

Phases				
DEF a system is <u>homogeneous</u> , if (1) it does not contain parts separated by macroscopic surfaces, and (2) all intensive properties are identical in each point of the system				
DEF a system is inhomogeneous, if it is not homogeneous				
DEF a system is <u>heterogeneous</u> , if it contains phases				
DEF <u>phase</u> : homogeneous part separated by macroscopic surfaces				
Examples for the phases of chemically pure species:				
various physical states (solid, liquid, vapour)				
allotropic forms (elements with different crystals): grey tin-white tin (Sn)				
polimorfic forms (compounds with different crystals): calcite–aragonite $(CaCO_3)$				

equilibrium $\Leftrightarrow G_{m1} = G_{m2}$				
two phases are in equilibrium	(at <i>p</i> , <i>T</i> , <i>n</i> constant)			
⇒ the molar Gibbs free energy of the species in the two phases are equal otherwise the molecules of all species move to the phase having lower Gibbs free energy.				
Proof (you do not have to know it o	on the test/exam):			
phase 1: molar Gibbs free energy G	m_1 ; amount: n_1 ,	"ice"		
phase 2: molar Glbbs free energy G_i	m_2 ; amount: n_2 ,	"water"		
the change of G : dG	$= G_{m1} - H_1 + G_{m2} - H_2$ $= G_{m1} dn_1 + G_{m2} dn_2$			
if dn mole of phase 1 is converted to $\Rightarrow dn_1 = -dn \text{ and } dn_2 = +dn$	phase 2 (ice is melted)			
the change of Gibbs free energy: $dG = -G_{m1} dn + G_{m2} dn = dn (G_{m2} - G_{m2})$	ā _{m1})			
dG negative (G decreases) if and only If $G_{m2} = G_{m1} \implies G$ does not change	$f \ G_{m2} < G_{m1}$ $ge \Rightarrow no \ phase \ transition$			

Clausius–Clapeyron equation Calculate the volume change at the evaporation of 1 mole water: $n=1 \text{ mol water} \Rightarrow m= 18 \text{ g water}$ $\Rightarrow V_{\text{liquid}} = 18 \text{ cm}^3 \Rightarrow V_{\text{vapour}} = 22000 \text{ cm}^3 \Delta V_{\text{m}} = 22000 \text{ -18 cm}^3 = 21982 \text{ cm}^3 \approx 22000 \text{ cm}^3 (\Delta V_{\text{m}} = -0.08 \text{ \%})$ Two simplifying assumptions to the Clapeyron equation: R. J. E. Clausius (1) the molar volume of the condensed phase (solid or liquid) (1822 - 1888)is negligible compared to the molar volume of the vapour. German physicist $\Delta V_{\rm m} = V_{\rm 2m}$ (2) the molar volume of the vapour is calculated using the ideal gas law: $\Delta V_{\rm m} \approx V_{\rm 2m} = RT/p$ the Clausius-Clapeyron equation is obtained $\frac{1}{p}\frac{dp}{dT} = \frac{\Delta H_{vap}}{RT^2} \quad \text{rearranging:} \quad \frac{d\ln p}{dT} = \frac{\Delta H_{vap}}{RT^2}$ B. P. É. Clapeyron (1799 - 1864)French engineer

		Boiling poin	nt		
DEF <u>bo</u> in	<u>illing point:</u> at thi side the liquid is	s temperature the vapou equal to the external pre	r pressure in the bubbles essure.		
DEF normal boiling point: boiling temperature at external pressure 1 atm					
		(1 atm = 101325 Pa),	(for water: 100.0	°C)	
DEF standard boiling point: boiling temperature at external pressure 1 bar					
		(1 bar = 100000 Pa),	(for water: 99.6 °	C)	
DEF <u>melting point</u> : at this temperature the solid and the liquid phases are in equilibrium at a given pressure					
DEF no	ormal melting po	int: melting temperatur	e at external pressure 1 at	m	
DEF standard melting point: melting temperature at external pressure 1 bar					
DEF triple point:					
1. melting temperature at its own vapour pressure					
2. temperature and pressure, where the solid, liquid and vapour phases of a compound are in equilibrium					
	for water	273.16 K (+0.01 °C)	and 6.11×10 ⁻³ bar		
	for CO ₂	216.8 K (-56.4 °C)	and 5.11 bar	9	

