
2-1, 2-2
Model uncertainties,  

sensitivity analysis and 
optimisation



Intro
• Presenting uncertainties in experimental data is far more 

common than for modelling results. 

• But we need to know the robustness of our models to 
use them in design and decision making e.g. for use of 
new fuels, design of new gas turbines and marine 
engines with low carbon fuels. 

• Need methods for uncertainty quantification. 

– Emerging field of UQ in combustion modelling. 

– Need first to estimate uncertainties in
• Input parameters

• Model structure.

– Efficient methods for propagating through model to 
provide uncertainties on target outputs. 



Sources of model input data and 
uncertainty information

• Kinetic evaluations (e.g. Baulch, Tsang, Atkinson). 

• NIST data base.

• Output from theoretical studies.

• Trawling literature for individual papers on rate coefficients 
etc.…. time consuming!

• Detailed statistical studies 

Active tables for thermodynamic data (Ruscic and coworkers).

Optimisation studies for reaction mechanisms (Nagy and 
coworkers).

New approaches to AMG using ML with uncertainty 
quantification. 

• What to do about estimated parameters? 



Evaluated data (Baulch et al., 1994)

Δlogk = ±0.2 (300K) ±0.5 (2000K) Δlogk = ±0.15 (550-800K) ±0.4 (1250K)

Max 
uncert
=3.16

Max 
uncert
=2.5

OH+HO2→H2O+O2

HO2+HO2→H2O2+O2

No longer performed so slipping out of date? 



NIST data base

Some judgement has to be made about outliers 

Not always completely up to date

Difficult to get temperature dependant uncertainties

HCHO+HO2 → HCO+H2O2



Representations of Uncertainty 

• Depends of level of knowledge about a particular parameter.

• If evaluation available then f value may be given. 

• k0 recommended value of rate coefficient. kmin, kmax extreme 
values.
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where m is the level of uncertainty suggested.
m = 2, 2 deviation or 95 %ile, 
m= 3, 3 deviation or 99.7 %ile



Examples of levels of uncertainty

multiplication 

factor of 2

multiplication 

factor of 1

(ln k)(log10 k)multiplication

factor of 3

uncertainty

limits

uncertainty 

parameter f

1.171.09 (9%)0.080.031.260.1

1.671.33 (33%)0.230.102.000.3

2.441.720.380.173.160.5

3.672.340.540.235.010.7

5.633.310.690.307.940.9

7.004.000.770.3310.001.0



Statistical methods

– All available current 
information on a system is 
used fit a joint pdf of 
parameters

 e.g. 2,3 parameter Arrhenius 

– Provides highly detailed data 
on parameter correlations etc.

For reaction kinetics has 
been carried out for only a 
few simple systems e.g. H2,
wet CO oxidation, methanol 
(Nagy et al., 2011). 



Estimated parameters

• For estimated parameters 10f is likely to be a 
guestimate e.g. factor of 2 or a factor of 5.

• A uniform distribution used since no 
probabilistic information likely to be available. 

• In future – would be useful to provide 
estimates based on reaction classes  from 
AMG packages like RMG etc. 

– What is the uncertainty for a particular 
reaction class based on available data?

– Or even for individual reactions based on 
the machine learning approaches 
discussed earlier. 

– How does the uncertainty change as e.g. 
the number of carbons grows?

kmin kmax



Active Tables
• New paradigm to develop accurate, reliable, and internally consistent 

thermochemical values for stable, reactive, and transient chemical species by 
utilizing to the fullest all available experimental measurements as well as state-
of-the art theoretical data.

• ATcT is based on constructing, analysing, and solving the underlying 
Thermochemical Network (TN). 

• Brings together both experimental and theoretical studies (see earlier) to 
reduce uncertainties in data (Burcat & Ruscic, 2005). 

• Network of Computed Reaction Enthalpies to Atom-Based thermochemistry 
(NEAT) (Csaszar and Furtenbacher, 2010)

• Results in highly correlated parameters – be careful of the effects of 
neglecting such correlations!



Part of a thermo-
chemical
network 

showing the 
basic ideas

60



Sensitivity and uncertainty analysis

• Uncertainty 
quantification (UQ)
estimates the overall 
predictive uncertainty of a 
model given the state/or 
lack of knowledge about its 
input parameters. 

• UQ puts error bars on 
predictions. 
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Sensitivity analysis (SA)
determines how much each input 
parameter contributes to the 
output uncertainty (usually 
expressed as variance).
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Local sensitivity coefficients

nominal values

x1min x1max

x2max

x3max

Δx

Local 
first-order 
sensitivity 
coefficient
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Commonly incorporated into 
codes such as Chemkin, Cantera
using finite difference methods.



Contributions to uncertainty?

• Really we want to know, not just sensitivity, but also how much a parameter 
contributes to model uncertainty. 

• Some parameters have high sensitivity, but are very well quantified.

• Others may have lower sensitivity but are poorly known and therefore drive 
potential errors in models. 

• If σ(xj) are known – or estimated - then we can estimate overall uncertainty: 

• The fractional contribution of each parameter to this uncertainty can be 
estimated.

• Gives a better measure of parameter importance than S’ij alone. 

• Tells us how better quantification of each parameter could reduce overall 
modelling uncertainty. 
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Local vs global methods
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of predicted Yi



Global sensitivity/uncertainty methods

Global - attempts to cover whole input 
space using a sampling method.

x1min x1max

x2max

x3max

Najm, Wang, Frenklach, 
Sheen, Tomlin, Turányi
etc.



Why use global methods?

• Local sensitivity and uncertainty methods are usually based on a 
single (best estimate) value of the parameters. 

• If the sensitivity of the output changes depending on the values of 
the parameters then local methods could be inaccurate. 

• Particularly important for non-linear models and models with 
large uncertainties. 

Low 
sensitivity

High 
sensitivity



Disadvantages of global methods

• In order to cover the regions of parameter uncertainty, sampling 
based methods need to be used and therefore a large number 
of model runs is needed instead of the single run required for 
local sensitivity analysis using e.g. finite difference methods. 

• The methods also require prior knowledge of the input 
parameter distributions. 

• Methods are then required to interpret the data from a large 
number of samples to determine the sensitivity indices.  

• For large parameter systems sample sparsity can be an issue.

• Screening methods are therefore often first applied to identify 
unimportant parameters which do not need to be varied in the full 
global approach. 



Screening methods.

• Can be based on local sensitivity coefficients. 

• Problematic unless it is applied at various values of the nominal parameters 
e.g. recommended value, rv, rv x 2, rv x 0.5.

• Can be automatically calculated using simple finite differences approaches 
in Chemkin/Cantera for simple outputs such as peak T, peak [OH]. 

– Adds to model run time but not significantly. 

• Can be run as Brute Force Method, changing each parameter in scheme 
once and assessing sensitivity of target outputs. 

– Very expensive for large models, useful for targets such as IDTs. 

• Morris method also used for screening and applies a one at a time 
method, changing one parameter by a fixed amount for each run of the 
model starting with a random seed. 

• Several random seeds used at different points in parameter space.

– Probably 10 times more expensive than even the Brute Force Method.  



Brute Force Methods

• Useful for target outputs which do not have an obvious 
functional relationship to inputs e.g. ignition delay times.

• Each parameter of interest is modified in turn from the chosen 
nominal value by a small %, the model is re-run and the % 
change in output calculated. 

• The relative output change gives a ranking of parameter 
importance. 

• Cost is proportional to number of parameters n.  

• Can be run for different chosen nominal values – pushing cost 
to 2n, 3n etc.  

• Method does not consider non-linear interactions between 
parameters. 

• Still, a straightforward way to screen out unimportant 
parameters before full global study. 



Example

• Normalized 
sensitivity 
coefficients of IDTs 
on species enthalpy 
of formation, for a 5-
component gasoline 
surrogate. Rapid 
compression 
machine, 
PC = 20 bar, Φ = 1



Morris Method

• Classified as global sensitivity method since entire 
parameter space is covered. 

• Can also rank degree of nonlinearity of response to 
changes in each parameter via the standard deviation of 
the parameter effect across all parameter sets. 

• Does not however provide functional dependency of 
output on individual parameters or parameter pairs.

• Mainly used to screen out unimportant parameters prior 
to the use of more informative global methods. 

• The relative computational cost of the Morris Method vs. 
fully global sampling based methods depends on the 
number of important parameters in the system. 



MM cont.
• A series of parameter sets are generated so that the 

next one differs from the previous in the value of a single 
parameter only, which is randomly chosen. 

• The value of each parameter xj is modified within the 
range [xj

min, xj
max] by a fixed amount Δ determined as 

follows.

• A vector                          is generated using a small even 
number q selected by user.

• 0 and 1 are assigned to xj
min, xj

max respectively.
• All other parameter values are scaled according to the 

vector above. 
• The first parameter set is randomly selected from the 

values determined by the vector. 
• The next parameter set is identical to the previous one, 

except for the value of a single parameter which is 
moved randomly to another possible value.
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MM cont.
• Next parameter set obtained by changing another parameter 

etc. with a random order of parameter selection.
• By the end, the algorithm has changed the value of each 

parameter exactly once, and hence m + 1 parameter sets are 
generated. 

• The method is also a one-at-a-time method together with brute 
force linear sensitivity analysis. 

• However, here, the full uncertainty range of the input 
parameters can be covered, whereas in the BF method, all 
parameters were each changed from their nominal values. 



MM continued
• Measure dij shows the effect of changing parameter xj on 

model result Yi at arbitrary values of all other parameters:

• In the z-th parameter set, the value of parameter xj was 
changed by . 

• The calculation above is repeated several (r=10-20) times, 
always starting from randomly selected different parameter 
sets. 

• The total computational effort required is therefore r(m + 1), 
where r is the number of repeated parameter sets.
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Analysis of results, MM
• Usually the results of the Morris method are presented 

graphically as a plot of (dij) (variance) against μ(dij) (mean 
effect) calculated across the runs. 

• Parameters with high and linear influence are in the lower 
right corner of the plot.

• Ones with high and nonlinear influence are in the upper right 
corner.

• Non-influential parameters are in the lower left corner, near 
the origin and are likely to be parameters that could be 
neglected in subsequent global sensitivity analysis. 

• For parameters in the upper right corner, their influence varies 
according to the position of the parameter sample within the 
input space, implying either a strong interaction between 
these and other parameters in the model, or a highly 
nonlinear sensitivity index for individual parameters.



Examples of application of Morris screening 
method

Morris analysis for species ΔHf
o with 

respect to time to cool flame for propane 
oxidation. T= 593 K, equimolar C3H8+O2

at 53.4 kPa, diluted by N2 to 101.3 kPa
(Hughes et al., 2006) 

• Note the high standard 
deviation of the outputs 
compared to the mean.

• Very nonlinear 
responses requiring 
large sample size to 
converge.  



Global uncertainty and sensitivity 
methods

• Once screening tests have been completed a fully global 
sampling based method can be applied to the parameters 
deemed to be of importance. 

• All other parameters will be retained at their nominal values 
during the global sampling. 

• Depending on the complexity of the model up to 50 
parameters may be carried forward to a full global analysis. 

• This would mean sampling from a 50 dimensional hyper 
space. Hard to imagine…

• Imagine 10 random points on a line, now place them 
randomly in a square,…, now place them in a cube. 

• As the dimension goes up the sparsity increases massively!  



As the dimension goes up the 
sparsity increases massively!  



Global sampling methods 
Monte Carlo

• For a global sampling method it is important to get good 
coverage of the input parameter space – which may be 
high dimensional. 

• Typical random sampling methods can lead to clustering 
and holes. 

100 
numbers –
2 
parameters

Clusters

Holes



Structured sampling

• Points generated by Latin hypercube 
sampling according to a uniform 
distribution. 

• Each horizontal and vertical stratus 
contains a single point, while the 
location of the point is random in the 
corresponding small square.

• Quickly gets expensive for large n.

Latin Hypercube Low discrepancy sequences

• Successive sample points are 
added to positions as far away as 
possible from existing sample 
points so that clustering can be 
avoided. 

• Scales well for large parameter 
systems. 



Sobol sequence

Sobol sequences use a base of two to form successively finer 
uniform partitions of the unit interval and then reorder the 
coordinates in each dimension.

0.000e+00  0.000e+00 0.000e+00
5.000e-01   5.000e-01 5.000e-01
7.500e-01   2.500e-01   7.500e-01
2.500e-01   7.500e-01   2.500e-01
3.750e-01   3.750e-01 6.250e-01
8.750e-01   8.750e-01 1.250e-01
6.250e-01   1.250e-01   3.750e-01
1.250e-01   6.250e-01   8.750e-01
1.875e-01   3.125e-01   3.125e-01
6.875e-01   8.125e-01   8.125e-01
9.375e-01   6.250e-02   5.625e-01
4.375e-01   5.625e-01   6.250e-02
3.125e-01   1.875e-01   9.375e-01
8.125e-01   6.875e-01   4.375e-01
5.625e-01   4.375e-01   1.875e-01
6.250e-02   9.375e-01   6.875e-01

The Sobol sequence is designed to 
have the best convergence 
properties and hence can lead to 
savings in sampling based 
sensitivity and uncertainty analysis 
because smaller sample sizes are 
needed to get equivalent accuracy 
in the results. 



Sobol vs Random vs Latin Hypercube



Comparison of convergence properties of different 
sampling strategies for a simple test model: f(x) = x1 + x2

4



If probabilistic information 
known then we may wish to 
sample from this distribution 
e.g. a normal distribution 
based on 2σ uncertainties
(Hébrard et al., 2015)
• 2-parameter samples, N = 

1000. 
• Box-Muller transformation 

applied to an uniform pseudo-
random sample (bottom left) 

• Normal inverse cumulative 
function of a Sobol’s quasi-
random sequence sample 
(bottom right).

Probabilistic sampling



What parameters to include?

• In an ideal world, just for fundamental devices:

– All Arrhenius parameters

– Thermodynamic parameters - used to calculate reverse reaction 
rates

– Species transport data

– Other potential model errors

• Temperature profile

• Heat transfer coefficients

• Residence times

• Loss rates to the walls of the reactor vessel

• In reality many of these are often ignored and a most common 
approach is to simply look at the A-factors for each forward 
reaction. 

– Tells us something about the important reactions but does 
not give a full picture of uncertainties.



Ignition delays:
Predicted output distributions (butane model)

700 K – narrow distribution 
but long tail

900 K - factor of 2 
uncertainty

1300 K – narrows 
again

• 1σ used to 
represent 
output error 
bars.

Examples of outputs

(Hébrard et al., 2015)



Interpreting output distributions

• Example from simulations 
of ignition delay time for a 
butane oxidation system. 

• The blue shaded area 
represents 1σ of the 
outputs based on a 
sampled normal 
distribution of the input rate 
parameters.

• Hébrard et al. (2015)

Reasonable agreement 
between model and shock 
tube and RCM data if 
uncertainties are taken 
into account. 

Lower uncertainties in 
high temperature 
region.
Higher uncertainties in 
NTC region.



JSR data 

Some discrepancies 
between model and 
experimental data 
even when 
accounting for 
estimated 
uncertainties.

Missing reaction 
steps? 

Other uncertainties 
not identified?

(Hébrard et al., 2015)

We learn about missing 
parts of the model.


