

Topics 2

Quantitative simulation of combustion

- detailed reaction mechanisms
- measurement of ignition time and flame velocity
- methods for the detection of radicals (LIF, RF, MS)
- measurement of the rate coefficients of elementary gas phase reactions using shock tube, flash photolysis and discharge flow
- chemical kinetics databases
- development of reaction mechanisms
- solving balance equations for the simulation of flames

related special course: Analysis of kinetic reaction mechanisms in the autumn semesters

Combustion Science an interdisciplinary science			
chemistry	physical chemistry	reaction kinetics thermodynamics transport phenon	gas kinetics nena
physics	fluid dynamics (CFD: Computational Fluid Dynamics)		
math	numerical methods analytical solution of equations		
engineering science			
The chemistry part: combustion chemistry			
F.A. Williams: Combustion theorymainly physics"Numerical combustion" conferencesmainly mathI. Glassman: Combustionmainly chemistry			

The international organization o	f combustion science
The Combustion Institute, Pittsburgh	USTION
own journals: Combustion and Flame (Elsevier, IF= 4.4) Proc. Combust. Inst. (Elsevier, IF= 3.4) Hungarian Section of the Combustion Institute "Magyar Égéstudományi Bizottság"	
Further combustion journals:	
Combustion Science and Technology Combustion Theory and Modelling Fuel Energy Energy & Fuels International Journal of Hydrogen Energy Combustion, Explosion, and Shock Waves Progress in Energy and Combustion Science	(Taylor & Francis, IF= 1.6) (Taylor & Francis, IF= 1.7) (Elsevier, IF= 5.1) (Elsevier, IF= 5.5) (ACS, IF= 3.0) (Elsevier, IF= 4.1) (Springer, IF 0.4) (Elsevier, IF: 26.5)

International Symposium on Combustion since 1949, in every second year			
1990	23 rd Symposium	Orleans, France	
1992	24 th Symposium	Sydney, Australia	
1994	25 th Symposium	Irvine, USA	
1996	26 th Symposium	Naples, Italy	
1998	27 th Symposium	Boulder, USA	
2000	28 th Symposium	Edinburgh, UK	
2002	29 th Symposium	Sapporo, Japan	
2004	30 th Symposium	Chicago, USA	
2006	31 st Symposium	Heidelberg, Germany	
2008	32 nd Symposium	Montreal, Canada	
2010	33 rd Symposium	Beijing, China	
2012	34 th Symposium	Warsaw, Poland	
2014	35 th Symposium	San Francisco, USA	
2016	36 th Symposium	Seoul, South Korea	
2018	37 th Symposium	Dublin, Ireland	
2020	38 th Symposium	Adelaide, Australia	
2022	39 th Symposium	Vancouver, Canada	
2024	40 th Symposium	Milano, Italy	

What is combustion?		
Everyone knows what combustion is, but a generally accepted definition does not exist.		
A possible definition: Combustion is chemical transformation with significant heat release.		
Wrong definitions of combustion: - reaction of oxygen with a fuel - reaction of gases accompanied with light emission		
Several typical combustion reactions:		
combustion of methane hydrogen-chlorine flame termite reaction	$CH_4 + 2 O_2 = CO_2 + 2 H_2O$ $H_2 + CI_2 = 2 HCI$ $2 AI + Fe_2O_3 = 2 Fe + AI_2O_3$	
flame: high temperature reaction front		

Main flame types			
	premixed	non-premixed	
laminar flame	gas stove flame Bunsen burner with blue flame	candle Bunsen burner with yellow flame	
turbulent flame	petrol engine with carburator	gas turbine rocket engine (H ₂ +O ₂ or kerosene+O ₂) Diesel engine	

Main flame types 2		
premixed flame mixing and then burning; it is safe only in small scale; not used in the industry		
non-premixed flame (old usage: diffusion flame) mixing and burning simultaneously; safe, because the combustible mixture is generated locally		
laminar flame	the total heat production is small BUT large heat production in some points!	
turbulent flame	large fuel consumption, large total heat production BUT small heat production in each point!	

Equivalence ratio		
fuel lean flame CH_4+O_2 mixture $\rightarrow CO_2+H_2$ $\varphi < 1$; $\lambda > 1$	O + (O ₂ remains)	
stoichiometric flame CH_4+O_2 mixture $\rightarrow CO_2+H_2O$ $\varphi=1; \lambda=1$		
fuel rich flame CH_4+O_2 mixture $\rightarrow CO_2+H_2O$ $\varphi > 1; \lambda < 1$ Stoichiometric ratios:	 C + (CH₄ remains) In fact, no methane remains, because at high temperature methane decomposes to hydrogen and olefins! 	
$\begin{array}{c} H_2^+ 0.5 \ O_2 \rightarrow H_2 O \\ CH_4^+ 2 \ O_2 \rightarrow CO_2^+ 2 \ H_2 O \end{array}$	$\varphi = \frac{n_{fuel}/n_{oxidizer}}{\left(n_{fuel}/n_{oxidizer}\right)_{stoichiometric}}$	
λ : air equivalence ratio φ : fuel equivalence rati	(see " λ sensor") o $\varphi = 1/\lambda$	

A close look at a candle

The flame of the candle melts the paraffin vaxa small cup is formed, which contains melted wax.The remaining solid wax forms the wall of the cup.Wrong candle:the paraffin vax is flowing away
and remains unburnt.

Due to capillary action, the candle wick is drawing ("wicking") the melted wax up to the flame. The paraffin is consumed, the flame is moving downwards, melting more paraffin. The top of the wick is burnt in the upper part of the flame.

Wrong candle:

The wick cannot transport the melted paraffin. The wick remains unburnt.

Paraffin vax is evaporating on the top of the wick The paraffin is decomposed and olefins are formed.

Combustion of olefins (ethenes) in the flame. The unburnt olefins are inside the flame. Air is flowing outside upwards, due to the density difference. Oxygen is transported to the flame by diffusion and small eddies.

Where is the location of combustion in a candle flame?

In the case of hydrocarbons, the nearly stoichiometric (φ =1.1) premixed flame has the largest burning velocity (largest flame speed).

In a non-premixed flame the equivalence ratio is continuously changing with the location.

Inside the candle flame the gas mixture is fuel rich (ϕ >1).

Outside the candle flame the gas mixture is fuel lean (ϕ <1).

The flame front inside the candle flame is where the gas mixture is nearly stoichiometric.

No oxygen inside the flame front.

Combustion of hydrogen
"The oxidation of hydrogen is the most studied oxidation process, and even the fine details of its mechanism are well known." A.B. Nalbandjan – V.V. Vojevodszkij The mechanism of the oxidation and combustion of hydrogen Izd. Acad. Nauk., Moscow, Leningrad, 1949
New mechanism in almost every year: Ó Conaire <i>et al.</i> (Galway, 2004) Konnov (Lund, 2008) Hong <i>et al.</i> (Stanford, 2011) Burke <i>et al.</i> (Princeton, 2012) Keromnes <i>et al.</i> (Galway, 2013) Sánches and Williams (San Diego, 2014) Varga <i>et al.</i> (Budapest, 2016) Konnov (Lund, 2019)
Why is it important? "the fuel of the future", "hydrogen economy", "carbon-free energetics" practical fuel (rocket fuel / satellite launchers) industrial safety (H ₂ generation in a nuclear accident, Fukushima) the core reactions of the oxidation of hydrocarbons

1 2 3 4 5 6	$\begin{array}{c} H_2 + O_2 \rightarrow .H + .HO_2 \\ .H + O_2 \rightarrow .OH + :O \\ .OH + H_2 \rightarrow .H + H_2O \\ :O + H_2 \rightarrow .OH + .H \\ .H + O_2 + M \rightarrow .HO_2 + M \\ .HO_2 + H_2 \rightarrow .H + H_2O_2 \end{array}$	chain initiation chain branching chain continuation chain branching chain termination* chain initiation*
7	$2 : HO_2 \rightarrow H_2O_2 + O_2$	chain termination
8	$H_2O_2 + M \rightarrow 2.OH + M$	chain initiation
9	$H \rightarrow wall$	chain termination
10	$HO_2 \rightarrow Wall$	chain termination

Topic 4. Combustion of wet CO, methane and other alkanes

The significance of syngas in environmental protection.

Reaction steps of wet CO combustion.

C1 and C2 reaction chains of methane combustion.

The reaction steps of the C1 and C2 chains.

Combustion of higher alkanes (ethane, propane, buthane).

Why is the flame of hydrocarbons blue?

Combustion of wet carbon monoxide

dry CO: no combustion wet CO (CO + O_2 + H_2O / H_2 / organics) combustion Large amount of coal is available (e.g. in China), but the direct combustion produces large amount of pollution Exposing burning coal to water vapour, mixture of CO and H₂ is produced: synthesis gas water-gas shift reaction, WGS: $CO+ H_2O= CO_2 + H_2$ changing the CO/H₂ ratio electricity production in gas turbines and internal combustion engines clean, well controllable, efficient technologies combating global warming: synthesis gas from biomass (CO₂ neutral technology!) IGCC-CCS technology: integrated gasification combined cycle + carbon capture and storage Combined Cycle Gas Turbine (CCGT) (60% efficiency) the heat of a gas turbine is used in a steam turbine

Oxy-fuel combustion: combustion with pure oxygen, easier CO₂ capture

Combustion of wet CO 2			
mechanism of wet CO combustion: H/O reactions \Rightarrow almost equilibrium state of H/O/OH radicals and then:			
$CO + .OH \rightarrow CO_2 + .H$ MAIN SOU	This is the main heat producing step JRCE OF HEAT IN ALL HYDROCARBON FLAMES!!!		
important CO reactions: $CO + .OH = CO_2 + .H$ $CO + .HO_2 = CO_2 + .OH$ $CO + O_2 = CO_2 + .OH$	at high temperature and low pressure at low temperature (<i>T</i> <1300 K), and high pressure		
other, less important reaction: CO + O + M = CO ₂ + M			
H + CO + M = HCO + M $H + HCO = H_2 + CO$ HCO + O = CO + OH $HCO + O = CO_2 + H$ HCO + OH = CO + H2O $HCO + O_2 = CO + HO_2$	HCO formation and consumption		

C1 chain: $CH_4 \rightarrow .CH_3 \rightarrow CH_2O \rightarrow .HCO \rightarrow CO \rightarrow$	$\begin{array}{c} CO_2 \\ CO_2 \\ CO_2 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$
C2 chain: $C_2H_6 \rightarrow .C_2H_5 \rightarrow C_2H_4 \rightarrow .C_2H_3 \rightarrow C_2H_2$ each step is a hydrogen abstraction by a small radical (.H, :O, .OH) Every second product is a radical.	$CH_{2}O \qquad C_{2}H_{4}$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad f_{2} O \qquad C_{2}H_{3}$ $\uparrow \qquad \uparrow \qquad f_{2} O \qquad f_{2}H_{3}$ $\downarrow \qquad \uparrow \qquad f_{2} O \qquad f_{2}H_{2}$ $\downarrow \qquad f_{2} O \ f_{2$
a detailed CH ₄ combustion mechanism: 37 species and ~350 irreversible reaction also describes ethane combustion	ons
lean methane combustion stoichiometric methane combustion rich methane combustion	C1 chain + (C2 chain) C1 chain + C2 chain (C1 chain) + C2 chain

38

Mazda 3 with Skyactiv-X Compression-Ignition Gas Engine

first mass produced HCCI car

30% less fuel consumption

autumn of 2018

compression ignition + spark plug as a combustion control

SPCCI = Spark Plug Controlled Compression Ignition

Skyactiv-X uses extremely lean fuel mixtures like an HCCI engine

- mixes air and fuel during the intake stroke (very lean)
- injects a secondary fuel before the power stroke
- and ignites it using the spark plug

- the flame created spreads out and down while also raising the cylinder pressure high enough - along with the compression from the piston - to combust the lean primary air/fuel mixture.

Pollutant formation during combustion

water is the only environmentally friendly combustion product:

- CO2greenhouse gasCOpoisoningSO2acid rain
- NO_x harmful products:
- NO, NO_2 causing photochemical smog and acid rain in the troposphere decomposes O_3 in the stratosphere
- N₂O greenhouse gas

Five ways of NOx production 1) thermal NO or Zeldovich-NO 2) prompt NO or Fenimore-NO 3) NO generated via N₂O 4) NO generated via NNH 5) NO generated from fuel-bounded nitrogen Source of most reaction schemes: Peter Glarborg, James A. Miller, Branko Ruscic, Stephen J. Klippenstein: Modeling nitrogen chemistry in combustion

Thermal NOsuggested by Y. B. Zeldovich in 1946 $(1) O + N_2 \neq NO + N$
 $(2) N + O_2 \neq NO + O$
 $(3) N + OH \neq NO + H$ N atom reacts extremely fast, therefore the
quasi-steady-state approximation (QSSA)
is applicable: $d[NO] \\ dt = 2k_1[O][N_2]$ Zeldovich Y B: The oxidation of nitrogen in combustion and explosions.
Acta Physicochem USSR, **21**, 577–628 (1946).

Thermal NO 2		
Thermal NO production requires:		
- high temperature $T>1900$ K, because the activation energy of reaction step 1 is high (1) $O + N_2 = NO + N$ $E_1=314$ kJ/mol		
 long residence time (slow reaction) high [O] (these conditions are present in the post-flame region) 		
Experimental study:		
- hydrogen flame - wet CO flame		

Prom	pt NO 1	
discovered by C.P. Fenimore, 1 observation: much NO can b cannot be expla	971 pe produced in methane flames ained with the Zeldovich mechanism	
Fenimore C P. Formation of nitric oxide in premixed hydrocarbon flames. <i>Proc.Combust. Inst.</i> 13 ,373–380 (1971)		
$N_2 \rightarrow NO$ catalysed by radical	СН	
features:important in fuel rich flames, due to the high [CH] $\varphi < 1.2$ (to prevent reburning)		
important only at not very high temperatures (T~1000K), because at high temperature thermal NO production is faster		
most important reaction:	CH + N ₂ = NCN + H Klippenstein et al., 1999, Moskaleva and Lin, 2000	
of secondary importance	$C + N_2 = NCN$	

 NO production via N₂O

 Mate P, Pratt D T. Measurements of atomic oxygen and nitrogen oxides in jet-stirred combustion. Proc. Combust. Inst. 15, 1061–1070 (1975)

 N₂O production from N₂

 N₂ + O + M ≓ N₂O + M

 NO production from N₂O

 N₂O + O ≓ 2 NO

 N₂O + H ≓ NO + NH

 N₂ back conversion

 N₂O + H ≓ N₂ + O+

 N₂O + H ≓ N₂ + OH

 features:

 • important in lean and low temperature flames

 (at such conditions thermal NO and prompt NO are not important).

 • termolecular reactions:

 their rate increases linearly with pressure

NO production via NNH		
Important reactions: in the first reaction steps, NH and NNH are produced from N_2		
$\begin{array}{ll} N_2 + H \rightleftharpoons NH + N & NNH \rightleftharpoons N_2 + H \\ N_2 + OH \rightleftharpoons NH + NO & NNH + O \rightleftarrows NO + NH \end{array}$		
$N_{2} + H \rightleftharpoons NNH$ $N_{2} + OH \rightleftharpoons NNH + O$ $N_{2} + H_{2} \rightleftarrows NNH + H$ $N_{2} + H_{2}O \rightleftharpoons NNH + OH$		
feature:		
important in lean and low-temperature flames (⇒ thermal NO and prompt NO routes are slow) and at low pressure (at high pressure the "via N ₂ O" route is fast).		

Chemistry of Thermal DeNOx 1

$$\begin{split} \mathsf{NH}_3 + .\mathsf{OH} &= .\mathsf{NH}_2 + \mathsf{H}_2\mathsf{O} \\ .\mathsf{NH}_2 + \mathsf{NO} &= .\mathsf{NNH} + .\mathsf{OH} \\ .\mathsf{NNH} + \mathsf{NO} &= \mathsf{N}_2 + \mathsf{HNO} \\ \mathsf{HNO} + \mathsf{M} &= .\mathsf{H} + \mathsf{NO} + \mathsf{M} \\ .\mathsf{H} + \mathsf{O}_2 &= .\mathsf{OH} + :\mathsf{O} \\ :\mathsf{O} + \mathsf{H}_2\mathsf{O} &= 2 \ .\mathsf{OH} \\ + _ \end{split}$$

 $\rm NH_3^{} + \rm NO^{} + \rm O_2^{} \rightarrow \rm N_2^{} + 3$.OH

this is the overall equation of the Thermal $\text{DeNO}_{\rm X}$ method

Chemistry of Thermal DeNOx 2		
Chain terminating reactions:		
$\begin{array}{l} NH_2 + NO \rightarrow N_2 + H_2O \\ NH_2 + NHO \rightarrow NH_3 + NO \\ OH + HNO \rightarrow H_2O + NO \end{array}$	(removes NO, but chain terminating!)	
low temperature ($T < 1100$ K) \rightarrow the chain terminating reactions above are fast		
high temperature ($T > 1400$ k \rightarrow oxidation of NH ₃ to NO	()	
without water: NH ₃ +O \rightarrow NH ₂ +OH less OH is produced	(instead of $H_2O+O \rightarrow 2OH$ chain branching)	
much ammonia is present: $NH_3+H \rightarrow NH_2+H_2$	(instead of O_2 +H \rightarrow OH+O chain branching)	

Route to soot formation

Step 1: production of small hydrocarbon species

in fuel rich hydrocarbon flames: high $[C_2H_2]$ and [.CH](see the earlier chemical equations)

Step 2 : production of soot precursors

 $\begin{array}{ll} \mathsf{CH} \textbf{+} \mathsf{C}_2\mathsf{H}_2 \rightarrow \mathsf{H}_2\mathsf{CCCH} & (\text{propargyl radical}) \\ \mathsf{2} \ \mathsf{H}_2\mathsf{CCCH} \rightarrow \mathsf{benzene} \\ \mathsf{benzene} \rightarrow \rightarrow \rightarrow \mathsf{PAH} \end{array}$

PAH: polycyclic aromatic hydrocarbon

Route to soot formation 3		
Step 3: increasing the size of young soot		
This a gas phase – solid phase heterogeneous reaction. The size of the solid particles is increasing by chemical reactions till about size 20 nm		
fresh soot: C : H = 1 : 1		
Step 4: ageing of soot		
soot particles are aggregating to form larger particles		
at the exit from the flame C : H = 10 : 1		
sooting of premixed flames: naphthalene > benzene > paraffins > olefins > acetylene		

Soot and the global warming

"The contribution of soot to global warming is much higher than previously thought. The 'black carbon' is the second only to carbon dioxide in terms of its warming impact on the current climate."

"Black carbon's impact on the climate is larger than that of methane and roughly two-thirds that of carbon dioxide."

"A study published in Science last year estimated that aggressive action on black carbon and methane could cut the rate of warming in half within the next 40 years"

"Reducing black carbon gives you immediate cooling."

http://bit.ly/11vqZFX Journal of Geophysical Research: Atmospheres, 15 January 2013

NATURE: Soot a major contributor to climate change, 15 January 2013

Shindell, D. et al. Science 335, 183–189 (2012).

