
SSS

CRECK Modeling Lab.
DCMC, Politecnico di Milano.
alessandro.stagni@polimi.it

Curve Matching for mechanism
validation and optimization

Prof. Alessandro Stagni



Clarissa Giudici

Alessandro Stagni – COST CYPHER Training School – Budapest, September 2-5, 2025 2

Outline

1. Introduction

2. Curve Matching
→ Functional estimation
→ Distance and similarity indices
→ Accounting for uncertainty through bootstrap
→ Overall framework

→ Data ecosystem and continuous validation
→ Experimental databases and simulations
→ The SciExpeM platform

5. Conclusions

3. Creation of an integrated infrastructure

4. Integration into the kinetic modeling framework
→ Coupling with chemical lumping
→ Enforcing physics into OME chemistry



Clarissa Giudici

Alessandro Stagni – COST CYPHER Training School – Budapest, September 2-5, 2025

ü Chemical-kinetic analysis of reacting systems 
of renewable fuels at different levels:
➝ Development and reduction of chemical 

kinetic mechanisms
➝ Application in CFD computations

✓ Formation of pollutant species (NOx, SOx)

✓ Energy carriers
➝ Ammonia
➝ Oxymethylene ethers
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Assistant Professor
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Associate Professor
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What do I do?



Clarissa Giudici

Alessandro Stagni – COST CYPHER Training School – Budapest, September 2-5, 2025 4

The CRECK modeling lab
Permanent Staff

Alessio 
Frassoldati

Alberto 
Cuoci

Tiziano 
Faravelli

Matteo 
Pelucchi

Alessandro 
Stagni

PhD Students

Andrea 
Nobili

M. Ahsan
Amjed

Andrea
Locaspi

Marco 
Mehl

Luna Pratali
Maffei

Francesco 
Serse

Edoardo
Ramalli

Riccardo 
Caraccio

Isabella 
Branca

Romina 
Papagni

Clarissa 
Giudici

Alessandro 
Pegurri

Timoteo 
Dinelli

Francesco 
Roman Artioli

Edoardo 
Cipriano

Paulo De 
Biagi

Carlo 
CavallottiEx
te

rn
al

 
C

ol
la

b
or

at
or

s
A

d
m

in
is

tr
at

iv
e 

St
af

f Niccolò 
Fanari

Tomorrow afternoon
(16:20-17:20)



Clarissa Giudici

Alessandro Stagni – COST CYPHER Training School – Budapest, September 2-5, 2025 5

CRECK modeling expertise

Thermodynamics and transport 
properties Detailed kinetic mechanisms

Ideal reactors (batch, PSR, 
PF, shock tubes)

1D Laminar premixed 
flames (burner 

stabilized, flame speeds)

2D laminar coflow 
flames

Non premixed 
turbulent jet 
flames (TNF 
Workshop)

Lab-scale 
turbulent flames 

in MILD 
conditions

CFD modeling of complex 
combustion devices 

(burners, combustors, 
furnaces)

Tuning and 
validation

Validation 

Validation 

Industrial 
applications

Development

chemistry

chemistry and fluid 
dynamics

chemistry/turbulence 
interactions

Drop tubes and thermo-
gravimetric analyses

http://creckmodeling.chem.polimi.it

http://creckmodeling.chem.polimi.it/
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Introduction:
Mechanism validation
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Exploring combustion kinetics

Mass 
spectrometry

HRTEM

HRR 
imaging 

diagnostics

Fluorescence 
spectroscopy

Experiments

A synergistic coupling?

Kinetic modeling

Quantum 
chemistry Molecular 

dynamics

Automatic 
mechanism 
generation

Automatic 
mechanism 
reduction

Higher accuracy
Wider capabilities

Faster sampling frequency

Higher computing power
Improved numerical techniques

Standardized kinetics formulation
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Many data, many models

Literature datasets keep 
increasing over time

Several kinetic models 
representing the same fuel

Olm et al. Comb Flame, 161 (2014)
Ranzi et al. Prog En Comb Sci, 38 (2012)
Curran et al. Comb Flame, 129 (2002)
Curran et al. Comb Flame, 114 (1998) Metcalfe et al. Int J Chem Kin, 45 (2013)

Stagni, Politecnico di Milano (2016)

(updated in 2016…)

Mechanism validation
is time consuming
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Combustion is hierarchical

Low temperature High temperature

+ O2 Oxidation

Pyrolysis

Pyrolysis

+ O2 Oxidation

Lower-hierarchy levels depend on 
higher hierarchy ones

Mechanism validation
is a continuous process

Fuel undergoes a sequential breakup
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Example: the NOx case
Ø Hierarchical dependencies strongly 

affect a kinetic mechanism

Ø E.g. NOx formation depends on the 
core C0-C3 submechanism

Ø January 2012:
critical update to C0-C3

What can happen?

Before 2012 update
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«Best» model?
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• Model 1 is slower than 
experiments

• Model 2 has a different 
activation energy (slope)

• Model 3 output likely suffers from 
a post-processing error

Common practice:
Sum of Squares Error (SSE)

Pelucchi et al. Comp Aid Chem Eng (2019)
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• Model 1 correctly predicts the 
reactivity through the 
temperature, but has a shift

• Model 2 predicts an earlier onset 
of consumption

A single indicator does not 
always represent models’ 

predictive features
Curve Matching

Model 3

Model 2

Model 1
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Automating the validation of kinetic mechanisms
IMPROVE & LEARN

Model 
Reduction/Optimization

Update of 
Model 

Parameters

Modeli

Assessment of 
Model 

Performances

Model
AnalysisCompare with 

experimental targets

Highlight
Improvement

Margins

Real World 
Applications

Experimental
Database

De
ve

lo
p

Improve & Learn

Validate & Use
New 

Experimental
Data

New 
Parameters

Numerical
Simulations

New model 
parameters from 
external sources Relevant Model 

Parameters to 
be revised

Exp. Data of 
different

nature and 
origin

Analysis tools:
- Sensitivity

Analysis
- Uncertainty

Quantification

→ How to set up an intelligent data ecosystem?
→ How to include data knowledge to develop 

detailed kinetics?
→ How to automatically quantify the predictive 

degree of a model?
→ How to create physics-informed reduced 

models?

4 questions to be addressed:
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Curve matching
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Functional estimation
!" = $%&'()!∈# *

$%&

'
+$ − " -$

( + /0 "′′ - (2-

345& / =
)∑$%&')& +*$ − !"′ -$

(

) − 2" / (

• Experimental data are “noisy measurements of an 
underlying regular process”

B. Silverman & J. Ramsay, Functional Data Analysis, Springer, 2005

• λ value: smoothing parameter weighing a roughness
penalty

SSE Smoothing• Spline functions (5th degree) are used to fit the 
experimental points and modeling predictions

Spline smoothing

• Generalized Cross Validation (GCV) criterion on zero
and first derivatives of experimental data 

Bernardi et al. Combust Flame 168 (2016)

345+ / =
)∑$%&')& +$ − !" -$

(

) − 2" / (
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Optimal penalty factor (λ)

345+ =
)778+

) − 2"(/) (

Classical approach

/ → −∞ =)2>% − "(??()&
/ → +∞ @A>% − "(??()&

Roughness is penalized directly
on the main function

/,-. = $%&'()/∈ℝ!345+ /

345& =
)778&

) − 2"(/) (

Modified approach

Roughness is penalized directly on 
the derivative of the main function

/,-. = $%&'()/∈ℝ!345+ /

",-. / = log 345+ + log(345&)

Trade-off

/,-. = $%&'()/∈ℝ!",-. /
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GCV (λ)
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! = #
!

	
! $ #%$with

D = domains intersection
(0) = functions
(1) = first derivatives

If * → , all the indices tend to 1 1 = very good. 0 = very bad

%$!% !, ' = 1
1 + ! − '

+
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Different indices see different things

Bernardi et al. Combust Flame 168, 2016
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Shift index and model performanceM.S. Bernardi et al. / Combustion and Flame 168 (2016) 186–203 193 
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Fig. 8. Example of time shift of Plug Flow Reactor simulation. Experimental data of n-heptane (0.163%) /O 2 /N 2 mixture, != 2.27, P = 3 atm pressure and T inlet =1075 K [28] . 
Adiabatic simulations were carried out using the recent mechanism from Hakka et al. [29] . Panel a: original results of numerical simulation. Panel b: time-shifted numerical 
simulations ( τ shift = 0.0265 s). 
they refer to different quantities and are dimensionally not ho- 
mogeneous. Therefore, the indices need to be normalized to be 
directly comparable. The dimensionless index is obtained as de- 
scribed below. 

Let us consider for simplicity only the four dissimilarity mea- 
sures computed before the alignment for a fixed experiment i for 
the M models. For a fixed dissimilarity measure, here denoted as 
d , the median m and the interquartile range ( IQR) over the M dis- 
similarity measures of the models with respect to the experimen- 
tal data are computed. For each model j , it is possible to calculate 
the difference between its dissimilarity measure and the median 
in terms of interquartile range: 
d ( f i , g j ) − m 

IQR/ 2 (17) 
The dimensionless index obtained is a measure of relative good- 

ness of the model j in describing the experimental data i with 
respect to the population of models considered, as quantified by 
the dissimilarity index d . A negative number means a good perfor- 
mance of the model (distance closer to zero with respect to the 
population of models considered), while a positive number means 
a bad performance (distance farther from zero with respect to the 
population of models considered). Interpretatively, it is reasonable 
to establish that values between −1 and 1 represent average per- 
formances, values in the range [ −2, −1] (resp. [1, 2]) represent 
good (resp. bad) performances and values below −2 (resp. above 
2) represent significantly good (resp. bad) performances. 

In order to take into account all the four dissimilarity measures, 
it is possible to average the four dimensionless indices obtained for 
the four dissimilarity measures: 
ˆ d ( f i , g j ) = 1 

4 
( 

d 0 
L 2 ( f i , g j ) − m 0 

L 2 
IQR 0 

L 2 / 2 + d 1 L 2 ( f i , g j ) − m 1 
L 2 

IQR 1 
L 2 / 2 

+ d 0 P ( f i , g j ) − m 0 P 
IQR 0 P / 2 + d 1 P ( f i , g j ) − m 1 P 

IQR 1 P / 2 
) 

(18) 
where, for example, m 0 

L 2 and IQR 0 
L 2 are the median and the in- 

terquartile range computed over the M dissimilarity measures d 0 
L 2 

of the models and an analogous notation denote those computed 
over the other three dissimilarity measures. 
3.6. Choice of the relevant ˆ d for the conditions of interest: the case of 
plug flow reactor simulations 

The index ˆ d ( f i , g j ) defined above can be computed by averag- 
ing all the dimensionless indices obtained for the four dissimilar- 
ity measures (as reported in the formula above) or averaging only 
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Fig. 9. Example of time-shift influence on model evaluations. Solid lines: original 
models, dashed lines: time-shifted models. Dissimilarity indices ad shift values are 
reported in Table 2 . 
some of them. The choice depends on the type of experimental 
data under investigation. For example, in some cases it may be re- 
quired to take into account only the dissimilarity measures com- 
puted on the first derivative, since vertical translations should not 
be considered in the evaluation of the goodness of the model. 

The same procedure can be applied to the four dissimilarity 
measures computed before the alignment, to the four shift, and to 
the four dissimilarity measures computed after the alignment, thus 
obtaining three indices: 
ˆ d orig ( f i , g j ), ˆ d shi f t ( f i , g j ), ˆ d align ( f i , g j ). 

The evaluation of the adherence of the model j to the experi- 
mental data i can be based on an index ɛ i, j , which can be equal 
to one of the ˆ d orig , ˆ d shi f t , ˆ d align indices, or can be computed as 
the average of two or all three indices ˆ d orig , ˆ d shi f t , ˆ d align , depend- 
ing on the selected experimental data. For example, in the case 
of Plug Flow Reactors, ε i, j = ˆ d align , since the dissimilarity measures 
ˆ d orig , ˆ d shi f t should not be taken into account. This is due to the 

fact that, when performing ideal Plug Flow Reactors simulations 
with detailed kinetics, possible mixing effects at the inlet of the re- 
actor [25] cannot be modeled by the one-dimensional approxima- 
tion commonly adopted [19,26,27] . Kinetic modelers usually apply 
a time (or length) shift of the calculated profiles. The time shift is 
usually equal to that between the experimental and the calculated 
50% fuel conversion ( η) as graphically explained in Fig. 8. 

As shown in Fig. 9 , it is necessary to take into account the 
time-shift of calculated profiles in Plug Flow Reactor simulations, 
to avoid misleading conclusions on model performances. Indeed, 
while the “Test Model” of Fig. 9 shows a lower reactivity compared 
to the model of Hakka et al. [29] , once both model are shifted at 

Model Before shift
Model after shift

• The difference between model and experiment can be 
(also) due to horizontal shift

• The flow reactor case: mixing effects at the reactor inlet 
cause an early reaction. This is typically considered via a 
‘manual’ shift of the time coordinate

= = max 1 − A
B , 0 	∈ 	 (0,1)

A = argmaxδ ;()! + ;()" + ;*! + ;*"

Shift index
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Bootstrapping: accounting for experimental error
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• Experimental points are affected by uncertainty
• The higher experimental uncertainty, the higher the 

variability of the performance indices
• Need to keep it into account to identify the confidence 

interval of the performance indices

Bootstrap

Hjorth, J. U.  Computer intensive statistical methods: Validation, model selection, and bootstrap. Routledge (2017).

Random generation of exp datasets with a normal distribution
• Data point as the mean value
• Uncertainty as the standard deviation

Curve matching is performed with each generated dataset as 
reference curve 

F = ∑$%&6 F$
N

O = *
$%&

6 F$ −F (

N − 1
Confidence 

interval
±Performance 

index
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What happened to the ‘bugged’ NOx mechanism?
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Van Essen et al. Combust Flame 153 (2008)
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• Improved predictions in prompt & 
reburning submechanisms

• Box plot shows the overall 
improvements, as well as the 
outliers to be further investigated

Box plot
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Take-home messages
✓ Mechanism validation is often the major bottleneck in model development

ü Setting up data ecosystems is a necessary step to leverage large amounts of data to develop predictive kinetic 
mechanisms

o Physical behavior is complex, quantifying predictability is, too.
o Uncertainty matters
o Knowledge can be extracted from data behavior

ü Experiments/theory/modeling: the cross and delight of chemical kinetics
o The technology boost increases knowledge
o Increasing knowledge creates some traffic…

✓ Multi-faceted analysis of functional data obtained from models and experiments. 

✓ Distance and similarity norms, and horizontal shift
✓ Functions and first derivatives
✓ Bootstrapping to estimate the index confidence interval

Experiments Models

Theory



SSS

Creation of an
integrated infrastructure
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Beyond Curve Matching: an integrated infrastructure

Multi-source 
integration

Dynamic 
acquisition 

Continuous 
validation

Data 
exploration

Stored 
data

Infrastructure management Analysis tools

Curve 
matching

Platform

Input and output

Quality 
management

…

External 
repositories

Raw sources 
(papers, etc.)

Structured files 
(XML, JSON, 

CSV, etc.)

Extraction and preprocessing

Need to effectively manage a huge
amount of data:
→ Continuous, multi-source integration
→ Dynamic acquisition of new data
→ Continuous validation
→ Data exploration

Creation of a common database, 
interfaced with
→ Simulations platform (e.g. 

OpenSMOKE++)
→ Validation platform (Curve Matching)

Scalia, G., et al. In Semantics, Analytics, 
Visualization. Springer, Cham. (2018)https://sciexpem.polimi.it/
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Flow reactor
Shock tube

Jet stirred reactor
Rapid compression
machine

NH3 NH3/H2

Song(2016)

Hulgaard (1993)

Wargadalam(2000)

Stagni-PFR(2020)

Mathieu(2015)

Shu(2019)

Dagaut(2005)

Rota(2001)

Stagni-JSR(2020)

Manna(2020)

Pochet(2019)

He(2019)

Experimental datasets
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Methodology:

• Synergistic integration of i) experimental 
data, ii) theoretical calculations, iii) kinetic 
modeling

• Automated kinetic simulations

• Model performance analysis

Continuous-improvement workflow

Ramalli et al. Chem Eng J 454 (2023)

Perform experiments and theoretical studies in 
the most critical operating conditions

Ramalli et al. Front Big Data 4 (2021)

A threefold approach
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Sciexpem
https://sciexpem.polimi.it/
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Sciexpem: the ‘experiment’
https://sciexpem.polimi.it/
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Sciexpem: the ‘database’ https://sciexpem.polimi.it/
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Sciexpem: the ‘simulation’ https://sciexpem.polimi.it/
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Sciexpem: model validation and analysis https://sciexpem.polimi.it/
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Take-home messages

• SciExpeM and Data Ecosystems: effective tools that can foster the development of chemical 
kinetic mechanisms.

• SciExpeM specifically as a tool is still under development (JOIN US IN THIS JOURNEY).
• Data sharing, and definition of standard benchmarks needs to be established to develop new 

and consistent methodologies to reduce optimize mechs…

➝ Further exploitation of this huge amount of 
experimental data collected, towards model discovery 
and generation.



SSS

Integration in the
kinetic modelling framework
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Renewable
energy

H2 from
electrolysis

H2 (fuel)

Methanation

Fischer-Tropsch

Methanol
synthesis Methanol

Dehydrogenation
Oxymethylene
ethers (OMEs)

Ammonia
synthesis Ammonia

Large
Hydrocarbons

Methane

H2

H2+CO2

H2+N2

Adapted from Masri, Proc Combust Inst 38 (2021)

E-fuels

NH3 OMEs

H2
CH4

CH3OH

Large 
HCs

Small/large

Co
nv

en
tio

na
l/u

nc
on

ve
nt

io
na

l

Current bottlenecks:
➝ Theoretical knowledge

(e.g. NH3, OMEs)
➝ Chemistry-physics 

interactions (e.g. H2)
➝ Mechanism size 

(Large HCs, OMEs)

Alkane-like chemistry
LT vs HT

Kinetic modeling in the energy transition scenario

33
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HEAT

COMBUSTION

✓ Regardless of the fuels, combustion 
kinetics is:
➝ Hierarchical
➝ One-way
➝ Based on i) the pyrolysis and ii) 

oxidation concepts

Pyrolysis:
C-C bond cleavage

Oxidation:
from C-H bonds

to C-O and H-O bonds

✓ The energy transition can leverage the 
longstanding and established kinetic 
modelling tools and knowledge obtained 
with conventional fuels

✓ From larger to smaller molecules: 
pyrolysis and oxidation break bonds

Which comes first?

O2

OME4

CO2 + H2O

A step back: modeling combustion kinetics
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Limitations of detailed chemistry
✓ Computational availability increases exponentially over time (Moore’s law)

Computational cost scales with power law (Jacobian matrix 
construction/factorization)

✗ Detailed mechanisms of real fuels are not applicable for most computationally 
demanding applications

Biodiesel LLNL
nC16H34 LLNL

iC8H18 LLNL
nC7H16 LLNL

nC4H10 LLNL

GRI 3.0
GRI 1.2

CH4 Leeds

SPYRO
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component in the simulation of chemically reacting flows. It is
important because the fidelity of all subsequent steps of mecha-
nism reduction depends on the fidelity of the detailed mechanism.
In other words, the comprehensiveness of a reduced mechanism
cannot exceed that of the detailed mechanism from which it is
deduced. This is a challenging task because, firstly, it is difficult to
be certain that all possible important species and reactions are
identified and included in the detailed mechanism. Furthermore,
the number of reactions and species involved is large, and the
determination of the rate constants of each of the identified reac-
tions, either experimentally or computationally, is not a trivial task.

Lacking a systematic, first-principle procedure to identify all
relevant species and reactions that would render a mechanism
comprehensive, comprehensiveness can be considered based on the
ability of the mechanism to describe combustion phenomena as
extensively as possible. There are two levels of considerations. First,
since the nature of the collision dynamics is determined by the
identity of the colliding molecules as well as the frequency and
energetics of the collision, a comprehensive chemical description in
terms of the macroscopic thermodynamic properties would require
extensive coverage in the range of temperature, pressure, and
composition of the reacting mixture. Second, in terms of combus-
tion phenomena, comprehensiveness would require considerations
of homogeneous and diffusive ignition which cover low-, interme-
diate- and high-temperature chemistry, steady burning and
extinction which cover high-temperature chemistry, and premixed
and nonpremixed flames which cover the relative concentrations
and mixedness of fuel and oxidizer. The global combustion
responses of interest would include the laminar flame speed, igni-
tion and extinction strain rates, detonation induction length,
detailed thermal and concentration structures of flames and deto-
nations, oscillatory and pulsed unsteady effects to potentially
discriminate reactions of different time scales, and pollutant
chemistry.

A final requirement for comprehensiveness is fuel hierarchy. For
example, since hydrogen and CO oxidation constitute a part of
methane oxidation, a methane mechanism must degenerate to
those for hydrogen and CO when all elementary reactions not
related to them are stripped away. Thus a mechanism developed for
a fuel must contain descriptions of its intermediates and simpler
fuels as its sub-mechanisms.

It is clear that since the size of a mechanism depends on the
extent of comprehensiveness, some reduction can be achieved for
restricted comprehensiveness. Perhaps the most obvious restriction

is to fix the pressure to atmospheric because many fundamental
and practical combustion phenomena and processes take place
under atmospheric pressure. Other restrictions can also be
imposed, such as lean combustion, high-temperature flames
without considering the possible presence of ignition described by
low-temperature chemistry, and homogeneous charge combustion.
However, except for well-controlled laboratory-scale experiments,
the combustion mode is frequently a mixed one in most complex
and practical combustion situations, involving for example both
premixed and nonpremixed reactants, or both ignition and flames.
Consequently it is more conservative to apply unrestricted
comprehensive mechanisms in simulations of complex flows.

4. Overview of mechanism reduction and
facilitated computation

The availability of a comprehensive detailed reaction mecha-
nism does not mean that it can be readily adopted for computa-
tional simulation. In fact, except for the smallest of fuels such as
hydrogen and methane, and for such simple combustion systems as
the 1-D laminar flame, detailed mechanisms of the larger fuels are
simply too large for simulation without substantial reduction.
Fig. 10 shows the size of more than 20 detailed and moderately
reduced skeletal mechanisms for hydrocarbon fuels of various
molecular complexities compiled over the last two decades [15].
Several interesting observations can be made here. First, the
number of species, K, and reactions, I, increase with the size of the
molecule, roughly in an exponential trend. Specifically, it is seen
that while typical mechanisms for C1 and C2 species consist of less
than about a hundred species, those for realistic engine fuels consist
of hundreds of species and thousands of reactions. Mechanisms of
such sizes are even difficult to apply in 1-D flame simulations. As an
extreme example, the size of the compiled detailed mechanism for
methyl decanoate [16], a biomass fuel surrogate, consists of 3036
species and 8555 reactions. Computation using this mechanism is
time consuming even for 0-D simulations.

The second observation from Fig. 10 is that the size of the
mechanisms tends to grow with time, as new discoveries in
chemical kinetics are continuously being made. Furthermore, the
emergence of computer-aided automatic mechanism generation
[17–20] and computer software for rate parameter evaluation, such
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Fig. 9. Comparison of predicted ignition delay times of atmospheric, stoichiometric
methane–air mixtures using various reduced mechanisms and the detailed mecha-
nism, showing the inadequacy of the four-step class of mechanisms.
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Fig. 10. Size of selected detailed and skeletal mechanisms for hydrocarbon fuels,
together with the approximate years when the mechanisms were compiled.

T.F. Lu, C.K. Law / Progress in Energy and Combustion Science 35 (2009) 192–215196

biodiesel((POLIMI)(

biodiesel(
(LLNL)(Biodiesel(+(NOx(+(

soot((POLIMI)(

C1C16((POLIMI)(

Lu & Law, Prog Energy Comb Sci 35 (2009)

https://www.linkedin.com/pulse/what-moores-law-ritik-kumar-singh-wr4zc/
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Chemistry complexity

#C Paraffin
isomers Petroleum fraction

8 18 Gasoline and naphthas
10 75 Kerosene
12 355 Jet Fuels
15 4347 Diesel Fuels
20 3.66·105 Light Gasoil
25 3.67·107 Gasoil
30 4.11·109 Heavy Gasoil
35 4.93·1011 Atmospheric Residue

Complexity of liquid feedstocks

Altgelt and Boduszynski (1994)

Use of representative molecules
Surrogate fuels

+ O2 

OH• +  
Cyclic Ethers 

OH• + •RCHO +  
CnH2n 

 HO2• + nC7H14 

b-Decomposition 
Products 

 nC7H16 

nC7H15• 

+ O2 

R7OO• 

•Q7OOH 
+ O2 

•OOQ7OOH 

Degenerate 
branching path 

OQ7OOH + OH• 

Reduction techniques
Species Lumping

Skeletal Reduction

Complexity of reaction mechanisms
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/DME

/DMM

CH3O[CH2O]nCH3

Physico-chemical properties similar to those of 
diesel fuels
Established synthesis processes
Reduction in NOx and particulate formationHimmel et al. Sustainable Energy Fuels, 1:1177–1183, 2017.

Great potential as 
drop-in fuels

Omari et al. Applied energy, 239:1242–1249, 2019. 

Case study: Oxymethylene ethers (OMEs)

* 0.1 wt% OME1, 0.2 wt% OME2, 45 wt% OME3, 25 wt% OME4,  
17 wt% OME5, 7 wt% OME6, 3 wt% OME7, 1 wt% OME8

92 B| Optimized reactions

Reaction A � Ea

DMM-QOOH)OH+DMM-cycleth

0.01 atm
6.60E+26 -4.190 27216
4.86E+26 -4.170 27087

1 atm
1.98E+26 -4.040 26932
1.46E+26 -4.020 26804

2 atm
6.15E+26 -4.180 27190
4.53E+26 -4.160 27062

10 atm
7.26E+23 -3.340 25605
5.35E+23 -3.320 25477

20 atm
7.89E+24 -3.640 26136
5.81E+24 -3.620 26008

100 atm
2.37E+24 -3.500 25816
1.75E+24 -3.480 25687

500 atm
4.56E+23 -3.300 25404
3.36E+23 -3.280 25275

OME3–5* Fossil diesel

Density at 15°C [g/cm3] 1.057 0.835
Oxygen content [wt%] 48 ⇠ 0

Cetane number [-] 80 54
Flash point [°C] 62 55

Boiling point [°C] 140–318 200-360
Melting point [°C] �18 ⇠ �9

Table B.2: Properties of conventional diesel fuel (CDF), dimethyl ether (DME),
dymethoxymethane (DMM) and higher OMEs [22].

37
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OME mixtures

Kinetic modeling

CFD applications

➝ Set up a workflow to accommodate 
the chemistry of longer-chain fuels 
into a semidetailed model

➝ Apply to OME2-5 as a case study

Setting up OME chemistry

38
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Set up of a core 
C0-C3 chemistry

Define archetypal 
lumped chemistry 

(OME1)

Set up OME2-5 
model: reaction 

classes, rate rules 

Data-driven, 
physics-enforced 

optimization

Hierarchy, modularity, and generality principles

Pelucchi et al. Comp Aided Chem Eng, 45, 2019. Pegurri , Master Thesis, Poitecnico di Milano (2022)

Kinetic modeling is modular

39
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Chemical lumping

R· +

·
·

·
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n
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ts

➝ With an increasing molecule size, the number of species and 
structural isomers increases exponentially

#C Paraffin
isomers Petroleum fraction

8 18 Gasoline and naphthas
10 75 Kerosene
12 355 Jet Fuels
15 4347 Diesel Fuels
20 3.66·105 Light Gasoil
25 3.67·107 Gasoil
30 4.11·109 Heavy Gasoil
35 4.93·1011 Atmospheric Residue

Altgelt and Boduszynski (1994) Ranzi et al. Progr Energy Combust Sci, 27, 2001

R· +

D
ec

om
po

si
tio

n
pr

od
uc

ts

This was developed for fossil-based fuels…

But it holds equally for next-generation ones!

Lumped heptyl radical

Lumped DMM radical

40

➝ Yet, the reaction classes are always the same…

➝ Chemical lumping: structural isomers can be grouped into 
pseudo-species, thus limiting the increase in the number of 
species (Ranzi, 2001)
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DMM (OME1) kinetic model as an archetypal
High- and low-temperature pathwaysFor small molecules like DMM, the key steps can be often 

evaluated ab-initio

Pegurri et al. Combust Flame, 260, 2024Jacobs et al. Combust Flame, 189, 2018

Reaction classes and rate 
rules can be implemented

41
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Lumping OMEs

42



Clarissa Giudici

Alessandro Stagni – COST CYPHER Training School – Budapest, September 2-5, 2025

Reaction classes and rate rules
➝ Reaction rate constants mostly depend on the reacting 

moiety, and the related short-range interactions 
(Benson, 1976)

+ XH•

X•
H

Example: H-abstractions

➝ The abstracting radical

➝ The hydrogen location

The reaction rate depends on:

Benson, “Thermochemical kinetics”, 2nd edition, New York  (1976)

H = I&'+,-! exp −L&'+,-! /NO ×I.-,/! exp −L-,/! /NO

Parameters of the 
abstracting radical

Parameters of the 
hydrogen bond

Ranzi et al. Comb Sci Technol 95 (1993)

43

➝ “Similar” reactions have similar reaction rates on all fuels: 
rate rules can be defined
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1. Unimolecular decomposition
2. OME0 + Ṙ1 ↔ OME0Ṙ + R1H
3. OME0Ṙ ↔ Y-decomposition products
4. O2 + OME0Ṙ ↔ OME0RȮ2
5. ṘO2 + OME0Ṙ ↔ RȮ + OME0RȮ
6. OME0RȮ2 ↔ OME0Q̇OOH
7. Ṙ + OME0ROOH ↔ RH + OME0RȮ2
8. OME0ROOH ↔ OME0RȮ + ȮH
9. OME0RȮ ↔ Y−decomposition products
10. OME0Q̇OOH ↔ OME0 cyclic ether
11. OME0Q̇OOH ↔ Y−decomposition products
12. OME0Q̇OOH + O2 ↔ OME0Ȯ2QOOH
13. OME0OQOOH + ȮH ↔ OME0Ȯ2QOOH
14. OME0OQOOH ↔ Y−decomposition products

Reaction-class systematic methodology

From Ranzi’s methodology

Scaled
From DMM model

Ranzi et al. Progr Energy Combust Sci, 27, 2001 Shrestha et al. Combust Flame 246 (2022) Pegurri et al. Combust Flame, 260, 2024

From OME1 to higher OMEs
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Optimization Start

Suggests
new sets of
parameters

Check if the
rate constants of the

reference reaction of the classes  
are inside the uncertainty

bounds

Compute
Objective
Function

Stopping
criteria reached

Stop

Apply penalty
function

NO

YES

YES

NO

Run Simulations

Apply the scaling to
each reaction of the

class

Curve Matching Score

➝ Non-linear constraint, factor 2 adopted.

➝ Objective function based on Curve Matching index

➝ Reaction Class scaling
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ln H" = ln I" + Y" ln O − L3
N "

1
O

H" = I" ` O4- ` a/b −L3,"NO

Generic rate:

Reference species

*56 =
ln(I5)
ln(I")

*5
4 = Y5 − Y" *5

7.
- = L3

N 5
− L3

N "

Larger species

Scaling factors

Detailed 
mechanism

Lumped 
mechanism

Optimized 
mechanism

!/0, !/1 , !/
2&
3

Kept constant during 
optimization

➝ Reference parameters are 
taken from DMM chemistry

➝ An uncertainty factor *& is 
assigned to each reaction 
class: 

*& =
c839 − c!
ln 10 = c! − c85:

ln 10

Fürst et al. Comp Phys Comm 264, 2021 Bertolino et al. Combust Flame 229, 2021

Scaling rates, retaining chemistry
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Experimental database & optimization targets

OME2 OME3 OME4

➝ Ignition delay time & Jet Stirred Reactor selected from the 
Sciexpem database

➝ Most data on OME2-4 (only 1 dataset available for OME5)

➝ Plug flow reactor used for validation
➝ Laminar flame speed used for validation
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Pyrolysis Oxidation

OME5 well caught (although not used 
as optimization target)

Scaled OME reactivity caught 
reasonably well

Zhong et al. J Anal Appl Pyr, 159, 2021 Gaiser et al. Fuel, 313, 2022

Model validation
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OME2 vs OME3 Temperature scaling (OME3)

Shrestha et al. Combust Flame 246 (2022) Wang et al. Fuel, 297, 120754 (2022)

Laminar flame speed is independent of 
OME chain length (C0-C3 controlling)

Reasonable prediction of LFS scaling 
with the temperature

Model validation: laminar flame speed
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Mechanism validation

OME2

OME3

Wang et al. Combust Flame 245 (2022)
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Ignition delay times and kinetic analysis
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OME2

Optimized
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10 bar
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➝ Consistent scaling of OME2-4 ignition delay times
➝ Y-decompositions are slowed down to decrease low T 

reactivity
➝ Reverse QOOH oxidation to O2QOOH was increased to 

decrease low T reactivity
➝ The constraints on the scaling factors prevent further 

improvements on the final mechanism (the ‘short-blanket 
problem’)
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Take-home messages

➝ Combustion is hierarchical, regardless of the kind of fuel

Not always! We might need to couple the 
workflow to reduction techniques to provide 
ad hoc, compact kinetic mechanisms

Shrestha et al. Combust Flame 246 (2022)
Cai et al. Fuel 264 (2020)

Is it enough to actually
use these mechanisms? 

➝ Modeling the next-generation, CO2-neutral fuels can rely on the same 
kinetic modeling tools and methodologies once developed for fossil fuels

➝ For longer-chain fuels (OMEs), the same size issues once met for fossil 
fuels must be faced: mechanism size and complexity

➝ The combination of i) chemical lumping and ii) mechanism optimization 
can deliver compact mechanisms, with a linear increase in the number 
of species

➝ Reaction classes and rate rules are able to enforce physics in kinetic 
mechanisms, easing their development



Clarissa Giudici

Alessandro Stagni – COST CYPHER Training School – Budapest, September 2-5, 2025 53

Conclusions
➝ The energy transition introduces novel challenges in modeling 

combustion kinetics
✓ New fuels: NH3, OME… 
✓ Heteroatoms chemistry (N, O, S…)
✓ New formation pathways of old pollutants (soot, NOx)

➝ Compared to the times of fossil fuels chemistry (90s-2000s):
✓ Huge amount of experimental data
✓ Kinetic modeling and analysis capabilities are much stronger

➝ We can leverage the same tools once developed for fossil fuels. 
Combustion principles are unchanged, too. Thus:
✓ Hierarchical and modular formulation
✓ Reaction classes and rate rules
✓ Reduction techniques: lumping and skeletal reduction

➝ The validation bottleneck must be cut, though
✓ We must develop and improve automated methodologies for 

model validation and analysis
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Thank you for 
your attention

! ?


