of  the limit cycle 
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Fig. 3. Concentration vs. time diagram of system (A2) 
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Fig. 4. Trajectories of system (A2) in the neighborhood of the limit cycle 
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Fig. 5. Concentration vs. time diagram of system (A3) 
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Fig. 6. Trajectories of system (A3) in the neighborhood of the limit cycle 
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