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CALCULATING SENSITIVITY 
INDICES FROM SAMPLING 
METHODS



What do global sensitivity indices 
represent? 

• There are different global sensitivity indicators available, 
but the most commonly used attempts to attribute how 
much of the overall predicted output variance results 
from the uncertainties in the most important input 
parameters. 

• This should include individual parameter effects (linear 
and non-linear) as well as interactive effects between 
parameters (non-linear responses). 

• If we want to include higher order effects (3rd and higher) 
then the sample size required is likely to be huge. 
– Chemical systems rarely exhibit large 3rd order and higher 

responses. 



Scatter plots
• As a simple starting point we can plot the output 

response to changes in a parameter as a scatter plot. 

• Basically a projection from the higher dimensional space 
to a 2D plot. 

Strong positive (left) and negative 
(right) linear responses to the 

chosen parameter.
Adapted from (Ziehn 2008)

Strong monotonic (left) and non-
monotonic (right) non-linear 
responses to the chosen 

parameter. Adapted from (Ziehn 2008)



Real chemical systems
• Example from NO predictions in a methane flame. 

• Effect seems to saturate at higher parameter values  -
hence sensitivity is clearly not linear. 

• Scatter from the effects of other parameter uncertainties 
clouds the main effect from this A factor.

(Ziehn,Tomlin 2008)

 Clear to see the 
potential issues with 
using linear 
methods at a single 
nominal value. 

 How do we 
determine the effect 
of this A factor from 
within the scatter? 



Pearson and Spearman rankings

• Pearson correlation coefficient (r) is a measure of the 
strength of the linear relationship between two variables 
(e.g. parameter x and target output y), ranging from 1 
for a perfect negative correlation to +1 for a perfect 
positive correlation. 

• Calculated by dividing the covariance of the variables by 
the square root of the product of their variances:

• Not very useful for non-linear responses. 



Spearman ranking
• Can be thought of as the Pearson correlation coefficient 

between ranked variables.

• Data are replaced with their corresponding ranks and 
then correlation procedures are performed on these 
ranks. 

• The Spearman coefficient therefore assesses how well 
the relationship between two variables can be described 
using a monotonic function (Saltelli et al. 2000).

• A Spearman correlation of +1 or −1 therefore occurs 
when one variable is a perfect monotone function of the 
other.

• Correlation coefficients should really only be used as a 
guideline for parameter importance rather than in a 
strictly quantified way.



Variance based methods: Sobol’s
original method

• Is a sampling based method to calculate fraction of total variance 

that can be attributed to each parameter in a joint pdf distribution. 

• If the model result Yi = fi(x1, x2, ..., xN) is influenced by independent 

random parameters, then the joint pdf of the parameters P(x1, x2, …, 

xN) =                .

• The mean or expected value E(Yi) of the calculated result Yi is then 

given by:

• while the variance V(Yi) of the calculated result Yi is specified as: 
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• If integral calculated with fixed value of parameter xj, variance 
caused by all other parameters except for xj , V(Yixj) obtained. 

• If V(Yixj) calculated for many values of xj, selected according to its 
pdf, then expected value E(V(Yixj)) can be calculated. 

• Requires integration of V(Yixj) over pdf of xj (Saltelli et al., 2002).

• V(Yi)E(V(Yixj)) equal to reduced variance of Yi caused by fixing 
value of xj , and is equal to V(E(Yixj)). 

• By dividing this conditional variance by unconditional variance, 
the first-order sensitivity index for parameter xj can be calculated:

• Shows the fraction of the total variance of Yi which is reduced 
when the value of xj is held at a fixed value – a measure of the 
influence of uncertainty in xj. 

• The calculation of integrals is non-trivial and the use of a Monte Carlo 
sampling method (Saltelli et al., 2002) requires N (2m+1) model runs 
for first-order indices where N is the sample size chosen for the 
Monte Carlo estimates. 
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Response Surface Methods, RSM

• RSM based methods attempt to reduce computational cost of 
Variance based sensitivity methods by first developing a fitted meta-
model accurately representing relationship between model 
parameters and outputs. 

• If meta-model can be fitted with a lower number of model runs then it 
can be used to calculate variance based indices at lower cost.

• Some similarities with Monte Carlo approaches:

– first input parameter ranges must be selected 

– then a suitable sampling approach taken so that full model runs 
are obtained across a design suitable for development of accurate 
meta-model. 

• Cost of method driven by cost of providing accurate surrogate model.

• This is not always dependant on size of scheme but is driven by the 
complexity of the response surface. 

– Could be cheaper than Brute Force. 



Polynomial chaos expansion, PCE 
methods (Najm et al., 2009)

• Here an uncertainty factor ui is first assigned to each input 
variable. 

– Note that this uncertainty parameter ui is related to uncertainty 
parameter f by ui = 10f .

• Taking the example of rate coefficients, they are then normalised 
into factorial variables x as follows: 

• Hence xi = 0 gives the nominal value of the rate coefficient, and -1 
and +1 represent the upper and lower bounds.

• A response surface of the predicted combustion properties is then 
generated with respect to x.
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• Often restricted to a 2nd order polynomial expansion which for 
the r’th model response ηr(x) can be written as:

• The uncertainty in x may be expressed as a polynomial 
expansion of basis random variables ξ:

where α and β are column vectors of expansion coefficients, m is 
the number of rate coefficients under consideration and x(0) is a 
column vector of normalised rate coefficients which is a zero 
vector for the nominal reaction model.
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• If the x’s are independent of each other and normally distributed, 
then the usual choice for the form of ξ would be a set of unit-normal 
random variables. 

• If ln ui represents 2 times the standard deviation of ln ki then α is ½ 
Im, where Im is the m-dimensional identity matrix. β and all higher 
order terms are zero (Sheen et al. 2009). 

• In the general case, combining the above two equations and 
truncating the higher order terms gives:

• What this equation shows is that the overall model prediction is given 
by its nominal value plus uncertainty contributions from each 
rate coefficient.
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Examples of application

• Experimental data and computed 
2σ uncertainty bands for the 
laminar flame speed of ethylene-
air mixtures at p = 1 atm. (Sheen 
et al., 2009).

• Note that following the 
application of an optimization 
procedure, the uncertainty 
bounds are much narrower. 

• The polynomial chaos expansion 
is used within the optimisation 
procedure.



ANOVA (ANALYSIS OF 
VARIANCES) 

DECOMPOSITION AND 
HDMR METHODS



Variance decomposition
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• For independent inputs (i.e. no correlations exist between inputs), a
unique decomposition of the unconditional variance V(Y) can be
obtained (Li et al., 2010):

• The approach is therefore analogous to the classical approaches
described above but instead of directly calculating the conditional
variances using e.g. Monte Carlo samples, now a meta-model is
developed first and the sensitivity indices are calculated using the
meta-model.
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RSM approaches to ANOVA 
decomposition 

• Polynomial chaos expansions were one method to achieve this 
ANOVA decomposition.

• Other methods are based on High Dimensional Model 
Representations (HDMR). 

• HDMR originally developed to provide a straightforward approach to 
explore input-output mapping of models without requiring large 
numbers of runs (Sobol‘, 1990; Rabitz et al., 1999; Li et al., 2001). 

• The use of truncated expansions is possible because usually only 
low-order correlations between inputs have a significant effect on the 
outputs. 

• Because of the hierarchical form of HDMR component functions, 
sensitivity indices can be determined from them in an automatic way 
in order to rank the importance of input parameters and to explore 
the influence of parameter interactions. 



Basic mapping

• The mapping between the inputs x1,…, xn and the output variable Y(x) = 
f(x1,…,xn) can be written in the following hierarchical form:

• Here the zeroth-order component f0 denotes the mean effect, which is the 
expected value of the model output f0=E(Y).

• The first-order component functions fi(xi) give the effect of variable xi acting 
independently (although generally nonlinearly) upon the output Y(x):

• The function fij(xi,xj)  is a second-order term describing the cooperative 
effects of the variables xi and xj upon the output Y(x):
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If we find an accurate meta-model with which to represent the HDMR 
expansion, we can provide an accurate estimate of the partial variances 
and therefore the global sensitivity indices. 



Calculation of sensitivity indices

• The HDMR expansion is analogous to the variance 
decomposition: 

And the coefficients of the expansion can be used to 
calculate the sensitivity indices. 
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QRS-HDMR

• Quasi-random sequences such as a Sobol sequence have 
better convergence properties than other sampling approaches. 

• Therefore we expect the Sobol’ sequence to be a good choice of 
sampling strategy for fitting an HDMR meta model. 

1. A quasi-random sample is developed for chosen input 
parameter space.

2. The full model would be run for each sample (e.g. 1024, 2048, 
etc) and target outputs stored. 

3. A meta-model would be fitted to the input-output relationships 
for each target output. Orthonormal polynomials are 
generally used.

4. The fitted HDMR meta-model would be used to derive global 
sensitivity indices.

• The accuracy of the meta-model determines the accuracy of the 
calculated indices and needs to be checked carefully.



Sample size

• The coefficients are determined using Monte Carlo integration 
over the chosen input sample (Li et al., 2002). 

• The approximation of the component functions reduces the 
sampling effort dramatically so that only one set of quasi-
random samples N is necessary in order to determine all RS-
HDMR component functions and subsequently the sensitivity 
indices. 

• For first-order indices this sample can usually be quite small 
(e.g. 1024). 

• If significant second-order effects are present then the 
sample size will need to be bigger.  

• Remember – base 2 system so sample size increases as 
2Ns

– 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 etc!



Example: Ignition delays of butane: sources 
of uncertainties

Uncertainties lowest 
at higher 
temperatures.

Dominated by 
sensitivity to reactions 
in C0-C2 base scheme

(Hébrard et al., 2015)



Ignition delays:
1st-order global 
sensitivities

Key reactions at low 
temperatures
C4H9−1−OO→C4H8−1−OOH
C4H9−1−OO→C4H8−2−OOH
1-C4H9+O2→1-C4H8+HO2

2-C4H9+O2→1-C4H8+HO2

Key reactions at high 
temperatures
HO2+CH3→CH3O+OH
O2+H→OH+O
C4H10+H→H2+2-C4H9

C4H10+OH→H2O+2-C4H9

Key reactions at 
intermediate temperatures
C4H10+HO2→H2O2+1-C4H9

C4H10+HO2→H2O2+2-C4H9

(Hébrard et al., 2015)

higher order effects lead to 
the tail



Importance of uncertainties in 
thermodynamic data

• Many sensitivity studies focus only on a local analysis of 
A factors for reactions.
– Tells us about importance of different reaction steps but not 

really sufficient for full uncertainty propagation. 

• Effects of thermo data often ignored but can be critical 
for predicting e.g.
– Heat release

– Equilibrium between important species in low T reactions such 
as RO2, QOOH

• At simplest level should involve variability in heats of 
formation. 

• In reality where data from ATChT – data is highly 
correlated. 



Some examples 
• 2 stage ignition delay times for stoichiometric propane oxidation. 

• Morris method (Hughes, 2006). 

• Variations in ΔHf° from NIST Chemistry WebBook where possible.

• Where no quoted error, ±5, +10 or +15 kJ mol−1, used depending on 
complexity of species. 

Key species 
in low T 
pathways



Impact of thermo uncertainties on diethyl 
ether oxidation (Vom Lehn, 2019)

• Highest prediction uncertainty 
observed in the NTC regime.

Optimization potential of τign for 
uncertainties in Δhf(298 K), s0(298 K), 
and cp for a stoichiometric DEE/air 
mixture at T=769 K and 10 bar. 



Impacts of group additivity values on 
kinetic model predictions (vom Lehn, 2020)

• 2 methyl heptane, shock tube ignition delays.

• Non-dimensionalized sensitivity coefficients of 
ignition delay time with respect to group 
parameters ψj defined as:
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Sensitivity coefficients of ignition delay time 
on the group values of Δhf(298 K)



Information content and design of 
experiments (DoE)

• High correlations perhaps suggests a different approach 
for determining new experiments of value. 

• Instead of designing experiments to isolate and improve 
accuracy of individual reactions, need to think about 
minimising uncertainty of system as a whole through 
optimisation.

• Methods from information theory useful. 
– Particularly for alternative fuels where little data exists and 

species are large (limiting application of high level theory). 

• Optimal experiments are chosen iteratively one by one.
– Giving high priority experiments and their order.

We are not used to simulating experiments before we 
perform them but we should do it!  



Example for DME combustion (Vom Lehn, 2021)  

• Assuming a multivariate normal distribution for optimized 
parameters in model, posterior covariance matrix Σ* of x is 
estimated based on linearization of response surface in 
neighbourhood of posterior values x* where Jr

* is local gradient of 
model response r with respect to x, evaluated at x*.

Aim: efficient minimization of joint parameter uncertainties.

• Each iteration starts with evaluation of all not yet selected conditions p 
in terms of covariance matrices  that would result if the experiment p 
were selected.

• Nominal model prediction from previous iteration assumed as 
hypothetical experimental value of experiment p to determine Σp*. Sum 
includes all previous exp.

contains the important information 
about the joint uncertainty space of 
the optimized parameters



Example for DME combustion (Vom Lehn, 2021)  

• Equivalent to D-optimal design. 

– select the experiment which minimizes the Shannon entropy of 
the multivariate normal distribution of model parameters in 
each step.

• Shannon entropy in this context 
measures the variability of the 
multivariate normal distribution of 
the model parameters.

• Minimization is equivalent to 
minimizing the determinant of the 
expected covariance matrix after 
inclusion of the new experiment:



Example for DME combustion (Vom Lehn, 2021)  

2σ prediction uncertainties after 
different DOE iteration steps

● 1-5, ● 6-20
● 21-50, ● 50-127



Doing things optimally

• Requires collaboration as a community!

• To combine modelling, experimental design and expertise, statistical 
methods.

• To think about what experiments/theory calcs are required to reduce 
system uncertainty and not just what we fancy/might be easiest…
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