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Constructing Chemical Mechanisms  - Manual

• Historically mechanisms result from careful development work by 
experts.

• Begins with the selection of important species:

– reactants and products

– important intermediates necessary to predict production rates of 
key products or key quantities such as ignition delays, flame 
speeds or dynamic features such as extinction and oscillations. 

• Types of reactions that can occur between these coupled groups of 
species then need to be specified along with appropriate descriptions 
of rate coefficients, and thermodyamic data. 

• Growing expertise led to protocols for different types of application.

– Indicate reaction classes for each category of important species. 

• Typically, certain reaction classes ignored if 

– rates very slow compared to overall time-scales of interest, 

– they are too endothermic or too complex (e.g. too many bonds are 
broken or products produced (Yoneda, 1979; Németh et al., 2002)),

– pathways to minor products also often ignored (Saunders et al., 2003a). 



The concept of reaction classes
(Blurock, Battin-LeClerc, 2013)  

• Developing detailed combustion mechanisms for oxidation of 
fuels/atmospheric species with a large number of C atoms presents 
challenges in mechanism production philosophy. 

– Not possible to source parameters exclusively from experiments/detailed theory. 

– Estimates of reaction rate constants/thermo must come from physical/chemical 
principles based on fundamental kinetic studies for a smaller number of fuels. 

• One way of encompassing general principles into specific reactive 
properties is to define reaction classes.

• Reaction classes - kinetic generalisations that systematically embody 
analogies and physical principles a modeller uses to estimate rate 
constants where no specific evidence exists. 

• Based on a local set of functional features around the reactive centre of 
molecules that are significant when determining numeric value of rate 
constant. 

• Used in both automatic and manual generation of reaction 
mechanisms e.g. n-hexadecane mechanism of Westbrook et al. (2009).



How to define reaction classes
• A reaction class has three sets of information:

1. A pattern or rule to recognise within the chemical reactants (can 
be more than one) when the reaction class should be applied.

2. A transformation of how the specific reactants are converted to 
products.

3. The rate coefficients associated with the transformation.

• Generally built from years of chemical experience and intuition. 

• May also be suggested by automatic computer codes designed to 
explore chemical pathways automatically for reactions that are relevant 
in gas phase chemical problems e.g. KinBot (Zador & Van De Vijver
https://www.osti.gov/biblio/1464498-kinbot).

• KinBot uses a chemical network 
approach coupled with knowledge of the 
potential energy surface determined for 
the particular system. 



Examples of high temperature reaction classes
(Sarathy et al., 2011, Curran et al., 1998)

1. Unimolecular fuel decomposition
2. H-atom abstraction from the fuel
3. Alkyl radical decomposition
4. Alkyl radical isomerization
5. H-atom abstraction reactions from alkenes
6. Addition of radical species O and OH to alkenes
7. Reactions of alkenyl radicals with HO2, CH3O2, 
and C2H5O2

8. Alkenyl radical decomposition
9. Alkene decomposition
10. Retroene decomposition reactions

Fuel molecule breaks apart

Something pulls off a H atom 
leaving alkyl radical

Alkyl radical either breaks apart or 
internally reorganises to new 
structure etc. etc. 



Examples of Low Temperature Reaction Classes
(e.g. RH any general alkane, Sarathy et al. 2011) 

11. Addition of O2 to alkyl radicals (R + O2 = ROO)
12. R + ROO = RO + RO
13. R + HO2 = RO + OH
14. R + CH3OO = RO + CH3O
15. Alkyl peroxy radical isomerization (ROO = QOOH)
16. Concerted eliminations (ROO = alkene + HO2)
17. ROO + HO2 = ROOH + O2
18. ROO + H2O2 = ROOH + HO2
19. ROO + CH3O2 = RO + CH3O + O2
20. ROO + ROO = RO + RO + O2
21. ROOH = RO + OH
22. RO decomposition.
23. QOOH = cyclic ether + OH (cyclic ether formation)
24. QOOH = alkene + HO2 (radical site beta to OOH group)
25. QOOH = alkene + carbonyl + OH (radical site gamma to OOH group)
26. Addition of O2 to QOOH (QOOH + O2 = OOQOOH)
27. Isomerization of OOQOOH and formation of ketohydroperoxide and OH
28. Decomposition of ketohydroperoxide to form oxygenated radical species 
and OH
29. Cyclic ether reactions with OH and HO2
30. Decomposition of large carbonyl species and carbonyl radicals

Typical low temperature 
chain branching route for 
alkanes



Rate constants and functional groups 

• Every chemical environment, meaning an atom and its bonding, has 
an effect on the neighbouring atoms and bonds. 

• For example, a radical on a carbon atom is more energetically stable 
on a tertiary carbon atom than on a primary carbon atom which has 
the consequence that a tertiary hydrogen atom is more easily 
extracted from the carbon atom.

Primary
Primary

Secondary

Tertiary

• Mechanisms for larger fuels can 
be built using this concept of 
reaction classes and 
populated by data based partly 
on experimental measurements 
or detailed theory calculations 
and partly on extrapolations of 
this data to larger and larger
molecules using the concept of 
functional groups. 



Use of functional groups: example of 
hydrogen atom abstraction from the fuel



The structure of reaction mechanisms 

• Reaction classes can vary with temperature and hence size of required 
mechanism can be reduced by, e.g., restricting to low T classes (e.g. 
ignition problems), or high T mechanisms (e.g. flame propagation). 

• Additional classification of sub-mechanisms can be based on: 

• Hierarchical sub-mechanisms based on size of reactants: within a 
given sub-mechanism, only species of a given size are consumed. 
Smaller products (produced but not consumed within this sub-
mechanism) are consumed by sub-mechanisms ‘lower’ in the hierarchy.

• Primary, secondary, and base mechanisms: a special case of the 
hierarchical structure. 

– The primary mechanism - reactions of initial reactants and directly derived radicals. 

– The secondary mechanism – consumes products of primary mechanism. It would be 
possible to define iteratively tertiary and even n-ary mechanisms, but in practice in 
most combustion models, secondary mechanisms are designed to lead to intermediate 
species, which are finally consumed in a base mechanism.

• Pathways: A chain of reactions or reaction classes. The remaining 
species at the end of this chain should be consumed by other sub-
mechanisms.



Hierarchical development of mechanisms

Pelucchi , 2019 



The base mechanism

• Usually, a well-validated detailed mechanism of smaller species (e.g. 
up to C2-C4), which includes reactions taken from databases.

• Has usually been validated under the conditions being considered.

• Estimated rate constants are not usually used within base 
mechanisms, rather data is obtained from measurements, theory 
calcs, evaluations or even from optimised mechanisms. 

• Likely to be known with lower uncertainty than the reaction 
pathways for the larger hydrocarbons. 

• Needs to be updated frequently but often in larger mechanisms 
“legacy” mechanisms may still be present.  

• Care needs to be taken when updating base mechanisms within 
larger schemes since other reaction steps may have been “tuned” 
based on the existing base scheme. 

• Example:

– Aramco mechanism (2.0 
http://www.nuigalway.ie/c3/aramco2/frontmatter.html)



AramcoMech2.0

• A C1-C4 mechanism that has been developed in a 
hierarchical way ’from the bottom up’

– starting with a H2/O2 sub-mechanism,

– followed by a C1 sub-mechanism 

– grown to include larger carbon species such as 
ethane, ethylene, acetylene, allene, propyne, propene, 
n-butane, isobutane, isobutene, 1-butene and 2-
butene, and oxygenated species including 
formaldehyde, acetaldehyde, methanol, ethanol, and 
dimethyl ether. 

• Has been validated against a large array of 
experimental measurements including data from shock 
tubes, rapid compression machines, flames, jet-stirred 
and plug-flow reactors. 



Primary and secondary 
mechanisms

• Primary mechanism represents reactions of the primary fuels 
and their derived radicals. 

– Usually kept in detail. 

• Secondary mechanism consumes the products of the primary 
mechanism forming smaller species.

• In secondary mechanisms often simplifications are made even 
at the generation stage to keep the number of reactions as low 
as possible:

– Vertical reaction lumping is applied so that reactants go 
directly to smaller products via one reaction step without 
passing through intermediates (see later for methodology).

– Species lumping where parallel pathways of similar 
isomers are grouped (see later). 

– Reaction classes of low importance can be removed. 



Automatic Reaction Generation 
Methods

• Several reasons why this is important for mechanisms describing the 
oxidation of larger and more complex fuels:

– simply too large a task for a single human

– humans make mistakes

– the production of larger mechanisms has to be careful and 
systematic to generate what could be mechanisms with 
thousands of species and reactions

– data for individual reactions is unlikely to be obtained from 
experiment/evaluation. Estimations based on Reaction Class 
rules will be required. 

• Why not use the help of a computer informed by decades of 
human knowledge?



Principles of Automatic Generators

• Expert systems using a database of chemical principles to 
systematically and efficiently produce large detailed mechanisms 
(Blurock et al., 2013, Cleaner Combustion, p59-92).

• The developer or modeller determines which sub-mechanisms and 
reaction classes should be generated.

• Therefore expert system based on similar rules and reaction 
classes discussed earlier but these are now encoded rather than 
applied by hand. 

• Reduces errors and apply rules in a systematic way. 

• If rate constants are changed for a whole class then should be 
easier to regenerate the mechanism.
– EXGAS – Developed at CNRS Nancy (Côme et al., 1996).

– RMG – Developed at MIT (Green et al., 2001; Van Geem et al., 2006).

– REACTION – Developed by Ned Blurock (Blurock,1995; Moreac et al., 
2006).

– MAMOX++ – Developed by Milan (Ranzi et al., 1995).



Different AMG codes and 
specificities 

• MAMOX ++

– Produces hierarchy of (highly) lumped mechanisms derived numerically 
from automatically generated detailed mechanisms.

• EXGAS

– Has comprehensive reaction class database and large choice given to user 
for mechanism tailoring: e.g. low T vs high T, degree of lumping used etc. 

• RMG

– Uses a unique ‘‘generate and test’’ algorithm which generates a 
fundamental mechanistic step, estimates rate constants and then uses an 
‘‘on-the-fly’’ reduction processes to determine whether the reaction should be 
included in the final mechanism.

– Publicly distributed automatic generator of pressure-dependent reaction 
networks.

• REACTION

– Uses concept of Reaction Pathways rather than exhaustive list of Reaction 
Classes.

– Fundamental chemical information solely based on external databases so 
that it can be updated without modifying or recompiling the software. 



Particular Challenges Posed by Biofuels

• AMG codes initially based on alkanes.

• Wide range of biofuels now being used for applications in vehicles 
e.g. as additives or in blends with gasoline and diesel. 

• Most common examples include:

– Alcohols e.g. ethanol, butanol isomers, methanol

– Methyl Esters e.g. in biodiesel, furans, etc. 

• Molecules contain oxygen and have different functional groups 
and bond energies compared to e.g. alkanes.

• Modifications need to be made in terms of 

– Reaction classes

– Relevant rate data for existing classes compared to alkanes, 
alkenes

– Species present, groups included for group additivity 
calculations.

• The existence of measured data for the reactions of such 
compounds is pretty SCARCE!



Bond energies for alcohols (Pelucchi, 2020)

• Derived from 
theory and 
ATChTs.

• Will affect H 
abstraction 
rates at 
different Ts, 
and therefore 
low T
pathways.



Example of H abstraction Reactions

• We saw for alkanes that H abstraction rates were determined 
based on whether the H was attached to a primary, secondary or 
tertiary carbon atom. 

• For oxygenated species there are more types of H atom. 

C-H bond 
energies for 
butanol 
isomers

Selectivities for 
abstraction by OH 
(Frassoldati et al., 2012)



RMG Case Study: Advanced 
Oxygenated Biofuels 

Christian Michelbach

• We want to predict the combustion behaviour of advanced 
biofuel blends composed of ethyl levulinate, ethanol, and 
diethyl ether.
– There is an interest in such fuels for use in SI and CI engines as 

they can be made from lignocellulosic biomass (2nd gen).

– This requires predictions that cover a wide range of temperature, 
pressure, stoichiometry, and fuel blending conditions.

• Using RMG, can we produce a detailed kinetic mechanism 
that suits our needs?

• Can we then extend the methodology to a butanolic version 
where less data is available. 



RMG Case Study: Seeding
• Building RMG models is an iterative 

process. Requires user to analyse 
produced model, making incremental 
improvements with each step.

• An initial model generated, using only 
RMG database reaction families and 
training reactions.

– Model clearly insufficient, as shown by the 
IDTs of diethyl ether.

– Holes in the current kinetic database for 
oxygenated species.

• Introducing seed mechanism provides 
key reaction steps (e.g. initiation and 
chain branching).

– RMG typically good at filling in remaining 
propagation and termination steps. 

– Including a diethyl ether sub-mechanism 
(Tran et al., 2019) greatly improves IDT 
predictions.

– Still room for improvement.



RMG Case Study: Kinetic Database
• Prediction of component IDTs has 

improved, but what about blends?
• Even with kinetic and 

thermodynamic seeding for diethyl 
ether and ethanol, the prediction of 
blended IDTs is poor.

• RMG database is largely lacking 
training reactions and groups 
specific to oxygenated species.
– Alcohols are reasonably covered.
– Ethers, esters, and ketones need 

database updates for many reaction 
families (i.e. H abstraction, intra H 
migration, cyclic ether formation, 
radical recombination).

– Rate constants can be sourced 
from literature – be sure to consider 
uncertainty when adding data.

• After making database updates for 
oxygenated species, predictions 
are improved significantly.



RMG Case Study: Database Updates
• For database training, ethyl levulinate can be split 

into a ketone and ester functional group.
• We can use literature to find appropriate training 

data for these groups.
• As an example reaction, consider hydrogen 

abstraction by a H radical, to form H2 and EL3J.Ketone

Ester

• Methylethyl ketone (MEK) can represent this 
ketone group.

• Thion (2017) calculated H abstraction rates for MEK.
• Calculations performed at the G3//MP2/aug-cc-pVDZ

level of theory.
• In RMG, create a library of new training reactions. Then 

use the ‘kinetics_library_to_training.ipynb’ tool. 

• May need to add new group structures to RMG.
• Tedious and must be done ‘by-hand’, using the 

adjacency list format.
• Prevents ambiguous group definition and incorrect 

training reaction selection during reaction generation.
• High potential for human error. Needs care. 

MEK

Group Definition

Group Drawing (RMG)



RMG Case Study: Final Model

• Using the 
outlined 
process, we 
can produce a 
final model 
that performs 
extremely well 
for complex 
fuels.

• Model can be 
extrapolated 
beyond regime 
of original 
seed 
mechanisms, 
outperforming 
them.



What we learned…

• Robust and accurate mechanism generation can contain 
some automisation but also requires careful human 
interaction. 

• A reasonable seed mechanism was required.
– Composed using human expertise – particularly when new 

reaction classes are needed. 
• New groups/training data were required – we need an 

automatic way to pull this in. LLMs?  
• Physical reality checks were needed outside the developed 

region of the seed mechanisms.
– Many violations of collision limits found. 

• Sensitivity analysis and rate constant updates (based on 
high level theory) were needed to get final good accuracy. 

• Validation data is sparser than we would like – particularly 
for mixtures.



Importance of thermochemistry
• Many target outputs from combustion systems depend on accurate 

thermochemistry e.g:
– Calculation of reverse rates.
– Low temperature oxidation routes for hydrocarbon fuels involving 

RO2 and QOOH species. 
– The prediction of heat release rates. 
– Prediction of adiabatic flame temperatures. 

• Large molecules are challenging. 
• Goldsmith et al. (2012) presented a method and data for 200 

molecular species of interest in combustion chemistry.
• A bond additivity correction (BAC) was developed to account for 

shortcomings in the treatment of multiple bonds and to remove 
systematic errors that appeared for different bond types compared 
to Active Tables (see later): C—H, C—C, C═C, C≡C, O—H, C—O, 
C═O, and O—O.
– 2σ uncertainties of 0.58 kcal/mol

• A high level of theory can produce <0.2 kcal/mol uncertainty but at 
large CPU cost. 



Active Tables
• New paradigm to develop accurate, reliable, and internally consistent 

thermochemical values for stable, reactive, and transient chemical species by 
utilizing to the fullest all available experimental measurements as well as state-
of-the art theoretical data.

• ATcT is based on constructing, analysing, and solving the underlying 
Thermochemical Network (TN). 

• Brings together both experimental and theoretical studies (see earlier) to 
reduce uncertainties in data (Burcat & Ruscic, 2005). 

• Network of Computed Reaction Enthalpies to Atom-Based thermochemistry 
(NEAT) Csaszar and Furtenbacher (2010)

• Results in highly correlated parameters – be careful of the effects of 
neglecting such correlations!



Group Additivity

• Experimentally, for n-
alkanes it is observed that 
H, S, and Cp all vary 
linearly with the number of 
Carbons. 

• One can assign a value to 
the increments caused by 
inserting one more CH2
group into the alkane 
chain.

• This approach works for 
many different chemical 
functional groups: adding 
the group to the molecule 
adds a set amount to H, S, 
Cp called a GAV.

• For S, need to add a 
symmetry correction to the 
sum of the GAV.

S.W. Benson constructed tables of these 
Group Additivity Values (GAV). Several researchers,
especially Bozzelli and Green, have added to these
tables using quantum chemistry to fill in gaps in
experimental data.   

Data for n-alkanes



Treatment of Radicals

• Typically the hydrogen bond increment (HBI) approach 
used, as implemented in THERM. 

• Radical thermochemistry based on thermochemistry of 
corresponding parent molecule by adding a so-called bond 
dissociation (BD) group, that accounts for difference in 
thermochemistry between radical and its parent due to broken 
hydrogen bond.

• Δhf,j,
radical(298 K) 

= Δhf,j,
parent(298 K) + Δhf,j,

BD(298 K) - Δhf,j,
H(298 K) 

• Δhf,j,
H(298 K) =  217.998 kJmol-1, enthalpy of formation of the 

abstracted hydrogen atom.

30



Problems with Group Additivity

• While the group additivity method is intuitively simple, it has its 
drawbacks stemming from the need to consider higher-order 
correction terms for a large number of molecules.

• Take e.g. cyclopentane, the addition of group contributions yields Ho = 
–103 kJ/mol, yet the experimental value is –76 kJ/mol. Difference is 
caused by ring strain, not accounted for in the group value of C–
(C2,H2) obtained from unstrained, straight-chain alkane molecules. 

• Cyclics are biggest problem for group additivity, but some other 
species also do not work well, e.g. halogenated compounds, and 
some highly branched compounds. 

• Very small molecules are often unique (e.g. CO, OH), so group 
additivity does not help with those.

• Species with different resonance forms can also cause problems, e.g.
propargyl CH2CCH can be written with a triple bond or two double 
bonds, not clear which should be used when determining groups. 

• Many methods have been developed using straight chain 
alkanes but future fuels might not look like this….



Use of Machine Learning in automated 
mechanism generation

• For almost all complex fuels (beyond C4 say) the rate constants (and in 
some cases equilibrium constants) used for elementary reactions 
describing their oxidation are based on estimates. 

• Detailed data for smaller molecules can be used to estimate rates for 
larger molecules with similar chemical structures e.g. in RMG. 

• However, data is often sparse and potentially a mixture of 
experimental and ab initio/theory  computations. 

• Machine-learned models trained on large datasets can improve the 
accuracy of estimates, allowing a better integration of quantum 
chemistry and experimental data (Green, 2024).

• There are still challenges – in particular for newer fuels (potentially 
oxygenated) that have more complex structures and for which available 
training data is sparse. 

• Care needed in application of ML – we can’t just throw all available data 
to a neural network (NN) and expect the best fits. Improved estimates 
gained from utilizing information on chemical structure and 
reaction classes that are used in traditional estimation methods. 



Use of Deep Learning Methods for rate 
coefficient prediction across reaction classes

• Li et al. (2024)  A machine learning method to predict rate constants 
for various reactions in combustion kinetic models.

• Use a generalised deep learning method which operates across 
reaction classes – using natural language processing (NLP) 
methods to infer reaction classes using only the text-based 
information of reactions (simplified molecular-input line-entry 
system, SMILES). 

• Training data mostly based on high-level quantum chemistry 
calculations for 9 reaction classes across 8 fuels – 242 reactions. 

• Reaction fingerprints serve as inputs of deep neural network (DNN) 
models to predict modified Arrhenius parameters ln A, n, and Ea. 

• Of course the inputs from theory contain uncertainties – but in this 
work they are assumed to be zero, although the impact of this 
assumption is tested. 33



Reaction Classes

• Reaction classes are typical of those found in complex fuel oxidation 
mechanisms. 

• See earlier Low T reaction classes. 

34



Approach
• Using this general approach and reaction fingerprints carries the risk 

of overfitting because the dimensionality of the input features is 
comparable to the size of the dataset. 

• Hence mitigating overfitting during the model training phase is an 
important part of the methodology using a drop-out method. 

• An automatic method (OPtuna) is used to optimize 

the hyper-parameters of the NN: 

– the number of hidden layers, 

– the number of neurons per layer, 

– learning rate, batch size, 

– drop out ratio, 

– weight decay in the optimizer.  

• Reaction classes were almost always successfully

identified from fingerprint data. 

35



Outcomes 

• Note that this is ln A and there are some fairly large errors in 
predictions. 

• Activation energy is more successfully estimated than the pre-
exponential factor. 

36



Uncertainties in predictions

• The uncertainty factor for most reactions (about 70%) is less than 4, 
roughly comparable with uncertainties of high-level calculations.

• Uncertainty factors for some reactions (about 18 %) are 4 – 10. 
Small number of predicted rate constants with uncertainty factors 
above one order of magnitude, mostly from the complex low-
temperature reaction classes – likely due to sparsity of training data. 

37Better than traditional rate rules approach



What is this approach lacking?

• It is dependent on the reaction classes being 
successfully identified – but the list of included classes is 
predetermined.  

• It is not actually building a mechanism from scratch and 
so is not an automated reaction generator. 

• The uncertainties remain high for systems with sparse 
training data sets. 

• How can machine learning (ML) be used to generate 
reaction mechanisms and populate their required 
data even for systems where data is sparse? 

38



What do we need to build a mechanism for a 
particular process? (Johnson and Green, 2024)

• A systematic method both to propose candidate reactions and species, 
and to decide which are actually important.

– Build new reaction classes by systematically generating all possible 
reactions from important species, then numerically test and prune 
reactions calculated to be too slow to be important based on 
selected error tolerance. 

– Requires calculations (or estimations) for large numbers of reaction 
rates. Number of reactions can build quickly. Also, some slow 
reactions may lead to important intermediates and be missed with 
the wrong tolerances. 

– Sometimes there are so many possible isomers that it is difficult for a 
human to correctly enumerate them all. KinBot attempts to overcome 
this, but still challenging to solve numerical eqs resulting from 
complex systems with thousands of species. 

– Currently not possible to compute accurate rates for all possible 
reactions in a system using higher level quantum methods. So even 
in order to build a mechanism we rely on accurate estimates. 



Problems with sparse data

• As we have said, traditional approaches are based on identifying 
functional groups within molecule, or bond changes, and then using 
simple (e.g. least squares regression) fits to data from smaller 
molecules. 

• For example, one entry in the fingerprint could be the number of a 
certain functional group in the molecule.

• Methods such as Li et al. and Chemprop use machine learning to 
improve estimates over simple regression approaches. 

• However, we saw problems where data sets are sparse and the 
newer the system of interest, the sparser the data sets will be. 

• Often in kinetics, the data available is very “clumpy”, with many data 
for certain types of molecule or reactions, and zero data on some 
other types of molecules or reactions (e.g. new systems or fuels).

40



Can this be fully automated?

• Will require: 

– Building an appropriate reaction set from reactants, 
through intermediates, through to products. 

– Pruning away unimportant reactions at appropriate 
reaction conditions to avoid combinatorial explosion. 

– Estimating appropriate thermo for all species in the 
mechanism. 

– Estimating appropriate T and or P dependent reaction 
rate coefficients for each reaction based on available 
training data. 

– Without human intervention!

41



What would a good ML algorithm for building a 
mechanism and predicting rate coefficients look like: 

• Fully automated.

• Good optimization using fairly sparse data for some reaction 
classes.

• Human readable and able to formulated rates in a format readable 
by commonly used simulation codes. 

• Relatively easy to maintain and extend and scalable.

• Best use of all available data; combining experimental and theory 
calculations. 

• Able to incorporate qualitative information from experts where 
appropriate. 

• Able to provide uncertainty estimates for predicted rates over a 
range of appropriate T,P. Extremely important because we need to 
know where there are cases where the uncertainty is so large for the 
estimate not to be useful. 

(Johnson and Green, 2024)
42



Using tree structures

• Typical successful applications of NNs for predicting rate constants 
can be based on datasets containing more than 10,000 reactions. 

• Typical reaction families in AMG codes such as RMG have to be 
estimated based on data from fewer than 20 reactions. 

• According to Johnson and Green (2024) the best way to use such 
sparse training data is to incorporate ML within a similar tree 
structure to that used for developing RRs e.g. as used in RMG. 

• Have developed an approach based on the use of decision trees. 

Example of a 
subgraph 

isomorphic 
reaction template 

decision tree.



What are decision trees? 

• Decision trees are classifiers that start with an item at a single root 
node with no parents. 

• At each node the item is checked against each descendant “child” 
node and moves to the first child node that it matches and so on 
until it reaches a node where it doesn't match any children. 

• That final node becomes its classification. 

• In this context the items are reactions, i.e. molecular graphs of 
reactant(s) and product(s) with atom mapping with matching 
done by subgraph isomorphism checks. 

• Automation: 

– iterate starting from a single root node adding the new node that 
best optimizes the tree each iteration

– end tree generation process when some termination criterion 
related to the number of tree nodes or tree depth is satisfied

– new nodes are added that best divide those reactions into 
groups with similar rate estimates. 

44



The mechanism building process

• Extension chosen that minimizes Π = N1σ1 + N2σ2 where Ni is the 
number of reactions in partition i and σi is the standard deviation in 
log(k(1000 K)) within partition i. 

• I.e. choose the extension that clusters reactions with similar rates 
into the same partitions at chosen T of 1000 K where the training 
data is expected to be the most accurate. 

45



…
• A rule is then defined at each node. All training reactions matching a 

given node (top node has all reactions) are fitted to a to estimate 
Arrhenius parameters essentially using a least squares method.

• Uncertainties need to be estimated for the input reactions (e.g. from 
kinetics experiments, theory, from optimization studies incorporating 
bulk experimental data such as flame speeds), the interpolant, and for 
k(T) estimates for a new reactions where no data is available. 
Challenging! 

• Normal distribution for Δlog(ki) ~ N(log(kbest fit,i) - log(ktrue,i), σ2
rxn,i + 

σ2
model,i)

• i.e. uncertainties are due to limitations in the model’s ability to 
represent the chemical space and the errors in the training data. 

• At lower nodes there will be fewer training reactions, but a much 
smaller chemical space hence fitting errors will be small and the 
uncertainty in the reaction rate for the rule would be expected to be 
smaller than that for the individual reactions. 



…

• At higher nodes there will be more training reactions and a larger 
chemical space. Hence, log(kbest fit,i) − log(ktrue,i) will  be large and 
errors in kmodel,i will dominate. 

• Balance between selecting parent nodes with more training 
reactions but a larger fitting error vs. child modes with a smaller 
chemical space but fewer training reactions. 

• Estimation of uncertainties allows the appropriate node to be 
selected for rate constant estimation. 

• At nodes near the top of the tree there are many reactions making 
it possible to accurately calculate the reaction rate parameters, 
however, the chemical space spanned can be quite large making it 
difficult for a single model fit to represent all of the involved 
reactions. 

• At nodes near the bottom of the tree the chemical space spanned 
is much smaller and the model can better represent the space, but 
there are fewer reactions, making the fit more sensitive to errors in 
the training data.
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Testing against RRs

• Method has been tested for several commonly used reaction 
families where Rate Rules have previously been applied and 
outperforms RR methods. 
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Final remarks
• There is definitely significant scope for ML methods to assist 

in building mechanisms for new fuels and processes. 
• BUT! 
• The success of such methods depends on 

– The available training data, its quality and how well it 
covers the space of interest.

– Training data from both quantum and experimental 
methods is needed. 

– Effective data sharing and data curation will be important. 
Not an easy and an often thankless task. 

– The use of ML methods which maximise the value in this 
training data, including in cases where it can be sparse. 

• This means using approaches that effectively partition the 
data to give optimal error minimisation. 

• Finally (at the risk of sounding like a broken record) we 
need to track uncertainties, and consistently! 
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