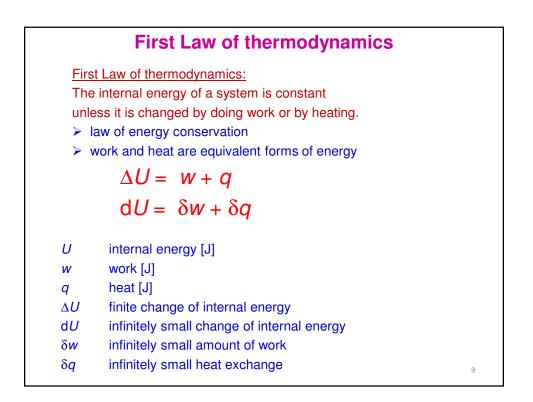
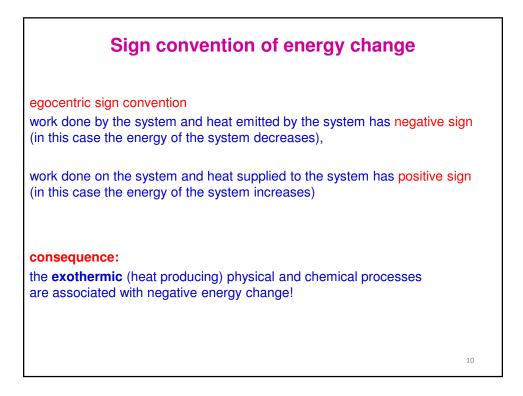
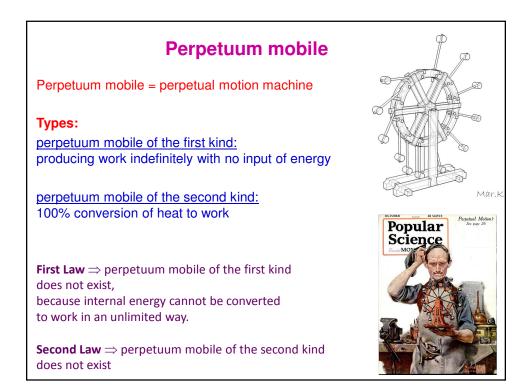

	Thermodynamics 2
Notes before s	tarting the subject:
Euclid:	collection of methods for marking the borders of lands having rectangular of circular shape well working in practice, but could not be developed further Euclidean geometry looks strange: irrealistic definitions, like infinitely small point, infinitely thin line EUT: this is a consistent logical system, allows the creation of complicated geometrical structures,
thermodynami	which can be built (buildings, machines)
 most of these a subject time is provide 	the definitions are not realistic (<i>e.g.</i> , perfect heat insulation') re needed to make thermodynamics logically consistent is related to work, heat and energy not present in the equations: could be called ,thermostatics' is the change between the initial and the final states defines only lower and upper limiting values


System and surroundings		
<u>system</u> <u>surroundings</u> boundary	part of the world we interest in rest of the world around the system separates the system and the surroundings	
Possible relati	ons between the system and the surroundings	
open system	matter AND energy can be transferred through the boundary	
closed system	energy (but not matter) can be transferred through the boundary	
isolated system	no transfer is possible across the boundary	
	4	





	Expansion work	•••
expansion	\Rightarrow expansion work	
DEF infinitesimal	expansion work: $\delta w = -p_{ex} dV$	
p _{ex} e	small change of the volume of the system external pressure on the system not always equal to the pressure of the syste	em)
infinitesimally diff \Rightarrow quasistatic exp	the system and the external pressure are or erent (in this case $p_{ex} = p$) bansion anical equivalent of "reversible change").	nly
expansion work,	$\delta w = -F \mathrm{d}x = -F/A A \mathrm{d}x = -p_{\mathrm{ex}} A \mathrm{d}x = -p_{$	_{ex} d <i>V</i>
unit: [Pa m³] = [N/	/m ² m ³] = [N m] = [J]	
expression of the with expansion w	First Law Fork: $dU = -p_{ex} dV + \delta w_{other} + \delta q$	12

Enthalpy		
DEF enthalpy: $H = U + pV$ denoted by <i>H</i> , unit: Joule [J]		
meaning: internal energy correct enthalpy is a state function and		
d <i>H</i> is the change of enthalpy	(<i>cf. rule:</i> (uv)'=u'v+v'u)	
	dH = dU + p dV + V dp	
the First Law with expansion work if $p_{ex} = p$, then	$dU = -p_{ex} dV + \delta w_{other} + \delta q$ $dU = -p dV + \delta w_{other} + \delta q$	
joining the two equations:	$dH = V dp + \delta w_{other} + \delta q$	
	$0 \rightarrow Vdp = 0$) and there is no other work the enthalpy is equal to the heat exchange: q	

Exact differentials of H and U

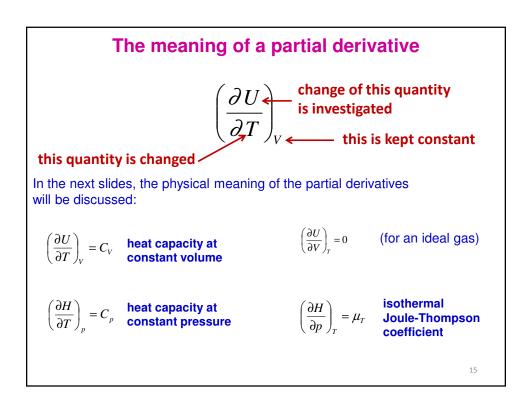
Consider internal energy *U* as a function of temperature *T* at constant volume $V \Rightarrow U(T)$ function

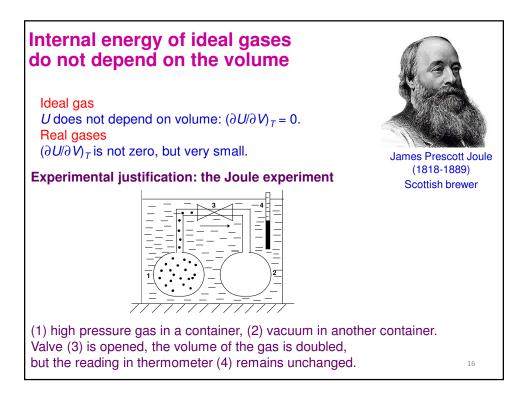
dU (i.e. a small change of U) due to a small change of temperature dT:

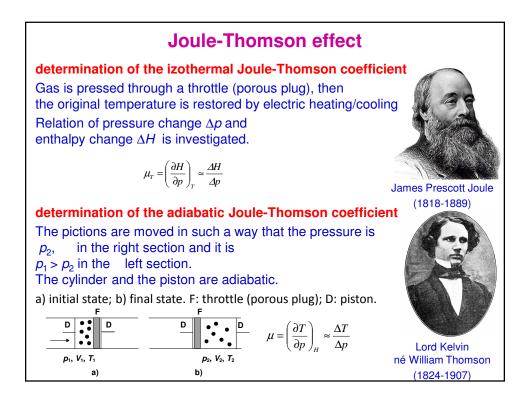
$$\mathrm{d}U = \left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{d}T = \frac{\mathrm{d}U}{\mathrm{d}T} \mathrm{d}T$$

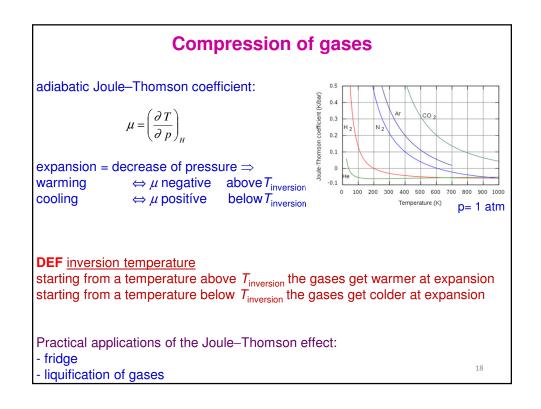
Consider internal energy *U* as a function of both temperature *T* and volume $V \Rightarrow U(T, V)$ function

dU due to a simultaneous small change of temperature dT and volume dV

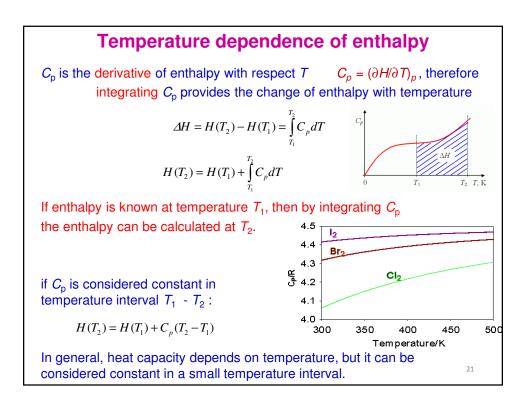

$$\mathrm{d}U = \left(\frac{\partial U}{\partial T}\right)_{V} \mathrm{d}T + \left(\frac{\partial U}{\partial V}\right)_{T} \mathrm{d}V$$


Consider enthalpy *H* as a function of both temperature *T* and pressure $p \Rightarrow H(T, p)$ function d*H* due to a simultaneous small change of temperature d*T*: and pressure d*p*


due to a simultaneous small change of temperature of a and pressure op

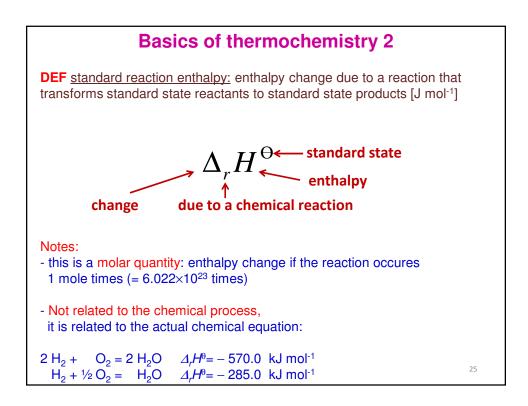

$$dH = \left(\frac{\partial H}{\partial T}\right)_p dT + \left(\frac{\partial H}{\partial p}\right)_T dp$$

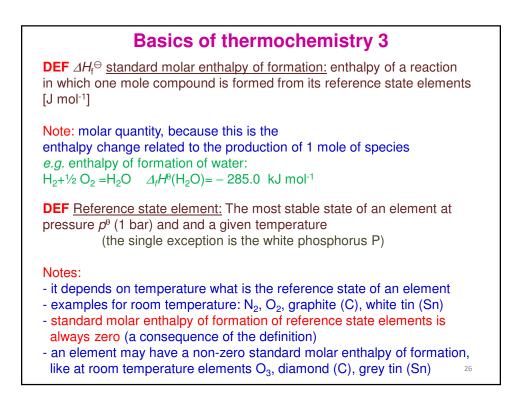
14





Heat capacity	
Simplified definition of heat capacity: amount of heat that increases the temperature of the system by 1 centigrade	
Exact definition:DEF heat capacity $C = \delta q/dT$ δq infinitesimal heat exchange dT consequent temperature character	ange
Heat capacity depends on the circumstances. Heat capacity of special processes: constant volume heat capacity C_V constant pressure heat capacity C_p	
Constant volume process, without work: $dU = \delta q$; $dU = (\partial U/\partial T)_V dT = C_V dT$ DEF constant volume heat capacity: $C_V = (\partial U/\partial T)_V$	
Constant pressure process, without work: $dH = \delta q$ $dH = (\partial H/\partial T)_p dT = C_p dT$ DEF constant pressure heat capacity: $C_p = (\partial H/\partial T)_p$	19


	Relation	n of c _p and	C _V
$C_{ m p}$ and $C_{ m V}$	extensive heat ca unit: J K ⁻¹		o the whole system) letters)
$c_{ m p}$ and $c_{ m V}$	intensive heat cap unit: J K ⁻¹ mol ⁻¹	oacities (refer to (small l	1 mole of the system) etters)
H = U + p V	de	efinition of H	
pV = nRT	de	efinition of perfe	ct gases:
H = L	J + n R T		
H - U = r	n R T di	fferentiation with	respect temperature T
$C_{\rm p} - C_{\rm V} = r$	<i>ו R</i> di	viding by <i>n</i>	
	R the differe	nce of molar he	at capacities is <i>R</i> !
P .		<i>R</i> = 8.314 J K ⁻	
	<i>C</i> _p	C _V	$c_p - c_V (\text{J K}^{-1} \text{mol}^{-1})$
He (25 °C) N ₂ (25 °C)	20.786 29.12	12.472 20.80	8.314 8.34
$CO_{2} (25 °C)$	36.94	28.46	8.48
H₂O (100 °Ć)	37.47	28.03	9.44



Ther	rmochemistry	
DEF thermochemistry: investig	gation of the heat effect of reactions	
exothermic process: endothermic process	produces heat consumes heat	
constant volume heat = change of internal ener	gy $q = \Delta U$	
constant pressure heat = change of enthalpy	$q = \Delta H$	
		22

Basics of thermochemistry
DEF <u>standard state</u> of a substance at a specified temperature is its (1) chemically pure form (2) at $p^{\ominus} = 1$ bar = 10 ⁵ Pa pressure Note: temperature is arbitrary!
 Notes: 1) Not to be confused with notion "standard state of gases" ! The thermodynamic standard state may refer to any substance (not only for gases) and the temperature is arbitrary. 2) The thermodynamic data are frequently published for temperature T[⊖] = 298.15 K. This is called the "recommended temperature".
DEF <u>thermochemical equation:</u> usual chemical equation + the state of the compounds are also indicated. <i>e.g.</i> physical state (<i>g</i> : gas, <i>l</i> : liquid, <i>s</i> : solid) or solvatic state.
$C_6H_{12}O_6(s) + 6O_2(g) = 6CO_2(g) + 6H_2O(l)$
24

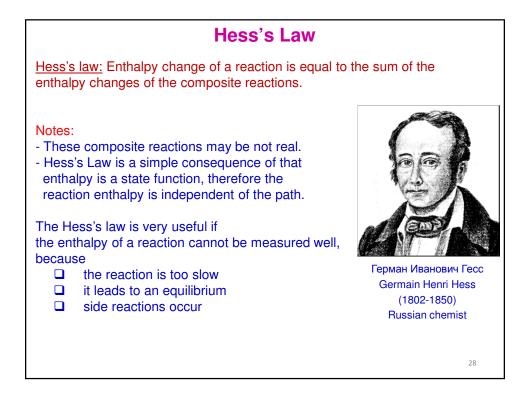
Calculation of reaction enthalpy

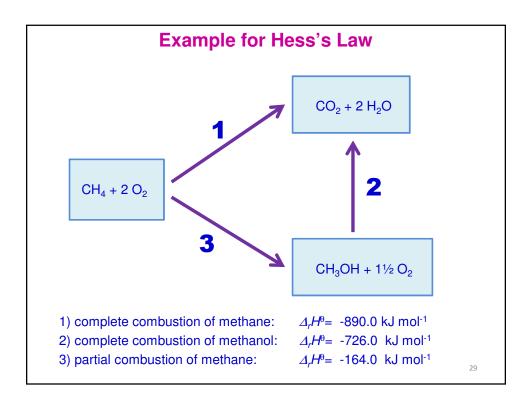
Calculating reaction enthalpy from the molar enthalpy of the species

$$\Delta_r H^{\Theta} = \sum_j \nu_j H_m^{\Theta}(j)$$

Not used, since molar enthalpy means that there is a common zero level for all species

Calculating reaction enthalpy from the molar enthalpy of formations of the species


$$\Delta_r H^{\Theta} = \sum_j \nu_j H_f^{\Theta}(j)$$


well applicable "the basic equation of thermochemistry"; for each species the own zero level is defined by the energy level of the reference state elements

27

Example: combustion of glucose

 $C_{6}H_{12}O_{6}(s) + 6O_{2}(g) = 6CO_{2}(g) + 6H_{2}O(l)$ $\Delta_{r}H^{\Theta} = 6H_{m}^{\Theta}(CO_{2}(g)) + 6H_{m}^{\Theta}(H_{2}O(l)) - H_{m}^{\Theta}(C_{6}H_{12}O_{6}(s)) - 6H_{m}^{\Theta}(O_{2}(g)),$ $\Delta_{r}H^{\Theta} = 6\Delta H_{f}^{\Theta}(CO_{2}(g)) + 6\Delta H_{f}^{\Theta}(H_{2}O(l)) - \Delta H_{f}^{\Theta}(C_{6}H_{12}O_{6}(s))$

Temperature dependence of reaction enthalpy Kirchhoff's Law

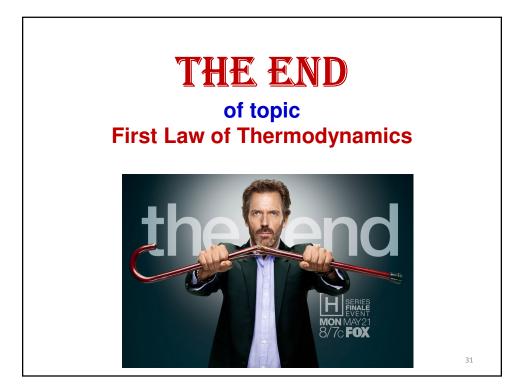
Calculation of reaction enthalpy from the molar enthalpy of species:

$$\Delta_r H^{\Theta} = \sum_{i} v_j H^{\Theta}_m(j)$$

Differentiation with respect temperature T:

$$\left(\frac{\partial \Delta_r H^{\Theta}}{\partial T}\right)_p = \sum_j v_j c_p(j) = \Delta c_p$$

Kirchhoff's Law (differential form)


Integrating it:

$$\Delta_r H^{\theta}(T_2) = \Delta_r H^{\theta}(T_1) + \int_{T_1}^{T_2} \Delta C_p dT$$
$$\Delta_r H^{\theta}(T_2) = \Delta_r H^{\theta}(T_1) + \Delta C_p (T_2 - T_1); \quad \text{(if } \Delta C_p \text{ constant }).$$

Gustav Robert Kirchhoff (1824-1887) German physicist

<u>Kirchhoff's Law</u> allows the calculation of reaction enthalpy at temperature T_2 , if it is known at temperature T_1 , and we know the average heat capacity of the reaction mixture (avaraged according to the stoichiometric numbers).

