2-1, 2-2
Model uncertainties,
sensitivity analysis and
optimisation



Intro

* Presenting uncertainties in experimental data is far more
common than for modelling results.

« But we need to know the robustness of our models to
use them in design and decision making e.g. for use of
new fuels, design of new gas turbines and marine
engines with low carbon fuels.

* Need methods for uncertainty quantification.
— Emerging field of UQ in combustion modelling.

— Need first to estimate uncertainties in
* |nput parameters
 Model structure.

— Efficient methods for propagating through model to
provide uncertainties on target outputs.



Sources of model input data and
uncertainty information

Kinetic evaluations (e.g. Baulch, Tsang, Atkinson).
NIST data base.
Output from theoretical studies.

Trawling literature for individual papers on rate coefficients
efc..... time consuming!

Detailed statistical studies

» Active tables for thermodynamic data (Ruscic and coworkers).

» Optimisation studies for reaction mechanisms (Nagy and
coworkers).

» New approaches to AMG using ML with uncertainty
quantification.

What to do about estimated parameters?
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NIST data base

HCHO+H02 — HCO+H202

1000/ T

Fit of Arrhenius parameters to set:
Temperature range: 230 - 3000 K

M 1392840/C0B411-42  Two-parameter fit: Three-parameter fit:
I 1986TSA/HAM1087
1974LL0169-228 k(T') = Aexp(-E,/RT) K(T) = A(T/Tyet)"ezp(~E,/RT)
B 1998E(T/YU5196-520¢
B 1992JEM/LIG25-30

A=923E-12 [em"3/molecules] A4 =131E-11 [em"3/molecule s]

m 1sstHocrverir By = 0217 [K]] n=-03

W 1972BAL/FUL1362 EMSD =43 r i 298 [K]

B 1571VAR/SAC315 E =3348[K]
d

1971BAL/LAN251 EMSD =42

B 200501/ ZHAT2027-12035

B 1579BAL/WALS25

Some judgement has to be made about outliers

Not always completely up to date
e Difficult to get temperature dependant uncertainties




Representations of Uncertainty

« Depends of level of knowledge about a particular parameter.
« |f evaluation available then f value may be given.

max

kO kmax k lof

* k,recommended value of rate coefficient. k.., k..., extreme

values. i

. 99, 7% of the data are within

* 3 standard deviations of the mean
85% within
“T  2standard deviations |
= 2 o within
o(In {k}) = ((f In 10)/m) PO it

deviation

LN

j— 3o i— 20 H—a M oH+o o+ 2a o+ 3o

where m is the level of uncertainty suggested.
m = 2, 2o deviation or 95 %ile,
m= 3, 3o deviation or 99.7 %ile




Examples of levels of uncertainty

uncertainty multiplication o(log,e k) |o(In k) multiplication |multiplication

parameter f |factor of 3o factor of 1o factor of 2¢
uncertainty

limits

1.26 0.03 0.08 1.09 (9%) 1.17
2.00 0.10 0.23 1.33 (33%) 1.67
3.16 0.17 0.38 1.72 2.44
5.01 0.23 0.54 2.34 3.67
7.94 0.30 0.69 3.31 5.63

10.00 0.33 0.77 4.00 7.00
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Statistical methods

il.:||!|'Z}.:[|I'Li':li;;l,!.

i

- 2 50E-03
1.58E-03
9.95E-04

6.28E-05
2.50E-05

6.28E-04

3 96E-04
_ 2 50E-04
1.58E-04
9.95E-05

1.25E-05

— 16000

- All available current
information on a system is
used fit a joint pdf of
parameters

» e.g. 2,3 parameter Arrhenius

- Provides highly detailed data
on parameter correlations etc.

For reaction kinetics has
been carried out for only a

few simple systems e.g. H.,,
wet CO oxidation, methanol
(Nagy et al., 2011).




Estimated parameters

« For estimated parameters 107 is likely to be a
guestimate e.qg. factor of 2 or a factor of 5.

A uniform distribution used since no

probabilistic information likely to be available.
f(X)

* In future — would be useful to provide
estimates based on reaction classes from
AMG packages like RMG etc.

— What is the uncertainty for a particular
reaction class based on available data?

— Or even for individual reactions based on 5
the machine learning approaches
discussed earlier.

— How does the uncertainty change as e.g.
the number of carbons grows?

min max



Brings together both experimental and theoretical studies (see earlier) to

Active Tables

New paradigm to develop accurate, reliable, and internally consistent
thermochemical values for stable, reactive, and transient chemical species by

utilizing to the fullest all available experimental measurements as well as state-
of-the art theoretical data.

ATcT is based on constructing, analysing, and solving the underlying
Thermochemical Network (TN).

reduce uncertainties in data (Burcat & Ruscic, 2005).
Network of Computed Reaction Enthalpies to Atom-Based thermochemistry

(NEAT) (Csaszar and Furtenbacher, 2010)
Results in highly correlated parameters — be careful of the effects of

neglecting such correlations!

Relative

Species Name Formula AH°(0 K) |A{H°(298.15 K) |Uncertainty | Units Molecular ATcTID
Mass
Dihydrogen H2 (9) 0 0 exact 2(.)03(:)5(:)31841 1333-74-0%0
) 4.0026020 + .

Helium He (g) 0 0 exact 00000_0_20 7440-59-7*0
Heptane C7H16 (I) -201.46 -223.91 +0.74 kJ/mol 10858;? z 142-82-5*500
Octane C8H18 (1) -226.61 -249.73 +0.79 kJ/mol 113332‘55 = 111-65-9*500

. — 114.2285 + L
2,2, 4-Trimethyljs =<1 (CH3)2CHCH2C(CH3)3 (I -224 .4 -258.9 +15 kJ/mol 540-84-1*500

0.0065




Part of a thermo-
chemical
network

showing the
basic ideas

Alcl_— s\
— }7\‘.\\.' i

o]
r'\":"\ e it

HzD —>
OH +H+¢ ACTIVE

Thermochemical Tables

Figure 1. A small subsection of the current Core (Argonne)
Thermochemical Network. The full network currently contains
>000 primary vertices and >3200 secondary vertices. See text for
further details

60



standard deviation / ms

Sensitivity and uncertainty analysis

* Uncertainty

30

u gom L I 147 /
quantification (UQ) _ fgflg%'} Ijle & Experimentd)
25— 2
estimates the overall | ixtures . data
predictive uncertainty of a 20 Model

model given the state/or
lack of knowledge about its
input parameters.

-
- -
- ———

Existing data

« UQ puts error bars on
predictions.

T T 1
20 40 60 80 100

: , : . - ! %COinH,
0.5 CO +HO,->L£O0, + OH
0-4_' |-|oz+c.)|-|.>|-|20+o2 i'l + 02 +M _>'_ HOZ +M
HO,+H, >0, +H | Sensitivity analysis (SA)

i a H+0,>0H+O . .
] e determines how much each input
02| 1 parameter contributes to the
oq|  deovonscosm | output uncertainty (usually

| o - expressed as variance).
o 05 10 15

absolute mean perturbation /ms



Local sensitivity coefficients

® nominal values

-

Ax

X 1min X 1max

X 3max

X 2max

Local oY
first-order Sij = —
sensitivity O X j
coefficient

Normalised , , X; 0Y,
first-order O i =

sensitivity Yi 0 xj
coefficient

Commonly incorporated into
codes such as Chemkin, Cantera
using finite difference methods.



Contributions to uncertainty?

» Really we want to know, not just sensitivity, but also how much a parameter
contributes to model uncertainty.

« Some parameters have high sensitivity, but are very well quantified.

» Others may have lower sensitivity but are poorly known and therefore drive
potential errors in models.

* If o(x;) are known — or estimated - then we can estimate overall uncertainty:

» The fractional contribution of each parameter to this uncertainty can be
estimated.

* Gives a better measure of parameter importance than S’; alone.

 Tells us how better quantification of each parameter could reduce overall
modelling uncertainty.



Local vs global methods

Xj
< -._S | ]
I 1
o Vi
oO——
Probability distribution

of predicted Y,

x10"




Global sensitivity/uncertainty methods

Global - attempts to cover whole input

space using a sampling method. Najm, Wang, Frenklach

Sheen, Tomlin, Turanyi

etc.
® X3max
O O
O
O O ®
® ®
® O
® ®
® ® ®
® o ¢ O
@ @ X2max
®
® O




Why use global methods?

Local sensitivity and uncertainty methods are usually based on a
single (best estimate) value of the parameters.

If the sensitivity of the output changes depending on the values of
the parameters then local methods could be inaccurate.

Particularly important for non-linear models and models with
large uncertainties.

sensitivity

High
sensitivity

NO concerfation (m

0 2 4 6 8 10
A-factor (cm® mol™ ' s71) x 10

b)



Disadvantages of global methods

In order to cover the regions of parameter uncertainty, sampling
based methods need to be used and therefore a large number
of model runs is needed instead of the single run required for
local sensitivity analysis using e.g. finite difference methods.

The methods also require prior knowledge of the input
parameter distributions.

Methods are then required to interpret the data from a large
number of samples to determine the sensitivity indices.

For large parameter systems sample sparsity can be an issue.

Screening methods are therefore often first applied to identify
unimportant parameters which do not need to be varied in the full
global approach.



Screening methods.

Can be based on local sensitivity coefficients.

Problematic unless it is applied at various values of the nominal parameters
e.g. recommended value, rv, rv x 2, rv x 0.5.

Can be automatically calculated using simple finite differences approaches
in Chemkin/Cantera for simple outputs such as peak T, peak [OH].

— Adds to model run time but not significantly.

Can be run as Brute Force Method, changing each parameter in scheme
once and assessing sensitivity of target outputs.

— Very expensive for large models, useful for targets such as IDTs.

Morris method also used for screening and applies a one at a time
method, changing one parameter by a fixed amount for each run of the
model starting with a random seed.

Several random seeds used at different points in parameter space.
— Probably 10 times more expensive than even the Brute Force Method.



Brute Force Methods

Useful for target outputs which do not have an obvious
functional relationship to inputs e.g. ignition delay times.

Each parameter of interest is modified in turn from the chosen
nominal value by a small %, the model is re-run and the %
change in output calculated.

The relative output change gives a ranking of parameter
Importance.

Cost is proportional to number of parameters n.

Can be run for different chosen nominal values — pushing cost
to 2n, 3n etc.

Method does not consider non-linear interactions between
parameters.

Still, a straightforward way to screen out unimportant
parameters before full global study.



Example

CeH<CH,0j
H202
CﬁH 11 j '02'3

CeH<CH,

C;H,

CgHs0j

0,C,H,0H

CgH,;1-3
CH;0,

HO,

H,0

neoCsH,,00H-0,

dCyH,,00H-b

C?H1400H1'3

C,H,,00H3-2
CeHo1-O0H3-50,

C,H,,00H2-4
C,H,,00H3-5

C,H,,00H4-2
C4H,o1-O0H3-5

C?Hlsoz'z

CyHy4-3

C?qu_‘z - — |

Canz‘Oz']

CH,

nC;Hye

C4H,OH1-4

CgHsCH,J

CgHy5-1

CeHsCH,0H

-1.0 -0.5 0.0 0.5

Normalised Sensitivity
710 K
770 K — Increase/Decrease

B 830 K Reactivity

1.0

 Normalized
sensitivity
coefficients of IDTs
on species enthalpy
of formation, for a 5-
component gasoline
surrogate. Rapid
compression
machine,
P-= 20 bar, ® =1



Morris Method

Classified as global sensitivity method since entire
parameter space is covered.

Can also rank degree of nonlinearity of response to
changes in each parameter via the standard deviation of
the parameter effect across all parameter sets.

Does not however provide functional dependency of
output on individual parameters or parameter pairs.

Mainly used to screen out unimportant parameters prior
to the use of more informative global methods.

The relative computational cost of the Morris Method vs.
fully global sampling based methods depends on the
number of important parameters in the system.



MM cont.

A series of parameter sets are generated so that the
next one differs from the previous in the value of a single
parameter only, which is randomly chosen.
The value of each parameter x; is modified within the
range [x/™", x/™a] by a fixed amount A determined as
follows.

1 2 3

Avector{oaq_l’q_laq_la---’l}is generated using a small even
number g selected by user.

0 and 1 are assigned to x/™", x™a respectively.

All other parameter values are scaled according to the
vector above.

The first parameter set is randomly selected from the
values determined by the vector.

The next parameter set is identical to the previous one,
except for the value of a single parameter which is
moved randomly to another possible value.




MM cont.

Next parameter set obtained by changing another parameter
etc. with a random order of parameter selection.

By the end, the algorithm has changed the value of each
parameter exactly once, and hence m + 1 parameter sets are
generated.

The method is also a one-at-a-time method together with brute
force linear sensitivity analysis.

However, here, the full uncertainty range of the input
parameters can be covered, whereas in the BF method, all
parameters were each changed from their nominal values.
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MM continued

Measure d; shows the effect of changing parameter x; on
model result Y; at arbitrary values of all other parameters:

. Yl.(xf,xj,...,x]z. +A,...,x;)—Yi(XZ_1)
5

In the z-th parameter set, the value of parameter x; was
changed by A.

The calculation above is repeated several (r=10-20) times,
always starting from randomly selected different parameter
sets.

The total computational effort required is therefore r(lm + 1),
where ris the number of repeated parameter sets.




Analysis of results, MM

Usually the results of the Morris method are presented
graphically as a plot of o(d;) (variance) against u(d;) (mean
effect) calculated across the runs.

Parameters with high and linear influence are in the lower
right corner of the plot.

Ones with high and nonlinear influence are in the upper right
corner.

Non-influential parameters are in the lower left corner, near
the origin and are likely to be parameters that could be
neglected in subsequent global sensitivity analysis.

For parameters in the upper right corner, their influence varies
according to the position of the parameter sample within the
iInput space, implying either a strong interaction between
these and other parameters in the model, or a highly
nonlinear sensitivity index for individual parameters.



Standard Deviation

Examples of application of Morris screening

30 -

25+

204

154

104

®i-CHO,

method

t, absolute mean perturbation/s

Morris analysis for species AHP with
respect to time to cool flame for propane

oxidation. T= 593 K, equimolar C;Hg+O,
at 53.4 kPa, diluted by N, to 101.3 kPa
(Hughes et al., 2006)

* Note the high standard
deviation of the outputs
compared to the mean.

* Very nonlinear
responses requiring
large sample size to
converge.




Global uncertainty and sensitivity
methods

Once screening tests have been completed a fully global
sampling based method can be applied to the parameters
deemed to be of importance.

All other parameters will be retained at their nominal values
during the global sampling.

Depending on the complexity of the model up to 50
parameters may be carried forward to a full global analysis.

This would mean sampling from a 50 dimensional hyper
space. Hard to imagine...

Imagine 10 random points on a line, now place them
randomly in a square,..., now place them in a cube.

As the dimension goes up the sparsity increases massively!



10 Random Points Along a Horizontal Line

Random Points on Line
59 === Line:y=5
' 10 Random Points Within a Square
Random Points
5.1} a4t
BT 1 it e T
2 L
49t
a8} ol i
-=10.0 -7.5 -5.0 -=2.5 0.0 2.5 5.0 7i5
X -2k
10 Random Points Within a Cube
x Random Points
4t
-4 -2 CI) 2 4
X

As the dimension goes up the
sparsity increases massively!




Global sampling methods
Monte Carlo

* For a global sampling method it is important to get good
coverage of the input parameter space — which may be

high dimensional.
 Typical random sampling methods can lead to clustering
and holes.
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Structured sampling

Latin Hypercube

@

¢

Points generated by Latin hypercube
sampling according to a uniform
distribution.

Each horizontal and vertical stratus
contains a single point, while the
location of the point is random in the
corresponding small square.

Quickly gets expensive for large n.

Low discrepancy sequences

Sobol sequence
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« Successive sample points are
added to positions as far away as
possible from existing sample
points so that clustering can be
avoided.

« Scales well for large parameter
systems.



Sobol sequence

Sobol sequences use a base of two to form successively finer
uniform partitions of the unit interval and then reorder the
coordinates in each dimension.

0.000e+00 0.000e+00 0.000e+00

. ™ ‘ n®a . -.-. -.l.l.“-.-.-...l.‘

5.000e-01 5.000e-01 5.000e-01
7.500e-01 2.500e-01 7.500e-01

2.500e-01 7.500e-01 2.500e-01

3.750e-01 3.750e-01 6.250e-01

8.750e-01 8.750e-01 1.250e-01 . .
6.250e-01 1.250e-01 3.750e-01 The Sobol sequence is designed to
1.250e-01 6.250e-01 8.750e-01 have the best Convergence

1.875e-01 3.125e-01 3.125e-01 .

6.875¢-01 8.125e-01 8.125e-01 properties and hence can lead to
9.375e-01 6.250e-02 5.625e-01 Savings in Samp”ng based

4.375e-01 5.625e-01 6.250e-02 g . .
3125601 1.8756-01 9 375c-01 sensitivity and uncertainty analysis
8.125e-01 6.875e-01 4.375e-01 because smaller sample sizes are
5.625e-01 4.375e-01 1.875e-01 .

6.250e-02 9.375e-01 6.875e-01 needed to get equivalent accuracy

in the results.



Sobol vs Random vs Latin Hypercube

100 Sobol Sequence Points Within a Cube 100 Latin Hypercube Sample Points Within a Cube
%x Latin Hypercube Points

% Sobol Points

g X * x
3 x x Y
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X x 0 5% x
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Comparison of convergence properties of different
sampling strategies for a simple test model: f(x) = x, + x,*

—

—— Random sequence j— Random séquenze_i
0.85 — LH sequence - — LH sequence
— Halton sequence — Halton sequence
0.8 —— Sobol sequence 0.25 ' — Sobol sequence
- = - Calculated mean m - = - Calculated variance
= 0.75 2
% 8 0.2
(T
0.7 =

0.15

. 5 i L e i i il 0-1 - i — i i
e 200 400 600 800 1000 b) 200 400 600 800 1000
a) Sample Sample




Probabilistic sampling

If probabilistic information

known then we may wish to

sample from this distribution

e.g. a normal distribution

based on 20 uncertainties

(Hébrard et al., 2015)
2-parameter samples, N =
1000.

* Box-Muller transformation
applied to an uniform pseudo-
random sample (bottom left)

e Normal inverse cumulative
function of a Sobol’s quasi-
random sequence sample
(bottom right).
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What parameters to include?

In an ideal world, just for fundamental devices:
— All Arrhenius parameters

— Thermodynamic parameters - used to calculate reverse reaction
rates

— Species transport data
— Other potential model errors
* Temperature profile
» Heat transfer coefficients
* Residence times
» Loss rates to the walls of the reactor vessel

In reality many of these are often ignored and a most common

approach is to simply look at the A-factors for each forward
reaction.

— Tells us something about the important reactions but does
not give a full picture of uncertainties.



Examples of outputs

lgnition delays:
Predicted output distributions (butane model)

. [\ Al 700 K — narrow distribution
fe | BLbut long tail

i 50

40t -

2 20

900K - factor of 2
- uncertainty

0 0.2 Prgt%ted de

1300 K — narrows

« 10 used to

represent again
output error
ba IS Predicted delay (s) —

(Hébrard et al., 2015)



Interpreting output distributions

Temperature (K)
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uncertainties are taken
into account.




Some discrepancies

between model and
experimental data
even when
accounting for
estimated
uncertainties.

Missing reaction
steps?

Other uncertainties
not identified?
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We learn about missing
parts of the model.
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