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Reaction kinetics basics

2 H2 + O2 = 2 H2O

0 =  - 2 H2 -1 O2 + 2 H2O

Characterization of chemical changes with 
a stoichiometric (overall) equation:

• properly indicates the ratio of reactants and products

• usually there is no such a real chemical process

1 = - 2 A1 = „H2”

2 = - 1 A2 = „O2”

3 = + 2 A3 = „H2O”
=
j

jjA0

stoichiometric coefficient

(negative for reactants, positive for products)

Features:

- the order of the species is arbitrary

- the stoichiometric coefficients can be multiplied with the same real number

H2 + ½ O2 = H2O     is also a good overall equation

j
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Reaction rate

production rate of a species:

t

Y j

d

d

reaction rate:
t

Y
r

j

j d

d1


=

Yj is the molar concentration of species Aj            e.g. [mole dm-3]

,=
j

j
jYkr


in a small domain of concentrations always applicable:

k rate coefficient

j reaction order with respect species j

overall reaction order=
j

j
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Complex reaction mechanisms

Almost always there are many simultaneous reaction steps:

matrix of left hand side stoichiometric coefficients

elementary: sum is not more than 2; zero or positive integer

non-elementary: zero or positive integer

 =
j

j

R

ij

j

j

L

ij AA 

L

ij

matrix of right hand side stoichiometric coefficients

elementary: sum is not more than 2; zero or positive integer

non-elementary: any real number (can be zero, negative, fraction)

R

ij

L

ij

R

ijij  −= calculation of the (previous) stoichiometric matrix

A reaction step

can be an elementary reaction (physically occurs this way) or

can be a non-elementary reaction lumped from elementary reactions.

5



Kinetic system of differential equations

law of mass action (Guldberg and Waage, 1865):

Definition of the kinetic system of differential equations:

=
j

jii

L
ijYkr



ki rate coefficient of reaction step i

ri rate of reaction step i

 ==
i

iij

j
njr

t

Y
,,2,1;

d

d


The kinetic system of differential equations in matrix-vector form:

rν
Y
=

td

d

6



Matrices to be mentioned frequently

Initial value problem in reaction kinetics:

Jacobian: 

The Jacobian usually changes with changing concentrations

matrix F:

also depends on the concentrations
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Kinetic system of differential equations: 
an example

The Oregonator model of the Belousov-Zhabotinskii oscillating reaction:

1. X + Y → 2 P k1 r1 = k1xy

2. Y + A → X + P k2 r2 = k2ya

3. 2 X → P + A k3 r3 = k3x
2

4. X + A → 2 X + 2 Z k4 r4 = k4xa

5. X + Z → 0.5 X + A k5 r5 = k5xz

6. Z + M → Y – Z k6 r6 = k6zm

X = HBrO2

Y = Br−

Z = Ce4+

A = BrO3
−

P = HOBr

M = malonic acid

The detailed 80-step reaction mechanism
could be reduced to this 6 reaction step. 

Note, that negative and fractional
stoichiometric coefficients are present
on the right hand side!
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X = HBrO2 variable of a diff. equation

Y = Br− variable of a diff. equation

Z = Ce4+ variable of a diff. equation

A = BrO3
− constant concentration

P = HOBr product only

M = malonic acid constant concentration

54321 5,01211
d

d
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t

x
−+−+−=
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d

d
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t

y
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d

d
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54
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321 5,02
d
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zmkyakxyk
t

y
621

d

d
+−−=

zmkxzkxak
t

z
654 22

d

d
−−=





1. X + Y → 2 P

2. Y + A → X + P

3. 2 X → P + A

4. X + A → 2 X + 2 Z

5. X + Z → 0,5 X + A

6. Z + M → Y – Z

Kinetic system of differential equations: 
an example 2
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calculation of the Jacobian
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calculation of matrix F
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Properties of kinetic differential equations

• The system of differential equations contains only first order derivatives (dc / dt), 
which are usually nonlinear functions of the concentrations.

 first order nonlinear system of differential equations

• In general, several other concentrations influence the production rate of each
species. 

 coupled differential equations

• The reaction rates differ several orders of magnitude
 stiff differential equations

• Simulation results of laboratory experiments do not depend on the wall clock
time, BUT the results of atmospheric chemical models depend on the actual
pressure, temperature and solar raditation  depend on the physical time. 

 autonomous OR non-autonomous differential equations

• Some laboratory reactions can be (approximately) spatially homogeneous, but
outside the laboratories most chemical reactions are spatially inhomogeneous. 
In most cases the transport of species and heat have to be taken into account. 

 partial system of differential equations, with chemical source term
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Conserved properties

Isolated system:

The total internal energy is constant

Constant volume closed system:

the sum of the concentrations is constant, 
if each the change of the number of moles in each reaction step is zero.
e.g. for reaction H2+Cl2 = 2 HCl

Closed system, elementary reactions only:

the number of moles of the elements is constant.

The moles of moieties (e.g. benzene ring) can remain constant

Example for conserved properties in a C2H4,CH4 , C6H6 mixture:

C-atom → 2 [C2H4] + 1 [CH4] + 6 [C6H6] = constant

H-atom → 4 [C2H4] + 4 [CH4] + 6 [C6H6] = constant

Some linear combinations of the concentrations are constant.

N conserved property:

 the rank of the stoichiometric matrix is lower by N

 the system can be simulated exactly with  (n-N) variables 13



Described by the Arrhenius equation:

k A
E

RT

a= −








exp

A preexponential factor

Ea activation energy

Arrhenius plot: 

ln lnk A
E

RT

a= −

If the rate coefficient k is measured at several T temperatures and

ln k is plotted as a function of 1/T

the data fit to a line, if the (original) Arrhenius equation is valid

slope is m = -Ea/R  determination of Ea

Temperature dependence of rate coefficient k
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Arrhenius plot between 220 K  (− 53 C) 

and 320 K (+ 47 C)  

Arrhenius plot between 300 K (27 C)

and 2200 K (1930 C)

Example: reaction CH4 + OH → CH3 + H2O

- the most important methane consuming reaction step in the troposphere

- one of the most important steps at methane combustion

the Arrhenius equation is usually

very accurate in a small

(few times 10 K) temperature range. 

(solution phase and atmospheric chemistry)

the original Arrhenius equation

is usually not applicable in a wide

temperature range

(combustion and pyrolytic systems)
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RT

C

nBTk
−

= e

extended Arrhenius equation

Important!

If n0 . then AB and EaC

General definition of 

activation energy:

( )T
k

REa
1

ln




−=

Temperature dependence of the rate coefficient 2
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Temperature dependence of thermodynamic data

NASA polynomials
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Pressure dependence of the rate coefficients 1 

unimolecular decomposition
decomposition or isomerization of a species

A + M = P + M
A    reactant

P    product

M   colliding partner for energy transfer

low pressure 2nd order decay of A

high pressure 1st order decay of A

„pseudo first order” rate coefficient:

high pressure limit: kuni = k
low pressure limit: kuni = k0 [M]

The temperature dependences of k0 and k are described independently

by extended Arrhenus equations:








 −
=

RT

E
TAk
n 0

00 exp0 






 −
= 




RT

E
TAk
n
exp

kuni

pressure



Lindemann – Hinshelwood model

A + M → A* + M k1

A* + M → A + M k2

A* → P  k3

 
  32

13
uni

kMk

Mkk
k

+
=

high pressure:   [M] → 

low pressure: [M]  0

2

13
uni

k

kk
k 

 Mkk 1uni  10 kk =
2

13

k

kk
k =

unimolecular decomposition rates:

kuni „pseudo first order” rate coefficient (s-1)

k high pressure limit (first order) rate coefficient (s-1)

k0 low pressure limit (second order) rate coefficient (mol-1 dm3 s-1)



sample reaction:        H2O2 + M → H2O2* + M→ .OH + .OH + M 

low pressure:

- the rate limiting is the collision with M

- the overall decomposition rate is 

proportional with pressure

high pressure:

- the rate limiting is the

decomposition of H2O2* 

- the overall decomposition rate is 

independent of pressure

H2O2 →.OH + .OH 2nd order at low pressure, 1st order at high pressure

Refined Lindemann – Hinshelwood model

of unimolecular reactions

- instead of assuming a single excited species, 

H2O2* exists in a range of different rovibrationally excited states. 

- the rate of the decompostion step increases with

the increasing rovibrational energy of H2O2*



log 𝐹 = log 𝐹cent 1 +
log 𝑃𝑟 + 𝑐

𝑛 − 𝑑(log 𝑃𝑟 + 𝑐)

2 −1

Pr reduced pressure

F controls the shape

of the k(p) curve

in the Lindemann model F = 1

F can be defined as a function of pressure and temperature

(e.g. using Troe parameterization):
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Unimolecular decomposition: calculation of the

rate coefficient at an intermediate pressure
H2O2 (+M) → .OH + .OH (+M)

𝑐 = −0.4 − 0.67 log 𝐹cent 

𝑛 = −0.75 − 1.271 log 𝐹cent 

𝑑 = 0.14

𝐹𝑐𝑒𝑛𝑡 = 1 − 𝛼 exp −
𝑇

𝑇∗∗∗
+ 𝛼 exp −

𝑇

𝑇∗
+ exp −

𝑇∗∗

𝑇



lg kuni − lg p plot

kuni − p plot

source of data: J. Troe, Combustion and Flame 158, 594–601 (2011)

Reaction H2O2 (+M) → .OH + .OH (+M)

T = 1000 K



M any species present in the mixture

BUT some species are more effective colliders

calculation of the effective concentration of M:

mi: collision efficiency parameter

calculation for reaction H2O2 (+M) → .OH + .OH (+M):

[M]= 5[H2O]+5.13[H2O2]+0.8[O2]+2.47[H2]+1.87[CO]+1.07[CO2]+0.67[Ar]+0.43[He]+[all others]

Collision efficiency parameters

good collider: removes much energy from the excited species 

in each collision

Which are the good colliders?

- species with similar energy levels to those of the excited species

- large molecules with many energy levels

poor collider: e.g. noble gases: 

no rotational or vibrational energy levels

only the translational mode can be excited

𝑀 = ෍

𝑖

𝑚𝑦𝑖
𝑌𝑖  



sample reaction:        CH3 + OH (+ M) → CH3OH* → CH3OH (+ M)

→ 1CH2 + H2O (+ M)

low pressure:

mainly CH3OH* decomposition to
1CH2 + H2O

(1CH2 = singlet CH2 = 

electronically excited CH2)

high pressure:

mainly CH3OH* stabilization, 

giving CH3OH

CH3 + OH → CH3OH 3rd order at low pressure, 2nd order at high pressure

CH3 + OH → 1CH2 + H2O   3rd order at low pressure, 2nd order at high pressure

Pressure dependence of the rate coefficients 2 

complex-forming bimolecular reactions



Formation of the stabilization product
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kbi

Pr reduced pressure

F controls the shape of the

k(p) curve

in the Lindemann model F = 1

F(p,T) can be defined by e.g. Troe parameterization

kbi „pseudo second order” rate coefficient

at low pressure: kbi = k0 [M]

at high pressure:    kbi = k

CH3 + OH (+ M) → CH3OH (+ M)
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ktri

Formation of the decomposition products

Pr reduced pressure

F controls the shape of the

k(p) curve

in the Lindemann model F = 1

F(p,T) can be defined by e.g. Troe parameterization

ktri „pseudo third order” rate coefficient

at low pressure: ktri = k0

at high pressure: ktri = k / [M]

CH3 + OH (+M) → 1CH2 + H2O (+M) 



Reaction CH3 + OH → products

kbi − p plot

source of data: R. De Avillez Pereira et al. J. Phys. Chem. A, 101, 9681–9693 (1997)

CH3 + OH (+M) → CH3OH (+M)

lg kbi − lg p plot

ktri − p plot

lg ktri − lg p plot

CH3 + OH (+M) → 1CH2 + H2O (+M)

T = 1000 K



calculation of concentration changes

(solution of the kinetic system of differential equations) :
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Simulation of spatially homogeneous systems

calculation of temperature changes in an adiabatic system:

heat capacity of the mixture   standard reaction enthalpy

of reaction step i

rate of reaction step i





CHEMKIN format of mechanisms

ELEMENTS  H  O  N  AR  END                                                   
SPECIES
H2     O2   H2O   H2O2   H   O   OH   HO2   N2      AR      
END
THERMO ALL
   300.000  1000.000  5000.000
H2                      H   2    0    0    0G    300.00   5000.00 1000.00    0 1
 2.99142300E+00 7.00064400E-04-5.63382900E-08-9.23157800E-12 1.58275200E-15    2
-8.35034000E+02-1.35511000E+00 3.29812400E+00 8.24944200E-04-8.14301500E-07    3
-9.47543400E-11 4.13487200E-13-1.01252100E+03-3.29409400E+00                   4
O2                      O   2    0    0    0G    300.00   5000.00 1000.00    0 1
 3.69757800E+00 6.13519700E-04-1.25884200E-07 1.77528100E-11-1.13643500E-15    2
-1.23393000E+03 3.18916600E+00 3.21293600E+00 1.12748600E-03-5.75615000E-07    3
 1.31387700E-09-8.76855400E-13-1.00524900E+03 6.03473800E+00                   4
H2O                     H   2O   1    0    0G    300.00   5000.00 1000.00    0 1
 2.67214600E+00 3.05629300E-03-8.73026000E-07 1.20099600E-10-6.39161800E-15    2
-2.98992100E+04 6.86281700E+00 3.38684200E+00 3.47498200E-03-6.35469600E-06    3
 6.96858100E-09-2.50658800E-12-3.02081100E+04 2.59023300E+00                   4
H2O2                    H   2O   2    0    0G    300.00   5000.00 1000.00    0 1
 4.57316700E+00 4.33613600E-03-1.47468900E-06 2.34890400E-10-1.43165400E-14    2
-1.80069600E+04 5.01137000E-01 3.38875400E+00 6.56922600E-03-1.48501300E-07    3
-4.62580600E-09 2.47151500E-12-1.76631500E+04 6.78536300E+00                   4
H                       H   1    0    0    0G    300.00   5000.00 1000.00    0 1
 2.50000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00    2
 2.54716300E+04-4.60117600E-01 2.50000000E+00 0.00000000E+00 0.00000000E+00    3
 0.00000000E+00 0.00000000E+00 2.54716300E+04-4.60117600E-01                   4
…

for each species, the description of the

temperature dependence of H, S and cp

NASA polynomials: 27 parameters



REACTIONS   MOLES  KJOULES/MOLE                                                 
H2+O                    => OH+H                    5.120E+04   2.67      26.27
OH+H                    => H2+O                    3.534E+04   2.62      18.95
H2+OH                   => H2O+H                   1.020E+08   1.60      13.80
H2O+H                   => H2+OH                   4.520E+08   1.60      77.08
O2+H+M                  => HO2+M                   2.100E+18   -.80        .00
 N2/0.67/ O2/0.4/ H2O/0./ AR/0.28/           
HO2+M                   => O2+H+M                  1.159E+20  -1.26     211.41
 N2/0.67/ O2/0.4/ H2O/0./ AR/0.28/           
O2+H+H2O                => HO2+H2O                 6.890E+15    .00      -8.73
HO2+H2O                 => O2+H+H2O                3.801E+17   -.46     202.68
O2+H                    => OH+O                    9.756E+13    .00      62.11
OH+O                    => O2+H                    1.450E+13    .00       2.94
H2O2+O                  => OH+HO2                  6.620E+11    .00      16.63
OH+HO2                  => H2O2+O                  4.073E+08    .72      77.51
H2O2+OH                 => H2O+HO2                 7.830E+12    .00       5.57
H2O+HO2                 => H2O2+OH                 4.744E+11    .45     140.59
H2O2(+M)                => 2OH(+M)                 3.000E+14    .00     202.87
 N2/0.4/ O2/0.4/ H2O/6.5/ AR/0.35/           
    LOW /  3.000E+17    .00     190.40 /
    TROE /     1.0000      1.00      1.00   1040.00 /
2OH(+M)                 => H2O2(+M)                7.230E+13   -.37        .00
 N2/0.4/ O2/0.4/ H2O/6.5/ AR/0.35/           
    LOW /  5.530E+19   -.76        .00 /
    TROE /     1.0000      1.00      1.00   1040.00 /
…

…

END

Arrhenius parameters A, n, E

3rd body collision efficiencies

Arrhenius parameters of k0

Troe-parameters for the desciption of p-dependence

CHEMKIN format of mechanisms



Sensitivity analysis is a family of mathematical methods.
It investigates the dependence of the model results 

on the values of the parameters

Local sensitivity analysis: investigates the 

effect of the small change of parameters

Local sensitivity coefficients can be 

investigated by a 

finite difference approximation:

parameter is changed at time t1
the result is observed at time t2
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Local sensitivity coefficient:
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Changing a single parameter:

The effect of parameter changes can be estimated using local sensitivities:
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Another approach: Taylor series expansion

Changing several parameters:
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The same equation with matrix-vector notation:
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initial concentration sensitivities: the consequence of changing the initial conc. 

can be calculated with finite differences:

kinetic system of ODEs:

the initial value of variable j is changed at time t1 and 

the effect is read at time t2
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The coupled solution is repeated for each parameter:

1 Brute force method (finite difference approximation)
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Calculation of local sensitivity coefficients
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2 Direct method

2a. Coupled Direct Method:

coupled solution of the kinetic and sensitivity differential equations:

Lots of unnecessary calculations.

pj small:  large error due to 

the representation of numbers

pj large:   large error due to nonlinearity
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The Jacobian of these equations are identical, therefore in each step

 transformation of the Jacobian to a triangle matrix

 selection of stepsize t based on the Jacobian

 solution of the stiff ODE: calculation of new Y

 calculation of the new sensitivity vector for parameter j =1

using the same triangle matrix

     repeating for all parameters

  repeating for new time steps from the transformation of J
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2b. Decoupled Direct Method (DDM):

joint solution of the kinetic and sensitivity diff. equations in each step:

features:

- very fast method; the computer time only slightly increases with the number of

parameters m (because the  transformation of J is the most time-consuming)

- the accuracy of the solution can be controlled 36

Calculation of local sensitivity coefficients 2
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(Original) local sensitivity coefficients:

the parameter is changed by one unit

inspected: the result is changed by how many units

[unit of result / unit of parameter]

Normalized local sensitivity coefficients:
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investigates relative changes

How much % change of the result

due to 1 % change of the parameter?

dimension free

So far: single parameter is changed

effect on a single model result is investigated

Further information can also be extracted from sensitivity matrix S

using principal component analyis, like the case when

several parameters are changed simultaneously, and

the effect on multiple model results is investigated.

Interpretation of local sensitivity coefficients

37



PCAS: principal component analysis of the 

sensitivity matrix S
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Several parameters are changed simultaneously and the effect on

several model outputs is investigated.

The effect of changing parameters is measured by a 

Célfüggvény:

38

S. Vajda, P. Valkó, T. Turányi: Principal component analysis of kinetic models

Int. J. Chem. Kinet., 17, 55-81(1985)



( ) ( ) ( )αSSαα =
~~TT

e

pα ln=





















=

nS

S

S

S

~

~

~

~ 2

1



( ) ( )( ) kriikr ptYYp =S
~

And the normed sensitivity matrix 

belonging to time tr

The objective function  

can be approximated by:
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PCAS: principal component analysis of the 

sensitivity matrix S
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( ) ( ) ( )αSSαα =
~~TT

e

This quadratic form determines a 

(hyper) ellipsoid:

2D ellipse

3D ellipsoid (rugby ball shape)

4D hyper ellipsoid

Another characterization of the hyper ellipsoid:

- lengths of the axes

- directions of the axes 

Eigenvalue-eigenvector decomposition of matrix

i eigenvalue i = length of axis i

if i is small: the objective function increases rapidly to this direction 

= parameter group i is highly influental

ui eigenvector i = direction of axis i

SS
~~T
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An alternative form of the objective function:

In the figure above:

1 small  axis 1 is long;  u1 = (0.707, 0.707)

2 large  axis 2 is short; u2 = (-0.707, 0.707)

Note: the eigenvectors are unit vectors, therefore 0,7072+0,7072= 1

where αuii = transformed parameters called principal components

41
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sensitivity matrix S



Example 1:

1 small  axis 1 is long;  u1 = (0.707, 0.707)

2 large  axis 2 is short; u2 = (-0.707, 0.707)

axis 1 is long → changing the parameters to direction u1

the objective function changes little

→ if 2-1 = ln p2 - ln p1 = ln (p2/p1) constant,  little change of the objective function

→ if p2/p1 constant,  little change of the objective function

Thus, eigenvector u = (0.707, 0.707) means that keeping

the ratio of the corresponding two parameters constant

the inspected result(s) of simulation do not change. 

Chemistry: the model results do not change if we keep the

equilibrium constant K=k1/k2 fixed. 42

PCAS: principal component analysis of the 

sensitivity matrix S



Example 2:

u1 = ( 0.707, 0.707, 0)       large eigenvalue

u2 = (-0.707, 0.707, 0) small eigenvalue

u3 = ( 0       , 0       , 1)       large eigenvalue

Interpretation of the eigenvectors:

p1/p2 and p3 can be determined from the experimental data

p3 can be determined independently

Only the ratio of p1 and p2 can be determined.

43

PCAS: principal component analysis of the 

sensitivity matrix S

T. Perger, T. Kovács, T. Turányi, C. Treviño: 

Determination of adsorption and desorption parameters from ignition temperature measurements 

in catalytic combustion systems, J. Phys. Chem. B, 107, 2262-2274 (2003) 



If the parameters are uncorrelated, then variance of model result y

can be calculated from the variance of parameters:

is the contribution of parameter k to the variance of model result y

Local uncertainty analysis

If the parameters are correlated, then using the rule of spread of errors

the uncertainty of model results

can be calculated from the correlation matrix of parameters:
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Here p is the covariance matrix of parameters, S is the sensitivity matrix and

Y is the variance of simulation results.
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Local uncertainty analysis of chemical kinetic models
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variance of result Yi due to kinetic uncertainties
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contribution of the uncertainty of parameter kj to the variance of result Yi

contribution of the uncertainty of the enthalpy of formation of species j to the variance of result Yi

estimated total variance of result Yi from both kinetic and thermodynamic uncertainties

T. Turányi, L. Zalotai, S. Dóbé, T. Bérces:

Effect of the uncertainty of kinetic and thermodynamic data on 

methane flame simulation results, Phys.Chem.Chem.Phys., 4, 2568-2578 (2002)



Local uncertainty analysis 3

• Linear approximation of the variance of the model result

• Does not take into account the nonlinear effects

• The result belongs to the nominal set of model parameters

• Realistic results, if the model behaves qualitatively similarly in the 

whole domain of parameters

• Non-realistic results, if the model is qualitatively different in the

various parts of the parameter domain

• Provides separately the contribution of parameters

• Can be calculated fast
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1. Analysis of models

• Estimation of the effect of parameter perturbation

• Identification of cooperating parameters

2. Reduction of models

• Identification of ineffective parameters;

production of a simpler model with less parameters, but

almost identical results

3. Local uncertainty analysis

• May replace global uncertainty analysis:

less accurate, much faster

4. Parameter estimation / model optimization

• All gradient methods are based on the (hidden)

application of local sensitivity coefficients

• Identification of effective parameters

• Experimental design

Applications of local sensitivities

47



Thank you for

your attention!
48
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