

Recommendation of special courses of Tamás Turányi

Chemistry and Physics of Flames (in English)

in each spring semester

- combustion chemistry
- experimental methods for the investigation of combustion reactions
- experimental determination of gas-phase rate coefficients
- physics of flame spread

Analysis of Kinetic Reaction Mechanisms (in English)

in each autumn semester

- reaction kinetics modelling
- sensitivity analysis
- uncertainty analysis
- time scale analysis
- mechanism reduction

Equivalence ratio	
fuel lean combustion CH_4+O_2 mixture $\rightarrow CO_2 + H_2O_2$ $\varphi < 1; \lambda > 1$	$O + (O_2 \text{ remains})$
stoichiometric combustion CH_4+O_2 mixture $\rightarrow CO_2+H_2O$ $\varphi=1$; $\lambda=1$	
fuel rich combustion $CH_4+O_2 \text{ mixture} \rightarrow CO_2+H_2O$ $\varphi>1; \lambda<1$	 + (CH₄ remains) In fact, no methane remains, because at high temperature methane decomposes to hydrogen and olefins!
Stoichiometric ratios:	
$\begin{array}{l} \mathrm{H_2+}~0.5~\mathrm{O_2}\rightarrow\mathrm{H_2O}\\ \mathrm{CH_4+2~O_2}\rightarrow\mathrm{CO_2+2~H_2O} \end{array}$	$\varphi = \frac{n_{fuel}/n_{oxidizer}}{(n_{fuel}/n_{oxidizer})_{stoichiometric}}$
λ : air equivalence ratio φ : fuel equivalence ratio	(see ,, λ sensor") $\varphi = 1/\lambda$

	Collision efficiency parameters
М	any species present in the mixture BUT some species are more effective colliders
good collider:	removes much energy from the excited species in each collision
Which are the good colliders? - species with similar energy levels to those of the excited species - large molecules with many energy levels	
poor collider:	<i>e.g.</i> noble gases: no rotational or vibrational energy levels only the translational mode can be excited
calculation of the effective concentration of M: m_{i} collision efficiency parameter $[M] = \sum_{i} m_{y_i} [Y_i]$	
calculation for reaction $H_2O_2(+M) \rightarrow .OH + .OH(+M)$:	
[M]= 5[H ₂ O]+5.13[H ₂ O ₂]+0.8[O ₂]+2.47[H ₂]+1.87[CO]+1.07[CO ₂]+0.67[Ar]+0.43[He]+[all ¹ @thers]	

1	$H_{a} + O_{a} \rightarrow H + HO_{a}$	chain initiation
2	$H + O_2 \rightarrow OH + O_2$	chain branching
3	$.OH + H_2 \rightarrow .H + H_2O$	chain continuation
4	$:O + H_2 \rightarrow .OH + .H$	chain branching
5	$.H + O_2^- + M \rightarrow .HO_2 + M$	chain termination*
6	$H \rightarrow wall$	chain termination
7	$:O \rightarrow wall$	chain termination
8	$.OH \rightarrow wall$	chain termination
9	$.HO_2 + H_2 \rightarrow .H + H_2O_2$	chain initiation*
10	$2 : HO_2 \rightarrow H_2O_2 + O_2$	chain termination
11	$H_2O_2 + M \rightarrow 2 .OH + M$	chain initiation
12	$HO_2 \rightarrow Wall$	chain termination

Reaction kinetics simulation codes		
WINPP/XPP Windows simulation code solving systems of ODEs, DAEs and PDEs. The user has to provide the rate equations ⇒ applicable for small systems only http://www.math.pitt.edu/~bard/classes/wppdoc/readme.htm		
KPP: Kinetic Preprocessor http://people.cs.vt.edu/~asandu/Software/Kpp/ production of the kinetic ODE from the reaction mechanism numerical solution of stiff ODEs; sparse matrix routines		
V. Damian, A. Sandu, M. Damian, F. Potra, G. R. Carmichael: The Kinetic PreProcessor KPP - A software environment for solving chemical kinetics. <i>Comp. Chem. Eng.</i> 26 , 1567-1579 (2002)		
SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers https://computation.llnl.gov/casc/sundials/main.html		
MATLAB interface to the following solvers:CVODEsolves initial value problems for ordinary differential equation (ODE) systemsCVODES solves ODE systems and includes sensitivity analysis capabilitiesARKODE solves initial value ODE problems with additive Runge-Kutta methodsIDAsolves initial value problems for differential-algebraic equation (DAE) systemsIDASsolves DAE systems and includes sensitivity analysis capabilitiesKINSOLsolves nonlinear algebraic systems.		

CHEMKIN
Developed at the SANDIA National Laboratories, Livermore, CA, USA CHEMKIN-I (1975-1985) CHEMKIN-II (1985-1995) Simulation codes: SENKIN, PSR, PREMIX, SHOCK, EQLIB + utility programs, data bases FORTRAN codes, controlled by the input files
Kee R. J., Rupley F. M., Miller J. A. CHEMKIN-II: A FORTRAN <i>Chemical Kinetics Package</i> <i>for the Analysis of Gas-Phase Chemical Kinetics</i> SANDIA report No. SAND79-8009B
AnSys https://www.ansys.com/ (formerly ReactionDesign) Commertial codes; source code is not provided
Chemkin 3.x,
Chemkin 4.x
really new solvers, graphical interface, versatile
Chemkin + additional utility codes (<i>e.g.</i> pathway plotting) ³¹

CHEMKIN simulation codes https://www.ansys.com/		
CHEMKIN \rightarrow CHEMKIN -II \rightarrow CHEMKIN 3 \rightarrow CHEMKIN 4 \rightarrow CHEMKIN PRO		
CHEMKIN (1975–) CHEMKIN-II (1986–) since CHEMKIN 3 (1996	classified code classified code, then freeware -) commercial code (now: Ansys)	
CHEMKIN-II simulation codes:		
SENKIN PREMIX SHOCK PSR	spatially homogeneous reactions laminar premixed flames shock tube simulations perfectly stirred reactor simulations	
Options of SENKIN:		
adiabatic systen adiabatic systen adiabatic systen closed system, o closed system, o closed system, o	, constant <i>p</i> pressure , constant <i>V</i> volume , $V(t)$ function onstant <i>p</i> , <i>T</i> onstant <i>V</i> , <i>T</i> (<i>t</i>) and <i>T</i> (<i>t</i>) function	32

Alternatives to CHEMKIN	
Cantera www.cantera.org Open source code, available from SourceForge.net chemical equilibrium, homogeneous and heterogeneous kinetics reactor networks, 1D flames	
Kintecus www.kintecus.com Excel workbook; free for academic use Simulation of combustion, atmospheric chemical and biological system	ns
 COSILAB www.softpredict.com commertial combustion simulation and mechanism analysis code visualization of reaction pathways reduction of kinetic mechanisms simulation of reactor networks two-dimensional reactors and flames spray and dust flames 	
	36

Copasi

COPASI (COmplex PAthway Simulator) http://copasi.org/

Simulation and *analysis* of biochemical network *models*. Free, support, but source code is not provided.

Homogeneous kinetic systems in interacting compartments Import and export of models in the SBML format (levels 1 to 3). Export of models in many format (XPP, C code, Latex).

- ODE-based and stochastic simulatons
- · stoichiometric analysis of the reaction networks
- · optimization of models; parameter estimation
- · local sensitivity analysis.
- time scale separation analysis
- · characterization of non-linear dynamics properties (oscillations and chaos)

S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer: COPASI — a COmplex PAthway SImulator. *Bioinformatics* **22**, 3067-3074 (2006)

Global uncertainty analysis codes
GUI-HDMR http://www.gui-hdmr.de The GUI-HDMR software is based on the RS-HDMR approach, where all component functions are approximated by orthonormal polynomials using random (or quasi-random) samples. Calculation of up to second-order global sensitivity indices based on user supplied sets of input/output data. The component functions are approximated by up to 10th order orthonormal polynomials.
T. Ziehn, A. S. Tomlin: GUI-HDMR - A software tool for global sensitivity analysis of complex models <i>Environmental Modelling & Software</i> , 24 , 775-785 (2009)
 SimLab https://ec.europa.eu/jrc/en/samo/simlab Developed at the EC Joint Research Centre (EC-JRC) in Ispra, Italy. Versions up to 2.2: GUI based nice education tool (1) generation of random or quasi-random parameter sets (2) running the models (within SimLab or externally) (3) processing of the simulation results (FAST, Morris' and Sobol methods) visualisation of the outcome of uncertainty/sensitivity analyses.

SimLab versions from 3.0: subroutine can be called from Fortran, Python, C++, or Matlab

40

