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Development of combustion devices

J. Chen, PhD Thesis, Lund University (2025), redrawn from H. J. Curran, Proc. Combust. Inst. 37 (2019) 57–81.
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Validation or testing? 

We refer to mechanism validation as the comparison of 

experimental data with the corresponding simulation 

results obtained using the mechanism.

→ If the predictions of the mechanism are close to the 

experimental results, or at least better than the best previously 

published mechanism, we accept the new model.

BUT: It does not necessarily mean that the parameters of 

the model are accurate (compensation effects).

Therefore, “testing” is a better term,

but “validation” is used much more frequently.
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Direct and indirect experiments 

▪ Direct measurement:

• Determination of the rate coefficient of a single reaction 

step at a given temperature, pressure, and bath gas

• Separate experimental measurement or theoretical 

calculation for each elementary reaction step

• Typically used for assembling a detailed kinetic mechanism

▪ Indirect measurement:

• Measurement of a quantity characteristic of the whole 

combustion process (concentrations, IDTs, LBVs)

• Can be interpreted only with a simulation using a detailed 

combustion kinetic mechanism

• Typically used for validating a detailed kinetic mechanism
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Indirect experiments 

▪ We would like to validate the chemistry of the detailed 

mechanism (rate parameters, maybe thermochemical data)

▪ Detailed combustion kinetic mechanisms may be very large 

(1,000’s of species, 10,000’s of reactions)

Indirect experiments simplify complicated physical problems

(mixing, flow, heat transfer, etc.) taking place in real devices.

• Homogeneous (0D) “kinetic” reactors, laminar flames (1D)

• Each method has limited operating T and p ranges

→ they need to be combined to validate chemical kinetic 

mechanisms over a wide range of conditions
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Types of indirect experiments 

Homogeneous reactors (0D)

• Ignition delay time measurements (IDT)

Shock Tube (ST) Rapid Compression Machine (RCM) 

• Concentration measurements

Tubular Flow Reactor (TFR/FR) Jet-Stirred Reactor (JSR) Shock Tube (ST)
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Types of indirect experiments 

Premixed laminar flames (1D)

• Laminar burning velocity measurements (LBV) – several methods

• Concentration measurements

Burner Stabilized Flame

(BSF)

Burner Stabilized

Stagnation Flame (BSSF)

Flame Cone Method Spherical Bomb Heat Flux Burner

Micro Flow Reactor

(MFR)
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Simulation of indirect experiments 

▪ Several combustion simulation programs are available

(e.g., CHEMKIN-II, Cantera, OpenSMOKE++, FlameMaster)

▪ 0D simulations: kinetic + thermochemical                    data

1D simulations: kinetic + thermochemical + transport data 

CHEMKIN-II simulation codes [C. Olm et al., Combust. Flame 161 (2014) 2219–2234.]
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“Visual” mechanism validation  

Most widely used mechanism validation method

Typically, 5–10 such figures in the paper, many more in the SM

B. Shu et al., Proc. Combust. Inst. 37 (2019) 205–211. J. Chen et al., Combust. Flame 255 (2023) 112930. 
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“Visual” mechanism validation – issues  

Uncertainty of the experimental data?

Exp. data: W. Liao et al., Proc. Combust. Inst. 39 (2023) 4377–4385.,

 L. Dai et al., Combust. Flame 215 (2020) 134–144.
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“Visual” mechanism validation – issues  

100–1000’s of data series and many (20+) mechanisms:

Impossible to decide which mechanism is the best overall

→ A quantitative method is necessary! 
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▪ Mean Absolute Error (MAE)

𝑀𝐴𝐸 =
1

𝑛
෍

𝑖=1

𝑛

𝑌𝑖
exp

− 𝑌𝑖
sim

▪ Root-Mean-Square-Error (RMSE)

𝑅𝑀𝑆𝐸 =
1

𝑛
෍

𝑖=1

𝑛

𝑌𝑖
exp

− 𝑌𝑖
sim 2

Issues:

• Not dimensionless → different measurement types cannot be compared

• Experimental uncertainties are not considered

Quantitative mechanism validation
MAE and RMSE 

n: number of data points

𝑌𝑖
exp

: i-th experimental result

𝑌𝑖
sim: i-th simulation result



Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary 18

▪ Mean Absolute Percentage Error (MAPE)

𝑀𝐴𝑃𝐸 =
1

𝑛
෍

𝑖=1

𝑛
𝑌𝑖
exp

− 𝑌𝑖
sim

𝒀𝒊
𝐞𝐱𝐩

Advantage:

• Dimensionless

Issues:

• Experimental uncertainties are not considered

• Failes for 𝑌𝑖
exp

= 0

• Failes for very small 𝑌𝑖
exp

values → errors will be exaggerated,

especially problematic for concentration measurements

Quantitative mechanism validation
MAPE
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▪ MAPE using many-model-average (MAPE’)

𝑀𝐴𝑃𝐸′ =
1

𝑛
෍

𝑖=1

𝑛
𝑌𝑖
exp

− 𝑌𝑖
sim

𝒀𝒊
𝐬𝐢𝐦

Advantage:

• Dimensionless

Issues:

• Experimental uncertainties are not considered

• Performance of one mechanism depends on that of the others

→ Involving more and more very bad mechanisms will artificially 

improve the performance of other mechanisms

Quantitative mechanism validation
MAPE using many-model-average

𝒀𝒊
𝐬𝐢𝐦: averaged i-th

simulation result for many 

(arbitrarily selected) models
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▪ Experimental-uncertainty-normalized

Root-Mean-Square-Error (RMSE)

෫𝑅𝑀𝑆𝐸 =
1

𝑛
෍

𝑖=1

𝑛
𝑌𝑖
exp

− 𝑌𝑖
sim

𝝈 𝒀𝒊
𝐞𝐱𝐩

2

Root-mean-square deviation of the simulation results from the 

experimental data relative to the experimental uncertainties, which 

measures within how many σ experimental standard deviations 

the model can reproduce the experimental results, on average.

෫𝑅𝑀𝑆𝐸 = 1 → 1𝜎

෫𝑅𝑀𝑆𝐸 = 2 → 2𝜎, etc.

Quantitative mechanism validation
Experimental-uncertainty-normalized RMSE

𝝈 𝒀𝒊
𝐞𝐱𝐩

: standard deviation of 

the i-th experimental data point



Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary 21

Why summing the squared and not the absolute deviations?

Assuming the 𝑌𝑖
exp

data are

• independent and

• follow normal distribution,

𝑍𝑖 =
𝑌𝑖
exp

−𝑌𝑖
sim

𝜎 𝑌𝑖
exp is a standard normal random variable. Then,

෫𝑅𝑀𝑆𝐸2 =
1

𝑛
෍

𝑖=1

𝑛

𝑍𝑖
2~𝜒1

2 (assuming 𝑛 is large)

Hence, we can make use of the properties and statistical 

inference of the reduced chi-square distribution.

Quantitative mechanism validation
Experimental-uncertainty-normalized RMSE
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Quantitative mechanism validation
Experimental-uncertainty-normalized RMSE

A value of ෫𝑅𝑀𝑆𝐸 = 1 indicates that the average deviation 

between the experimental data and the simulation results 

matches the uncertainty of the experimental data (σ).

• A model with ෫𝑹𝑴𝑺𝑬 = 𝟏 can be considered “perfect”,

i.e., it captures all features of the data except the noise

• Real combustion kinetic models have ෫𝑹𝑴𝑺𝑬 > 𝟏 for large 

collections of experimental data (underfitting),

and the smaller the ෫𝑹𝑴𝑺𝑬 value, the better the model

• ෫𝑹𝑴𝑺𝑬 < 𝟏 indicates overfitting – it never occurs for real 

combustion kinetic models for sufficiently large n-s
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Quantitative mechanism validation
Experimental-uncertainty-normalized RMSE

The absolute values 𝒁𝒊 do not follow normal distribution,

and there is no analoguous 𝜒 distribution for their sum

1

𝑛
෍

𝑖=1

𝑛

𝑍𝑖

Hence, no statistical inference could be attributed to the 

resulting quantity.
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Quantitative mechanism validation
Experimental-uncertainty-normalized RMSE

Squared deviations correspond to Euclidean (L2) distance in 

high-dimensional space. If the ෫𝑹𝑴𝑺𝑬𝟐 function is used as a 

target function in model fitting, it corresponds to least 

squares parameter optimization.

Hence, we can make use of the favorable properties of least 

squares fitting, assuming normally distributed data:

The estimations of the parameters will be unbiased

and have minimum variance.

Absolute values lead to Manhattan (L1) distance in

high-dimensional space. Hence, we cannot make use of 

favorable properties of least squares fitting.
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Quantitative mechanism validation
Experimental-uncertainty-normalized RMSE

Advantages of ෫𝑹𝑴𝑺𝑬 :

• Dimensionless

• Experimental uncertainties are considered

• Statistical inference can be attributed to its value 

• Can easily be used in least squares parameter optimization

The application of the ෫𝑹𝑴𝑺𝑬 measure

to combustion kinetic mechanism validation

will be discussed in the next section of the lecture.  
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Indirect experimental data are arranged in data series.

Data point: A single observation, e.g.,

LBV measured at a given T, p, and gas mixture composition.

Data series: One quantity measured sequentially as a function 

of an independent, systematically changed quantity, e.g.,

LBVs measured at different T-s

at a given p and gas mixture composition.

Data collection: Several data series.

The error function E
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Let the experimental data collection consist of N data series,

and let each data series s contain Ns data points.

𝐸𝑠𝑑 =
𝑌𝑠𝑑
exp

− 𝑌𝑠𝑑
sim

𝜎 𝑌𝑠𝑑
exp

2

𝐸𝑠 =
1

𝑁𝑠
෍

𝑑=1

𝑁𝑠

𝐸𝑠𝑑

𝐸 =
1

𝑁
෍

𝑠=1

𝑁

𝐸𝑠

The error function E

for the d-th data point in 

the s-th data series

for the s-th data series

for the whole data collection
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Each data series

has equal weight in E

The error function E

𝐸 =
1

𝑁
෍

𝑠=1

𝑁
𝟏

𝑵𝒔
෍

𝑑=1

𝑁𝑠
𝑌𝑠𝑑
exp

− 𝑌𝑠𝑑
sim

𝜎 𝑌𝑠𝑑
exp

2
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The error function E

𝐸 =
1

𝑁
෍

𝑠=1

𝑁
1

𝑁𝑠
෍

𝑑=1

𝑁𝑠
𝑌𝑠𝑑
exp

− 𝑌𝑠𝑑
sim

𝜎 𝑌𝑠𝑑
exp

2

𝑬 is the root-mean-square deviation of the simulation 

results from the experimental data relative to the 

experimental uncertainties, which measures within how 

many σ experimental standard deviations the model can 

reproduce the experimental results, on average.

𝐸 = 1 → 1𝜎 (“perfect” model – ideal)

𝐸 = 2 → 2𝜎 (excellent model in practice)

𝐸 = 3 → 3𝜎 (good model in practice)
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The error function E

𝐸 =
1

𝑁
෍

𝑠=1

𝑁
1

𝑁𝑠
෍

𝑑=1

𝑁𝑠
𝒀𝒔𝒅
𝐞𝐱𝐩

− 𝒀𝒔𝒅
𝐬𝐢𝐦

𝜎 𝒀𝒔𝒅
𝐞𝐱𝐩

2

𝒀𝒔𝒅
𝐞𝐱𝐩/𝐬𝐢𝐦

= ቐ
𝒚𝒔𝒅
𝐞𝐱𝐩/𝐬𝐢𝐦

if 𝒚𝒔𝒅
𝐞𝐱𝐩

has normal distribution

ln 𝒚𝒔𝒅
𝐞𝐱𝐩/𝐬𝐢𝐦

if 𝒚𝒔𝒅
𝐞𝐱𝐩

has lognormal distribution

• 𝒚𝒔𝒅
𝐞𝐱𝐩/𝐬𝐢𝐦

: untransformed measured/simulated result

LBV, concentration: normal distribution is assumed

→ absolute errors: 𝜎 𝑦𝑠𝑑
exp

IDT data: lognormal distribution is assumed

→ relative errors: ≈ 𝜎 ln 𝑦𝑠𝑑
exp

for small errors (e.g., <20%)
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Experimental uncertainties – issues

The main problem is the proper estimation of the 

uncertainty of the experimental data (σ)

Typical cases:

• Uncertainties are not published with the experimental data 

(very rare in recently published papers)

• The given uncertainty is too optimistic and not realistic

• The published uncertainty assessment considers only a few 

sources of possible errors

• Uncertainty assessment is very comprehensive and of good 

quality (can sometimes be found in recently published papers)
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Experimental uncertainties – solution

In most of our previous publications,

two uncertainty sources were considered:

𝜎𝑠𝑑 = 𝜎𝑠𝑑,exp
2 + 𝜎𝑠,scatter

2

• σsd,exp: experimental standard deviation as published in the paper

(if missing, it is assigned based on other papers

using similar equipment)

• σs,scatter: estimated statistical scatter of the s-th data series 

stemming from the scatter of repeated measurements

(usually not considered in σexp)
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Determination of σs,scatter

σs,scatter is obtained by fitting a smooth trendline to the data 

points of the s-th data series

• To find the optimal trendline 

and determine the scatter of 

the data points,

Akima spline and 

polynomial functions are 

fitted to the data series using  

code Minimal Spline Fit

• Visual inspection of the fitted 

function graphs is always 

needed!

Theory: T. Nagy, T. Turányi, Proceedings of the ECM – 2021,

Paper 336, 14–15 April, 2021, Naples, Italy

Code:   available at https://ReSpecTh.hu

Exp. data: K. N. Osipova et al., Fuel 310 (2022) 122202.

https://respecth.hu/
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Experimental uncertainties – solution

For recent LBV and IDT data, the σsd,exp almost always contains 

the uncertainty coming from the uncertainty of the initial 

conditions (T, p, gas mixture composition).

However, it is not true for outlet concentration data.

The uncertainty of the temperature of the measurement 

may induce significant uncertainty in the measured 

concentrations, which is usually not considered in σsd,exp. 
Therefore, another uncertainty term has to be added:

𝜎𝑠𝑑 = 𝜎𝑠𝑑,exp
2 + 𝜎𝑠,scatter

2 + 𝝈𝒔𝒅,𝐜𝐨𝐧𝐝
𝟐

• σsd,cond: standard deviation of the measured data propagated 

from the uncertainty of the experimental conditions
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Experimental uncertainties – solution

We showed that the uncertainty of the measurement 

temperature has the largest effect on the

uncertainty of the measured outlet concentrations.

P. Zhang, I. Gy. Zsély, 

M. Papp, Á. Veres-

Ravai, B. Su, T. Nagy, 

B. Yang, T. Turányi,

Combust. Flame,

under review (2025)

typical reaction T

uncertainty:

ΔT = 2–20 K

0

2

4

3

1

𝐸
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Experimental uncertainties – solution

The temperature uncertainties (σT) were collected from the 

publications, and the effect of temperature uncertainty 

on the uncertainty of the experimental data (σΔT) was

estimated using the principle of Gaussian error propagation.

• Uncertainty is 

propagated along the 

noise-free trendline 

obtained using 

Minimal Spline Fit

• The propagated 

uncertainties may 

be asymmetric

Exp. data: X. Zhang et al., Combust. Flame 234 (2021) 111653. 



Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary 38

Experimental uncertainties – solution

TOTAL

Exp. data: X. Zhang et al., Combust. Flame 234 (2021) 111653. 
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Manual weighting in E

One may want to emphasize one or more data series or

one type of experiment.

This can be achieved by upweighting those data series and 

downweighting the other ones. The more general E formula:

𝐸 =
1

𝑁
෍

𝑠=1

𝑁
𝒘𝒔

𝑁𝑠
෍

𝑑=1

𝑁𝑠
𝑌𝑠𝑑
exp

− 𝑌𝑠𝑑
sim

𝜎 𝑌𝑠𝑑
exp

2

• ws: weight of data series s

Note:
1

𝑁
෍

𝑠=1

𝑁

𝒘𝒔 = 1must apply
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Example

▪ NH3 and NH3/H2 experimental data collection

Exp. type Nseries Npoints T / K p / atm φ H2 % in fuel

JSR-conc 334 4917 500–1452 0.99–1.40 0.01–5.19 0–70

ST-IDT 89 624 1023–2720 1.01–41.65 0.47–2.07 0–70

LBV 445 5093 293–821 0.30–36.58 0.20–2.00 0–100

FR-conc 247 4850 451–1973 0.96–98.69 0.01–23.98 0–91

ST-ct 203 1667 1474–2720 1.15–3.59 0.50–3.46 0–49

ST-conc 9 91 1581–2720 1.15–3.59 0.50–1.84 0–21

Overall: 1327 17242 293–2720 0.30–98.69 0.01–23.98 0–100

▪ 32 recent NH3 combustion mechanisms

were tested quantitatively

A. Gy. Szanthoffer, M. Papp, T. Nagy, T. Turányi, Combust. Flame, under review (2025)
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E values

# Mechanism 𝑬𝐜𝐨𝐧𝐜 𝑬𝐈𝐃𝐓 𝑬𝐋𝐁𝐕 𝑬𝐨𝐯𝐞𝐫𝐚𝐥𝐥
1 NUIG-2024 6.5 3.6 3.4 4.7

2 UCF-2024 6.6 3.4 4.0 4.9

3 Tsinghua-2024c 7.1 5.0 3.0 5.3

4 Alturaifi-2022 7.9 3.0 3.8 5.4

5 QUST-2024 8.1 3.1 3.7 5.4

6 KAUST-2023 7.9 4.8 3.0 5.6

7 Tsinghua-2024b 8.0 4.9 3.0 5.7

8 Tsinghua-2024a 8.6 3.7 3.2 5.7

9 Zhu-2023 7.3 3.3 5.8 5.7

10 POLIMI-2023 8.2 4.3 3.8 5.8

11 Bertolino-2021 8.9 3.9 2.9 5.9

12 Glarborg-2024 8.4 6.0 3.1 6.2

13 HUST-2024 8.3 4.7 5.3 6.3

14 Mathieu-2024 9.0 5.4 3.2 6.3

15 Han-2023 9.9 4.2 2.5 6.4

16 Meng-2024 10.1 3.7 2.9 6.4

17 Wang-2023 10.1 3.9 3.2 6.6

18 Shrestha-2022 8.3 5.2 5.7 6.6

19 Sun-2022 8.7 4.9 5.7 6.6

20 Konnov-2021 11.0 3.9 3.0 6.9

21 WUT-2022 10.5 4.5 4.3 7.0

22 Kwon-2024 9.2 5.3 6.2 7.1

23 Yin-2024 9.0 6.2 6.1 7.2

24 WUT-2024 11.0 4.6 3.7 7.2

25 Dai-2021 7.9 4.5 9.1 7.4

26 Nakamura-2024 11.0 5.0 4.7 7.5

27 CEU-2022 11.9 4.6 3.8 7.7

28 SJTU-2024 9.4 4.8 9.2 8.1

29 ELTE-2024 12.6 6.6 3.2 8.4

30 Yu-2024 13.2 3.4 5.9 8.6

31 Alzueta-2024 21.7 5.1 4.1 13.1

32 Liu-2024 17.5 31.0 15.2 22.4
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Failed simulations

Issue:

Some data points cannot be simulated with one or more mechanisms 

due to numerical instability (solver issue, stiffness, etc.). This may 

typically occur for 1D simulations.

• We have a different number of successfully simulated data points 

for each mechanism

• E values for different numbers of data points cannot be compared

Solution:

These data points should be excluded from the comparison.

• If only a few data points (1–2%) are involved, it is OK, because 

we do not lose much information

• If many simulations fail with a mechanism, it is recommended to 

exclude that mechanism to minimize data loss
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Failed simulations

# Mechanism 𝑬𝐜𝐨𝐧𝐜 𝑬𝐈𝐃𝐓 𝑬𝐋𝐁𝐕 𝑬𝐨𝐯𝐞𝐫𝐚𝐥𝐥

1 NUIG-2024 6.5 3.6 3.4 4.7

2 UCF-2024 6.6 3.4 4.0 4.9

3 Tsinghua-2024c 7.1 5.0 3.0 5.3

⁞

30 Yu-2024 13.2 3.4 5.9 8.6

31 Alzueta-2024 21.7 5.1 4.1 13.1

32 Liu-2024 17.5 31.0 15.2 22.4

HUST-2023 10.5 4.1 – –

Li-2019 12.9 3.8 – –

SJTU-2022 9.8 6.1 – –

Zhou-2023 11.7 7.8 – –

32 + 4 mechanisms:

Usually, it turns out that these mechanisms are

also not the best for the other types of experiments. 
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Inconsistent experimental data  

Issue:

Mechanism validation must be based on reliable, consistent data. 

• The experimental data should not have systematic errors

• Their uncertainty should be realistic

Even though we are cautious with the selection and uncertainty 

estimation of the experimental data, we cannot be sure.

Solution 1:

Those data points are excluded that none of the mechanisms can 

reproduce within their 3σ (or 4σ, 5σ etc.) uncertainty limits.

Usually, about 5% of the data are excluded based on this criterion.

Problem with this approach:

Some experimental conditions (p, T, φ) may not be well described 

by any of the mechanisms → good data points may be excluded! 



Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary 45

Inconsistent experimental data  

Solution 2:

• A given type of experiment is selected (e.g., NH3/air LBV)

• Bins are defined around each data point in the space of the 

relevant condition variables (e.g., T, p, φ). The edges of the bins 

correspond to ΔT, Δp, Δφ, etc.

• Experimental data belonging to the same bins (measured under 

similar conditions) are compared. If their uncertainty intervals do 

not overlap, they are labeled as inconsistent and excluded.

A. Gy. Szanthoffer, M. Papp, T. Turányi,

Identification of well-parameterised reaction steps in detailed combustion 

mechanisms – a case study of ammonia/air flames,

Fuel 380 (2025) 132938.



Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary 46

Inconsistent experimental data  

Problems with this approach:

• Determination of the bin

edges is not always

unambiguous

• Each data point should

have at least 2 “neighbors”

(measured under

similar conditions)

to make a decision
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Inconsistent experimental data  

Solution 3:

• A given type of experiment is selected (e.g., NH3/air LBV)

• The data are fitted by a polynomial in the space of the relevant 

condition variables (e.g., p, T, φ)

• Experimental data points that are far from the fitted polynomial 

surface are labeled as outliers and excluded

É. Valkó, T. Nagy et al., manuscript in preparation

Possible problems with this approach:

• Polynomials may be good for fitting LBV and IDT data, but they 

will probably not be good for concentration data

• If we need to consider too many variables, the amount of data 

available may not be enough for a good fit
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Inconsistent experimental data  
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Stacked bar plots

Issue:

The 𝐸𝑠𝑑 value may be extremely high (i.e., 100’s or 1000’s) with one 

or more (but not all!) of the mechanisms for a few data points if the 

simulation result differs from the experimentally measured value by 

order(s) of magnitude.

These few data points (“outliers”) can significantly increase the overall 

𝐸 value of the corresponding mechanism, which would lead us to 

false impressions about the overall performance of the mechanism.

Solution:

We can investigate the distribution of the 𝐸𝑠𝑑 values instead of the 

root-mean-square of the 𝐸𝑠𝑑 values ( 𝐸) if there many data points 

with extremely high 𝐸𝑠𝑑 values 

→ visualization: stacked bar plots
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Stacked bar plots

Concentration

data:
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Stacked bar plots

IDT data:
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Stacked bar plots

LBV data:
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1. Introduction: What is mechanism validation?

2. Types of indirect experimental data

used for mechanism validation

3. Frequently applied methods

of mechanism validation

4. Quantitative mechanism validation

using a squared error function

5. Quantitative mechanism validation

using curve matching (very briefly)
Alessandro Stagni: Curve matching, Surface matching optimization

Wednesday (tomorrow), 12:20–13:20
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Previously discussed mechanism validation methods:

Pointwise agreement between the measured and simulated 

results was investigated. 

CM approach [1]:

Data series of discretely measured data points and simulated 

results are replaced by smooth, continuous curves

(n D functions) obtained by, e.g., spline interpolation.

The (dis)similarity between the two (measured and simulated) 

curves is investigated by various dissimilarity measures.

[1]: M. S. Bernardi, M. Pelucchi, A. Stagni, L. M. Sangalli, A. Cuoci, A. Frassoldati, P. Secchi, T. 

Faravelli, Combust. Flame 168 (2016) 186–203. 

Curve matching (CM)
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Curve matching (CM)

▪ The simulated curve may have the same shape as the 

experimental one but they are shifted along the x axis

(may often occur for concentration profiles).

▪ Neither M1 or M2

predicts the onset T

of the reaction

accurately, but M1

predicts the shape

of the curve better

→ CM index

accounts for the

better shape

M. S. Bernardi, M. Pelucchi, A. Stagni, L. M. Sangalli, A. Cuoci, A. Frassoldati, 

P. Secchi, T. Faravelli, Combust. Flame 168 (2016) 186–203. 
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Curve matching (CM)

▪ To eliminate the effect of horizontal shift,

an optimal horizontal shift is determined

▪ Dissimilarity indices are calculated for the shifted curves 

M. S. Bernardi, M. Pelucchi, A. Stagni, L. M. Sangalli, A. Cuoci, A. Frassoldati, 

P. Secchi, T. Faravelli, Combust. Flame 168 (2016) 186–203. 
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1. Data series are optimally shifted along the horizontal axis and 

the dissimilarity indices are calculated for the shifted curves

2. The dissimilarity indices are normalized and combined to 

get an integrated index → CM index/score

3. ​The CM scores are averaged for many data series to get 

an overall CM score for each mechanism

→ experimental uncertainties have to be considered

(larger weights to more accurate experiments)

Curve matching (CM)

M. S. Bernardi, M. Pelucchi, A. Stagni, L. M. Sangalli, A. Cuoci, A. Frassoldati, 

P. Secchi, T. Faravelli, Combust. Flame 168 (2016) 186–203. 
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Curve matching (CM)

Example: NH3 and NH3/H2 pyrolysis and combustion,

thermal DeNOx

▪ The performance of 16 detailed mechanisms

was evaluated using the CM method

▪ Data collection: 5,201 data points in 435 data series

(IDT, LBV, concentration)

S. Girhe, A. Snackers, T. Lehmann, R. Langer, F. Loffredo, R. Glaznev, J. Beeckmann, H. Pitsch,

Combust. Flame 267 (2024) 113560. 
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Curve matching (CM)

0: no similarity – 1: perfect similarity

S. Girhe, A. Snackers, T. Lehmann, R. Langer, F. Loffredo, R. Glaznev, J. Beeckmann, H. Pitsch,

Combust. Flame 267 (2024) 113560. 
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E values vs. CM scores

CM scores

# Mechanism 𝑬𝐨𝐯𝐞𝐫𝐚𝐥𝐥

1 NUIG-2024 4.7

…

6 KAUST-2023 5.6

…

10 POLIMI-2023 5.8

…

27 CEU-2022 7.7

…

E values

S. Girhe, A. Snackers, T. Lehmann, R. Langer, F. Loffredo, R. 

Glaznev, J. Beeckmann, H. Pitsch,

Combust. Flame 267 (2024) 113560. 

A. Gy. Szanthoffer, M. Papp, T. Nagy, T. Turányi, 

Combust. Flame, under review (2025)
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E values vs. CM scores

𝑬 value CM score

Sensitive to the assigned experimental uncertainties (σ)

→ realistic estimation of the σ values is needed!

Can easily be used for mechanism optimization

Has exact statistical meaning –

multiple of σ

Bootstrapping for statistics –

can be used for the

relative ranking of mechanisms

Based solely on the pointwise 

agreement between the 

experimental and simulated data, 

no smoothing or shifting is 

performed on the data 

Based on the similarity of the 

shapes of the experimental and 

simulated data series fitted by 

smooth curves and

optimally shifted horizontally
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Practice on mechanism validation

▪ Getting to know the Optima++ program

facilitating mechanism validation

▪ Carrying out simulations using Optima++ and Cantera

with various mechanisms

▪ Evaluating the performance of the investigated mechanisms 

using the squared error function with the help of Optima++

András György Szanthoffer:

Using the Optima++ code for mechanism validation

Friday, 9:40–10:40
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Thank you for your attention!

https://ChemKinLab.ELTE.hu

https://chemkinlab.elte.hu/
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▪ 𝑓 𝑥 , 𝑔(𝑥): smoothed experimental and simulated data series 

as a function of variable 𝑥 over the interval 

▪ 𝑓′ 𝑥 , 𝑔′(𝑥): first derivatives of 𝑓 𝑥 , 𝑔(𝑥)

Curve matching (CM)

𝑓 𝑥
𝑔2(𝑥)

𝑔1 𝑥
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4 dissimilarity measures are defined:

Curve matching (CM)

L2 norm of a function ℎ over 𝐷

0 if 𝑓 and 𝑔 differ only by 

vertical dilation

𝐷: common domain 

of f and g

0 if 𝑓 and 𝑔 are the same 

(generalization of RMSE)

0 if 𝑓 and 𝑔 differ only by 

vertical translation

0 if 𝑓 and 𝑔 differ only by 

vertical translation + dilation
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Curve matching (CM)

translation dilation translation + dilation
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