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bustion devices

Molecular level Electronic Structure (ab initio) methods + Statistical Theory

A

Accurate kinetics, thermodynamics, and transport

Detailed chemical kinetic model

Laboratory experiments
| in fundamental level

Chemistry validation

A

Model reduction

Physics sub-models
. (turbulence, mixing, and
l heat transfer)

Computational Fluid Dynamics |«— Laboratory experiments in
* applied level (e.g. engine)

A

Combustor design

Device level

A

Reduced emissions, improved efficiency

J. Chen, PhD Thesis, Lund University (2025), redrawn from H. J. Curran, Proc. Combust. Inst. 37 (2019) 57-81.
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We refer to mechanism validation as the comparison of
experimental data with the corresponding simulation
results obtained using the mechanism.

G2

— If the predictions of the mechanism are close to the
experimental results, or at least better than the best previously
published mechanism, we accept the new model.

BUT: It does not necessarily mean that the parameters of
the model are accurate (compensation effects).

Therefore, “testing” is a better term,
but “validation” is used much more frequently.

| B
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G2

-ndirect experiments

= Direct measurement:

« Determination of the rate coefficient of a single reaction
step at a given temperature, pressure, and bath gas

« Separate experimental measurement or theoretical
calculation for each elementary reaction step

« Typically used for assembling a detailed kinetic mechanism

» |Indirect measurement:

« Measurement of a quantity characteristic of the whole
combustion process (concentrations, IDTs, LBVs)

» Can be interpreted only with a simulation using a detailed
combustion kinetic mechanism

« Typically used for validating a detailed kinetic mechanism

[
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= We would like to validate the chemistry of the detailed
mechanism (rate parameters, maybe thermochemical data)

@2

= Detailed combustion kinetic mechanisms may be very large
(1,000’s of species, 10,000’s of reactions)

!

Indirect experiments simplify complicated physical problems
(mixing, flow, heat transfer, etc.) taking place in real devices.

« Homogeneous (0D) “kinetic” reactors, laminar flames (1D)

« Each method has limited operating T and p ranges
— they need to be combined to validate chemical kinetic
mechanisms over a wide range of conditions

[ B
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t experiments

Homogeneous reactors (0D)

 Ignition delay time measurements (IDT)

R
AL
S

Shock Tube (ST) Rapid Compression Machine (RCM)

« Concentration measurements

Tubular Flow Reactor (TFR/FR) Jet-Stirred Reactor (JSR) Shock Tube (ST)
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direct experiments

| (@B

Premixed laminar flames (1D)

« Laminar burning velocity measurements (LBV) — several methods

Flame Cone Method Spherical Bomb Heat Flux Burner

« Concentration measurements

Burner Stabilized Flame Burner Stabilized Micro Flow Reactor
(BSF) Stagnation Flame (BSSF) (MFR)

| T
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direct experiments

= Several combustion simulation programs are available
(e.g., CHEMKIN-II, Cantera, OpenSMOKE++, FlameMaster)

= 0D simulations: kinetic + thermochemical data
1D simulations: kinetic + thermochemical + transport data

MEASUREMENT FACILITY MODELING APPROACH SOLVER
Rapid compression machine Adiabatic system with the volume
Ignition delay < (RCM) as a function of time
time Shock tube

Adiabatic system with
constant volume

= Perfectly stirred reactor
(spatially homogencous mixture)

: Fl
Concentration— < ow reactor
time profile

Jet-stirved reactor (JSR)

' Bunsen bumer (flame cone method) Sinadv Iaiinat
Laminar flame Spherical bomb (outwardly propagating) Uy
. S 4 : one-dimensional
velocity Counterflow twin-flame configuration PR

" Heat flux burner .

CHEMKIN-II simulation codes [C. Olm et al., Combust. Flame 161 (2014) 2219-2234.]
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nism validation

Most widely used mechanism validation method
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B. Shu et al., Proc. Combust. Inst. 37 (2019) 205-211.  J. Chen et al., Combust. Flame 255 (2023) 112930.

Typically, 510 such figures in the paper, many more in the SM

[
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nism validation — issues

Uncertainty of the experimental data?

Symbols: experimental data
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Exp. data: W. Liao et al., Proc. Combust. Inst. 39 (2023) 4377—4385.,
L. Dai et al., Combust. Flame 215 (2020) 134-144.
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Ism validation — issues

Uncertainty of the experimental data?

A Symbols: experimental data
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Exp. data: W. Liao et al., Proc. Combust. Inst. 39 (2023) 4377—4385.,
L. Dai et al., Combust. Flame 215 (2020) 134-144.
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nism validation — issues
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@ Experimental data —— Dai-2021 KAUST-2023 NUIG-2024 Shrestha-2022 —-— WUT-2024
—— Alturaifi-2022 -=-=- ELTE-2024 === Konnov-2021 -=-- POLIMI-2023 Shrestha-2023 Yin-2024
-=-= Alzueta-2024 —-— Glarborg-2024 —-= Li-2019 —-=— SJTU-2022 —— Sun-2022 —— Zhou-2023
—-— Bertolino-2021 - Han-2023 e Mathieu-2024 - SJTU-2024 --- WUT-2022 === Zhu-2023
------ CEU-2022

100-1000’s of data series and many (20+) mechanisms:
Impossible to decide which mechanism is the best overall
— A quantitative method is necessary!

[
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echanism validation

&

= Mean Absolute Error (MAE)

1 - _ n: number of data points
MAE = —Z|YieXp — Yl-S‘m| Y *P: i-th experimental result
n
i=1

l
Y i-th simulation result

* Root-Mean-Square-Error (RMSE)

n
1 .
RMSE = EZ(Yiexp . YiSIm)z
=1

Issues:
* Not dimensionless — different measurement types cannot be compared
« Experimental uncertainties are not considered

[ B
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echanism validation

&2

= Mean Absolute Percentage Error (MAPE)

1 YeXp _ Y-Sim
— L L
MAPE = — E -

=1 l

Advantage:
 Dimensionless

Issues:
« Experimental uncertainties are not considered
- Failesfory; ™ =0

- Failes for very small ;""" values — errors will be exaggerated,
especially problematic for concentration measurements

|
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mechanism validation
y-model-average <

* MAPE using many-model-average (MAPE’)

o1 - YieXp — YiSim | Y?i“f: averaged i-th
MAPE" = — — simulation result for many
n i=1 Y; (arbitrarily selected) models
Advantage:

 Dimensionless

Issues:
« Experimental uncertainties are not considered

« Performance of one mechanism depends on that of the others
— Involving more and more very bad mechanisms will artificially
improve the performance of other mechanisms

[ B
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mechanism validation
ncertainty-normalized RMSE <

= Experimental-uncertainty-normalized
Root-Mean-Square-Error (RMSE)

SVId - l
RMSE = the i-th experimental data point

n 0 2

1 (Y.eXp — Yi51m> o(Y;*P): standard deviation of
exp

\ n i=1 O-(Yl )

Root-mean-square deviation of the simulation results from the
experimental data relative to the experimental uncertainties, which
measures within how many o experimental standard deviations
the model can reproduce the experimental results, on average.

RMSE =1 - 1o
RMSE = 2 - 20, efc.

| B
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mechanism validation
certainty-normalized RMSE .

Why summing the squared and not the absolute deviations?

Assuming the Y;"" data are

* independent and

e follow normal distribution,

ySXP_ysim :
7, = 1t—— IS a standard normal random variable. Then,
L a(Y, p)
l

n
—_ 1
RMSE? = EZ 77 ~x? (assuming n is large)
i=1

Hence, we can make use of the properties and statistical
inference of the reduced chi-square distribution.

.
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e mechanism validation
uncertainty-normalized RMSE S/

A value of RMSE = 1 indicates that the average deviation
between the experimental data and the simulation results
matches the uncertainty of the experimental data (o).

A model with RMSE = 1 can be considered “perfect”,
l.e., it captures all features of the data except the noise

 Real combustion kinetic models have RMSE > 1 for large
collections of experimental data (underfitting),
and the smaller the RMSE value, the better the model

* RMSE < 1 indicates overfitting — it never occurs for real
combustion kinetic models for sufficiently large n-s

[
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echanism validation
ertainty-normalized RMSE

The absolute values |Z;| do noft follow normal distribution,
and there is no analoguous y distribution for their sum

n
1
_leil
n .

=1

Hence, no statistical inference could be attributed to the
resulting quantity.

[
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e mechanism validation
-uncertainty-normalized RMSE

Squared deviations correspond to Euclidean (L?) distance in
high-dimensional space. If the RMSE? function is used as a

target function in model fitting, it corresponds to lea
squares parameter optimization.

st

Hence, we can make use of the favorable properties of least

squares fitting, assuming normally distributed data:
The estimations of the parameters will be unbiased
and have minimum variance.

Absolute values lead to Manhattan (L) distance in

high-dimensional space. Hence, we cannot make use of

favorable properties of least squares fitting.

|
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mechanism validation
ncertainty-normalized RMSE .

Advantages of RMSE

* Dimensionless

« Experimental uncertainties are considered
o Statistical inference can be attributed to its value

« Can easily be used in least squares parameter optimization

The application of the RMSE measure
to combustion kinetic mechanism validation
will be discussed in the next section of the lecture.

[ B
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Indirect experimental data are arranged in data series.

Data point: A single observation, e.g.,
LBV measured at a given T, p, and gas mixture composition.

Data series: One quantity measured sequentially as a function
of an independent, systematically changed quantity, e.qg.,
LBVs measured at different T-s

at a given p and gas mixture composition.

Data collection: Several data series.

[ B
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ion E

Let the experimental data collection consist of N data series,
and let each data series s contain N, data points.

YeXp sim 2 o
E sd for the d-th data point in
sd — (YGXP the s-th data series
1 u
E, = N z E¢q for the s-th data series
1 N
E = — E for the whole data collection
N S
s=1

Chemical Kinetics Laboratory, Institute of Chemistry, ELTE E6tvos Lorand University, Budapest, Hungary 28
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exp sim 2
N 2 2 ( sd (Yexde )

VE is the root-mean-square deviation of the simulation
results from the experimental data relative to the
experimental uncertainties, which measures within how
many o experimental standard deviations the model can
reproduce the experimental results, on average.

VE =1 - 10 (“perfect” model — ideal)
VE = 2 - 20 (excellent model in practice)
VE = 3 - 30 (good model in practice)

- TTTTT——
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YeXP __ ySim

sd sd
exp

O-(st )

( .
yexp/sim _ yi;p/ o if yf:zp has normal distribution
sd o exp/sim .. _exp s :
kln Yod if y_, haslognormal distribution
° yifip/ "M untransformed measured/simulated result

LBV, concentration: normal distribution is assumed
— absolute errors: o(y_,")

IDT data: lognormal distribution is assumed
— relative errors: ~ a(Iny_,") for small errors (e.g., <20%)

|
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-I uncertainties — issues

The main problem is the proper estimation of the
uncertainty of the experimental data (o)

Typical cases:

« Uncertainties are not published with the experimental data
(very rare in recently published papers)

* The given uncertainty is too optimistic and not realistic

« The published uncertainty assessment considers only a few
sources of possible errors

* Uncertainty assessment is very comprehensive and of good
quality (can sometimes be found in recently published papers)

[ B
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ertainties — solution

In most of our previous publications,
two uncertainty sources were considered:

— 2 2
Osd = \/O-Sd,exp + O-S,scatter

* Oy €Xperimental standard deviation as published in the paper

(if missing, it is assigned based on other papers

using similar equipment)
* 0,.auer. €Stimated statistical scatter of the s-th data series
stemming from the scatter of repeated measurements

(usually not considered in o)

Chemical Kinetics Laboratory, Institute of Chemistry, ELTE E6tvos Lorand University, Budapest, Hungary 33



of o,

,scatter

G2

O, scatter 1S ODtaiNed by fitting a smooth trendline to the data
points of the s-th data series

N v ——— * To find the optimal trendline
" -~ Fitted noise-free function (saki_0004) and determine the scatter of
8.0-1071 Orcaner = 15107 ,. the data points,
751107 f Akima spline and
= 7.0:107 s * polynomial functions are
X 65107 1 ‘.\ J/ fitted to the data series using
6.0-107 - \‘9\ / code Minimal Spline Fit
5.5-10~4 1 k /‘/
o \-_._-J' - Visual inspection of the fitted
860 960 10|00 11|00 12|00 13'00 funCtIOH graphs IS always
T/K needed!

Exp. data: K. N. Osipova et al., Fuel 310 (2022) 122202.

Theory: T. Nagy, T. Turanyi, Proceedings of the ECM — 2021,
Paper 336, 14—-15 April, 2021, Naples, Italy

Code: available at https://ReSpecTh.hu

|
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. . !
-al uncertainties — solution

For recent LBV and IDT data, the o, almost always contains
the uncertainty coming from the uncertainty of the initial

conditions (T, p, gas mixture composition).

However, it is not true for outlet concentration data.

The uncertainty of the temperature of the measurement
may induce significant uncertainty in the measured
concentrations, which is usually not considered in o, -
Therefore, another uncertainty term has to be added:

— 2 2 2
Osa = \/Usd,exp + Os,scatter + Osd,cond

sdcona: Standard deviation of the measured data propagated
from the uncertainty of the experimental conditions

* 0O

|
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uncertainties — solution

We showed that the uncertainty of the measurement
temperature has the largest effect on the
uncertainty of the measured outlet concentrations.

I T I T T T T | I T

' W Aramco-l-2016 1 Exp Conditions: 1 1

! ® Glarborg-2018 I T=673K typlcal reaCtlon T
Aramco-1-2016 (fit) | p = 41 atm

4 e g oo | Glarborg-2018.4At) 17 gy - - - - . uncertainty:
AT=2-20K

P. Zhang, I. Gy. Zsély,
: M. Papp, A. Veres-

L A ' | Ravai, B. Su, T. Nagy,
! B. Yang, T. Turanyi,

0 p--------- T = 67345 K F--------- - Combust. Flame,

Y R under review (2025)

660 665 670 675 680 685

Temperature / K
B

|
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. . !
| uncertainties — solution

The temperature uncertainties (o;) were collected from the
publications, and the effect of temperature uncertainty

on the uncertainty of the experimental data (o, was
estimated using the principle of Gaussian error propagation.

[#l Measured data 20,7 T o Uncertalnty |S
_s | ———- Fitted noise-free function (saki_0004)
S propagated along the
— —— n0|s.e-free t.rendllne
5 obtained using
Z 1010+ /1 Minimal Spline Fit
N « The propagated
—~ uncertainties may
0.0 ettt ot | be asymmetric
960 10'00 11IOO 12|00 13I00
T/K

Exp. data: X. Zhang et al., Combust. Flame 234 (2021) 111653.

| B
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certainties — solution

6.0-10% -
5.0-107% % $ % z
4.0-107 A
"o
L 3.0-107%-
=
>< =
2.0-107% A
— ® Measured data +207 574, ;
® Measured data +20exp T
| ® Measured data +20ccatter
007 "§ Measured data +20ar r
800 850 900 950 1000 1050
T/K
Exp. data: X. Zhang et al., Combust. Flame 234 (2021) 111653.
[ - TTTTTT—
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ingin E

One may want to emphasize one or more data series or
one type of experiment.

This can be achieved by upweighting those data series and
downweighting the other ones. The more general E formula:

. 2
z W z Yoo — Yo
N (Yexp)

* w,: weight of data series s

1
Note: Nz w, = 1 must apply
s=1

- TTTTTT——
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| (@B

= NH; and NH,/H, experimental data collection

Exp. type  Nieries  Nooints T/K p | atm [7) H, % in fuel
JSR-conc 334 4917  500-1452 0.99-140 0.01-5.19 0-70
ST-IDT 89 624  1023-2720 1.01-41.65 0.47-2.07 0-70
LBV 445 5093 293-821 0.30-36.58 0.20-2.00 0-100
FR-conc 247 4850  451-1973 0.96-98.69 0.01-23.98 0-91
ST-ct 203 1667 1474-2720 1.15-3.59 0.50-3.46 0-49
ST-conc 9 91 1581-2720 1.15-3.59 0.50-1.84 0-21
Overall: 1327 17242  293-2720 0.30-98.69 0.01-23.98 0-100

* 32 recent NH; combustion mechanisms
were tested quantitatively

A. Gy. Szanthoffer, M. Papp, T. Nagy, T. Turanyi, Combust. Flame, under review (2025)

|
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# Mechanism VE conc
1 NUIG-2024 6.5
2 UCF-2024 6.6
3 Tsinghua-2024c 71

4 Alturaifi-2022 7.9
5 QUST-2024 8.1

6 KAUST-2023 7.9
7 Tsinghua-2024b 8.0
8 Tsinghua-2024a 8.6
9 Zhu-2023 7.3
10 POLIMI-2023 8.2
11 Bertolino-2021 8.9
12 Glarborg-2024 8.4
13 HUST-2024 8.3
14 Mathieu-2024 9.0
15 Han-2023 9.9
16 Meng-2024 10.1
17 Wang-2023 10.1 .
18 Shrestha-2022 8.3 5.2 5.7 6.6
19 Sun-2022 8.7 4.9 5.7 6.6
20 Konnov-2021 11.0
21 WUT-2022

22 Kwon-2024

23 Yin-2024

24 WUT-2024

25 Dai-2021

26 Nakamura-2024

27 CEU-2022

28 SJTU-2024

29 ELTE-2024

30 Yu-2024

31 Alzueta-2024

32 Liu-2024




l (BB

Issue:

Some data points cannot be simulated with one or more mechanisms

due to numerical instability (solver issue, stiffness, etc.). This may

typically occur for 1D simulations.

* We have a different number of successfully simulated data points
for each mechanism

» E values for different numbers of data points cannot be compared

Solution:

These data points should be excluded from the comparison.

« If only a few data points (1-2%) are involved, it is OK, because
we do not lose much information

« If many simulations fail with a mechanism, it is recommended to
exclude that mechanism to minimize data loss

[
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32 + 4 mechanisms:

F (BB

# Mechanism V Econc vV EIDT vV ELBV V Eoverall
1 NUIG-2024 6.5 4.7
2 UCF-2024 6.6 4.9
3 Tsinghua-2024c 7.1 5.3
30 Yu-2024 8.6
31 Alzueta-2024
32 Liu-2024
HUST-2023 10.5
Li-2019 12.9 — -
SJTU-2022 9.8 6.1 — —
Zhou-2023 11.7 7.8 — —

Usually, it turns out that these mechanisms are
also not the best for the other types of experiments.

Chemical Kinetics Laboratory, Institute of Chemistry, ELTE E6tvos Lorand University, Budapest, Hungary
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Issue:

F (BB

Mechanism validation must be based on reliable, consistent data.
* The experimental data should not have systematic errors

« Their uncertainty should be realistic

Even though we are cautious with the selection and uncertainty
estimation of the experimental data, we cannot be sure.

Solution 1:

Those data points are excluded that none of the mechanisms can
reproduce within their 3o (or 40, 50 etc.) uncertainty limits.
Usually, about 5% of the data are excluded based on this criterion.

Problem with this approach:
Some experimental conditions (p, T, ¢) may not be well described
by any of the mechanisms — good data points may be excluded!

| I
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mental data

l (BB

Solution 2:

A.

A given type of experiment is selected (e.g., NHj/air LBV)

Bins are defined around each data point in the space of the

relevant condition variables (e.g., T, p, ¢). The edges of the bins

correspond to AT, Ap, Ag, etc.

Experimental data belonging to the same bins (measured under
similar conditions) are compared. If their uncertainty intervals do

not overlap, they are labeled as inconsistent and excluded.

Gy. Szanthoffer, M. Papp, T. Turanyi,

Identification of well-parameterised reaction steps in detailed combustion
mechanisms — a case study of ammonia/air flames,
Fuel 380 (2025) 132938.

Chemical Kinetics Laboratory, Institute of Chemistry, ELTE E6tvos Lorand University, Budapest, Hungary
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mental data

Problems with this approach:

« Determination of the bin
edges is not always
unambiguous

« Each data point should
have at least 2 “neighbors”
(measured under
similar conditions)
to make a decision

oi3es @aUajeAINDI

Consistency category
® Category 1
Category 1 - partner
® Category 2 - undecided
® Mo similar peoints
® Consistent

1.4

1.2

L L]
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o?{O@fe 400
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~ 50
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300
g
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Solution 3:

l (BB

E.

A given type of experiment is selected (e.g., NH;/air LBV)

The data are fitted by a polynomial in the space of the relevant
condition variables (e.g., p, T, @)

Experimental data points that are far from the fitted polynomial
surface are labeled as outliers and excluded

Valko, T. Nagy et al., manuscript in preparation

Possible problems with this approach:
Polynomials may be good for fitting LBV and IDT data, but they

will probably not be good for concentration data

If we need to consider too many variables, the amount of data
available may not be enough for a good fit

Chemical Kinetics Laboratory, Institute of Chemistry, ELTE E6tvos Lorand University, Budapest, Hungary
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ental data
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F (BB

Issue:

The /E,; value may be extremely high (i.e., 100’s or 1000’s) with one
or more (but not all!) of the mechanisms for a few data points if the
simulation result differs from the experimentally measured value by

order(s) of magnitude.
These few data points (“outliers”) can significantly increase the overall

VE value of the corresponding mechanism, which would lead us to
false impressions about the overall performance of the mechanism.

Solution:

We can investigate the distribution of the /E,; values instead of the
root-mean-square of the E,, values (VE) if there many data points

with extremely high /E;; values
— visualization: stacked bar plots

| o TTTT——
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IDT data:
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LBV data:
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1. Introduction: What is mechanism validation?

2. Types of indirect experimental data
used for mechanism validation

3. Frequently applied methods
of mechanism validation

4. Quantitative mechanism validation
using a squared error function

5. Quantitative mechanism validation
using curve matching (very briefly)

Alessandro Stagni: Curve matching, Surface matching optimization
Wednesday (tomorrow), 12:20-13:20

|
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hing (CM)

@2

Previously discussed mechanism validation methods:
Pointwise agreement between the measured and simulated
results was investigated.

CM approach [1]:

Data series of discretely measured data points and simulated
results are replaced by smooth, continuous curves

(n D functions) obtained by, e.g., spline interpolation.

The (dis)similarity between the two (measured and simulated)
curves is investigated by various dissimilarity measures.

[1]: M. S. Bernardi, M. Pelucchi, A. Stagni, L. M. Sangalli, A. Cuoci, A. Frassoldati, P. Secchi, T.
Faravelli, Combust. Flame 168 (2016) 186—203.

[ B
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ng (CM)

G2

* The simulated curve may have the same shape as the
experimental one but they are shifted along the x axis
(may often occur for concentration profiles).

= Neither M1 or M2 120 -
predicts the onset T
of the reaction
accurately, but M1
predicts the shape

o
& o

Fuel Mole Fraction [ppm]
3

of the curve better 40

—> CM index 20

accounts for the o -

better shape 1200 1300 1400 1500 1600

Temperature [K]

M. S. Bernardi, M. Pelucchi, A. Stagni, L. M. Sangalli, A. Cuoci, A. Frassoldati,
P. Secchi, T. Faravelli, Combust. Flame 168 (2016) 186—203.

| B
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(CM)

= To eliminate the effect of horizontal shift,
an optimal horizontal shift is determined

= Dissimilarity indices are calculated for the shifted curves

120 -
— ® Exp
£
Q 100 - M1
= — M2
S 8o - ---- M1_shifted, 3.7%
P -=-== M2_shifted, 2%
3]
S 60
[N
L
o 40
=
3 20
=
(et X
0} - T |
1200 1300 1400 1500 1600

Temperature [K]

M. S. Bernardi, M. Pelucchi, A. Stagni, L. M. Sangalli, A. Cuoci, A. Frassoldati,
P. Secchi, T. Faravelli, Combust. Flame 168 (2016) 186—203.
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ing (CM)

1. Data series are optimally shifted along the horizontal axis and
the dissimilarity indices are calculated for the shifted curves

2. The dissimilarity indices are normalized and combined to
get an integrated index — CM index/score

3. The CM scores are averaged for many data series to get
an overall CM score for each mechanism
— experimental uncertainties have to be considered
(larger weights to more accurate experiments)

M. S. Bernardi, M. Pelucchi, A. Stagni, L. M. Sangalli, A. Cuoci, A. Frassoldati,
P. Secchi, T. Faravelli, Combust. Flame 168 (2016) 186—203.

.
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g (CM)

Example: NH; and NH,4/H,, pyrolysis and combustion,
thermal DeNOx

= The performance of 16 detailed mechanisms
was evaluated using the CM method

= Data collection: 5,201 data points in 435 data series
(IDT, LBV, concentration)

S. Girhe, A. Snackers, T. Lehmann, R. Langer, F. Loffredo, R. Glaznev, J. Beeckmann, H. Pitsch,
Combust. Flame 267 (2024) 113560.

[ .
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CM)

Species concentration . Laminar
Kinetic model i Oxidation Thermal Ignltlc_m delay burning  Overallmean

Pyrolysis High T Intermediate T Low T DeNOx Mean time velocity
NUIG_2023 0947 | 0941 | 0.860
KAUST_2023 0.951 0.901 0.872
KAUST_2021 0.951 0.902 0.872
POLIMI_2023 0.922 0912 0.861 0.869 0.856 0.884 0921 0.879 0.895
Mei_2021 0.899 0.930 0.862 0.844 0.881 0921 0.880 0.894
Mei_2020 0.882 0.922 0.866 0.834 0.869 0.875 0920 | 0885 0893
POLIMI_2020 0.941 0.891 0.863 0.854 0.842 0.878 0917 0.882 0.893
Thomas_2022  0.911 0.929 0.857 0.843 0.854 0.879 0918 0.879 0.892
POLIMI_2022 0.941 0.892 0.864 0.847 0.842 0.877 0.912 0.883 0.891
Marshall_2023 - 0.883 0.842 0.830 0.863 0.875 0.915 0.835 0.875
Han_2020 0.929 0.860 0.832 0824 | 084 0916 0.884 0.875
Manna_2022 0.931 0900 | 0876 0837 0.865 0.882 0.911 0.827 0.873
Gotama_2022 = 0.848 0.910 0.848 0.836 0911 0.872 0.871
Shrestha_2021 0.926 0.865 0.853
Glarborg_ 2018~ 0.872 0.887 0.841 0.833 0.859 0.859 0.915

Otomo_2018 0924 | 0805 = 0832 0833 0756 0830 0910
0: no similarity — 1: perfect similarity

S. Girhe, A. Snackers, T. Lehmann, R. Langer, F. Loffredo, R. Glaznev, J. Beeckmann, H. Pitsch,
Combust. Flame 267 (2024) 113560.
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CM scores

Kinetic model Overall mean

|NUIG_2023 _

KAUST_2023 0.898
KAUST 2021 0.897
POLIMI_2023 0.895
Mei_2021 0.894
Mei_2020 0.893
POLIMI_2020 0.893
Thomas_2022 0.892
POLIMI_2022 0.891
Marshall 2023 0.875
Han_2020 0.875
Manna_2022 0.873
Gotama_2022 0.871
Shrestha_2021 0.870

Glarborg_2018
Otomo_2018

E values

# Mechanism /E  eral

1 NUIG-2024 4.7

6  KAUST-2023 5.6

10 POLIMI-2023 5.8

27 CEU-2022 7.7

A. Gy. Szanthoffer, M. Papp, T. Nagy, T. Turanyi,

Combust. Flame, under review (2025)

S. Girhe, A. Snackers, T. Lehmann, R. Langer, F. Loffredo, R.
Glaznev, J. Beeckmann, H. Pitsch,
Combust. Flame 267 (2024) 113560.

Chemical Kinetics Laboratory, Institute of Chemistry, ELTE E6tvos Lorand University, Budapest, Hungary
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@

VE value CM score

Sensitive to the assigned experimental uncertainties (o)
— realistic estimation of the o values is needed!

Can easily be used for mechanism optimization

Has exact statistical meaning — Bootstrapping for statistics —
. can be used for the
multiple of o . : .
relative ranking of mechanisms
Based solely on the pointwise Based on the similarity of the
agreement between the shapes of the experimental and
experimental and simulated data, | simulated data series fitted by
no smoothing or shifting is smooth curves and
performed on the data optimally shifted horizontally

| B
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-chanism validation

Andras Gyorgy Szanthoffer:

Using the Optima++ code for mechanism validation
Friday, 9:40-10:40

» Getting to know the Optima++ program
facilitating mechanism validation

= Carrying out simulations using Optima++ and Cantera
with various mechanisms

= Evaluating the performance of the investigated mechanisms
using the squared error function with the help of Optima++

[
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https://ChemKinLab.ELTE.hu
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https://chemkinlab.elte.hu/

CM)

" f(x), g(x): smoothed experimental and simulated data series
as a function of variable x over the interval

= f'(x), g'(x): first derivatives of f(x), g(x)

1.4

0.8
12 1 J1 (x) 0.6 -
1.0 - gz (x) 0.4 -
0.8 - 0.2 -
-
0.6 - 3 0.0
0 10
0.4 - 0.2
0.4 -
0.2 -
‘0'.6 .
0.0 0
0 2 4 6 8 1 : X
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(CM)

\h|| = \// h(x)%dx L% norm of a function h over D
D

D: common domain

4 dissimilarity measures are defined: of fand g
0 _If-gl -_ 0 if f and g are the same
d2(f.8) = D) € (0, +00) (generalization of RMSE)
ird -_ 0 if f and g differ only by
di, (f.8) = D| € (0. +00) vertical translation
1 L g | 0if f and g differ only by
Grearson (f. 8) = [ ¢ @D vertical dilation
: 1 g  0if f and g differ only by
Arearson (1-8) = 5 171 ~ T | €@ vertical translation + dilation

[ . - TTTTTT—
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M)

—=e ref e M1 — M2

translation ., dilation translation + dilation

d) d. dp dp d d. dp dp d d. dj} dp

M; 0.067 0.000 0.050 0.000 | M1 0.023 0.016 0.000 0.000 | M; 0.135 0.058 0.023 0.000

M, 0.133 0.000 0.113 0.000 | M 0.059 0.041 0.000 0.000 | My 0.280 0.124 0.036 0.000

| S TTTTTTII——
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